381
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effects of tooth root cracks on vibration and dynamic transmission error responses of asymmetric gears: A comparative study

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2569-2604 | Received 30 Sep 2022, Accepted 16 Feb 2023, Published online: 08 Mar 2023

References

  • Chen, Z., and P. Ji. 2021. Research on the variation of mesh stiffness and transmission error for spur gear with tooth profile modification and wear fault. Engineering Failure Analysis 122:105184. doi:10.1016/j.engfailanal.2020.105184.
  • Chen, T., Y. Wang, and Z. Chen. 2019. A novel distribution model of multiple teeth pits for evaluating time-varying mesh stiffness of external spur gears. Mechanical Systems and Signal Processing 129:479–501. doi:10.1016/j.ymssp.2019.04.029.
  • Chen, Z., W. Zhai, Y. Shao, K. Wang, and G. Sun. 2016. Analytical model for mesh stiffness calculation of spur gear pair with non-uniformly distributed tooth root crack. Engineering Failure Analysis 66:502–14. doi:10.1016/j.engfailanal.2016.05.006.
  • Choudhary, A., T. Mian, and S. Fatima. 2021. Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images. Measurement 176:109196. doi:10.1016/j.measurement.2021.109196.
  • Concli, F., L. Fraccaroli, and L. Maccioni. 2021. Gear root bending strength: A new multiaxial approach to translate the results of single tooth bending fatigue tests to meshing gears. Metals 11 (6):863. doi:10.3390/met11060863.
  • Concli, F., L. Maccioni, L. Fraccaroli, and L. Bonaiti. 2021. Early crack propagation in single tooth bending fatigue: Combination of finite element analysis and critical-planes fatigue criteria. Metals 11 (11):1871. doi:10.3390/met11111871.
  • Doğan, O., O. C. Kalay, and F. Karpat. 2022. Influence of tooth root cracks on the mesh stiffness of asymmetric spur gear pair with different backup ratios. In Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. Advance online publication. doi:10.1177/09544062221124037.
  • Doğan, O., and F. Karpat. 2019. Crack detection for spur gears with asymmetric teeth based on the dynamic transmission error. Mechanism and Machine Theory 133:417–31. doi:10.1016/j.mechmachtheory.2018.11.026.
  • Doğan, O., F. Karpat, O. Kopmaz, and S. Ekwaro-Osire. 2020. Influences of gear design parameters on dynamic tooth loads and time-varying mesh stiffness of involute spur gears. Sādhanā 45 (1):1–15. doi:10.1007/s12046-020-01488-x.
  • Doğan, O., C. Yuce, and F. Karpat. 2021. Effects of rim thickness and drive side pressure angle on gear tooth root stress and fatigue crack propagation life. Engineering Failure Analysis 122:105260. doi:10.1016/j.engfailanal.2021.105260.
  • Doğan, O. 2020. Investigation of the effects of gear tooth faults and damages on the dynamic behavior of non-standard gears. PhD diss., Bursa Uludag University.
  • Gecgel, O. 2019. Condition monitoring of gearbox components using deep learning with simulated data., PhD diss., Texas Tech University.
  • Huang, D., Z. Wang, and A. Kubo. 2020. Hypoid gear integrated wear model and experimental verification design and test. International Journal of Mechanical Sciences 166:105228. doi:10.1016/j.ijmecsci.2019.105228.
  • Huangfu, Y., X. Dong, K. Chen, G. Tu, X. Long, and Z. Peng. 2022. A tribo-dynamic based pitting evolution model of planetary gear sets: A topographical updating approach. International Journal of Mechanical Sciences 220:107157. doi:10.1016/j.ijmecsci.2022.107157.
  • Jiang, H., and F. Liu. 2020. Mesh stiffness modelling and dynamic simulation of helical gears with tooth crack propagation. Meccanica 55:1215–36. doi:10.1007/s11012-020-01159-5.
  • Kalay, O. C., O. Doğan, T. G. Yılmaz, C. Yüce, and F. Karpat. 2021. A comparative experimental study on the impact strength of standard and asymmetric involute spur gears. Measurement 172:108950. doi:10.1016/j.measurement.2020.108950.
  • Kapelevich, A. 2000. Geometry and design of involute spur gears with asymmetric teeth. Mechanism and Machine Theory 35 (1):117–30. doi:10.1016/S0094-114X(99)00002-6.
  • Karpat, F., O. Dogan, C. Yuce, and S. Ekwaro-Osire. 2017. An improved numerical method for the mesh stiffness calculation of spur gears with asymmetric teeth on dynamic load analysis. Advances in Mechanical Engineering 9 (8):168781401772185–12. doi:10.1177/1687814017721856.
  • Karpat, F., and S. Ekwaro-Osire. 2008. Influence of tip relief modification on the wear of spur gears with asymmetric gears. Tribology Transactions 51 (5):581–8. doi:10.1080/10402000802011703.
  • Karpat, F., S. Ekwaro-Osire, K. Cavdar, and F. C. Babalik. 2008. Dynamic analysis of involute spur gears with asymmetric teeth. International Journal of Mechanical Sciences 50 (12):1598–610. doi:10.1016/j.ijmecsci.2008.10.004.
  • Karpat, F., S. Ekwaro-Osire, and M. P. H. Khandaker. 2008. Probabilistic analysis of MEMS asymmetric gear tooth. Journal of Mechanical Design 130 (4):1–6. doi:10.1115/1.2885189.
  • Karpat, F., C. Yuce, and O. Doğan. 2020. Experimental measurement and numerical validation of single tooth stiffness for involute spur gears. Measurement 150:107043. doi:10.1016/j.measurement.2019.107043.
  • Karpat, F., A. E. Dirik, O. C. Kalay, O. Doğan, and B. Korcuklu. 2020. Vibration-based early crack diagnosis with machine learning for spur gears. Paper Presented at ASME International Mechanical Engineering Congress and Exposition, Virtual, Online November, 16–9. doi:10.1115/IMECE2020-24006.
  • Khabou, M. T., N. Bouchaala, F. Chaari, T. Fakhfakh, and M. Haddar. 2011. Study of a spur gear dynamic behavior in transient regime. Mechanical Systems and Signal Processing 25 (8):3089–101. doi:10.1016/j.ymssp.2011.04.018.
  • Lei, Y., and M. J. Zuo. 2009. Gear crack level identification based on weighted K nearest neighbor classification algorithm. Mechanical Systems and Signal Processing 23 (5):1535–47. doi:10.1016/j.ymssp.2009.01.009.
  • Lewicki, D. G. 1996. Crack propagation studies to determine benign or catastrophic failure modes for aerospace thin-rim gears. PhD diss., Case Western Reserve University.
  • Li, X., K. Chen, Y. Huangfu, H. Ma, B. Zhao, and K. Yu. 2021. Vibration characteristic analysis of spur gear systems under tooth crack or fracture. Journal of Low Frequency Noise, Vibration and Active Control 40 (1):135–53. doi:10.1177/1461348419879550.
  • Liang, X., H. Zhang, L. Liu, and M. J. Zuo. 2016. The influence of tooth pitting on the mesh stiffness of a pair of external spur gears. Mechanism and Machine Theory 106:1–15. doi:10.1016/j.mechmachtheory.2016.08.005.
  • Liang, X., M. J. Zuo, and M. Pandey. 2014. Analytically evaluating influence of crack on the mesh stiffness of a planetary gear set. Mechanism and Machine Theory 76:20–38. doi:10.1016/j.mechmachtheory.2014.02.001.
  • Lin, H. H. 1985. Computer aided design and analysis of spur gear dynamics. PhD diss., University of Cincinnati.
  • Liu, J., H. Zhang, J. Zhai, and Q. Han. 2022. Research on nonlinear dynamic performance of the central bevel gear transmission system in aero-engine with complex excitation. Mechanics Based Design of Structures and Machines:1–24. doi:10.1080/15397734.2022.2054821.
  • Ma, J., T. Liu, C. Zha, and L. Song. 2019. Simulation research on the time-varying meshing stiffness and vibration response of micro-cracks in gears under variable tooth shape parameters. Applied Sciences 9 (7):1512. doi:10.3390/app9071512.
  • Macek, W. 2022. Fracture surface formation of notched 2017A-T4 aluminium alloy under bending fatigue. International Journal of Fracture 234 (1–2):141–57. doi:10.1007/s10704-021-00579-y.
  • Macek, W., R. Owsiński, J. Trembacz, and R. Branco. 2020. Three-dimensional fractographic analysis of total fracture areas in 6082 aluminium alloy specimens under fatigue bending with controlled damage degree. Mechanics of Materials 147:103410. doi:10.1016/j.mechmat.2020.103410.
  • Meng, Z., G. Shi, and F. Wang. 2020. Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness. Mechanism and Machine Theory 148:103786. doi:10.1016/j.mechmachtheory.2020.103786.
  • Mo, S., Y. Li, B. Luo, L. Wang, H. Bao, G. Cen, and Y. Huang. 2022. Research on the meshing characteristics of asymmetric gears considering the tooth profile deviation. Mechanism and Machine Theory 175:104926. doi:10.1016/j.mechmachtheory.2022.104926.
  • Mohamed, A. S., S. Sassi, and M. R. Paurobally. 2018. Model-based analysis of spur gears’ dynamic behavior in the presence of multiple cracks. Shock and Vibration 2018:1–20. doi:10.1155/2018/1913289.
  • Mohammed, O. D., and M. Rantatalo. 2016. Dynamic response and time-frequency analysis for gear tooth crack detection. Mechanical Systems and Signal Processing 66–67:612–24. doi:10.1016/j.ymssp.2015.05.015.
  • Mohammed, O. D., M. Rantatalo, J. Aidanpää, and U. Kumar. 2013. Vibration signal analysis for gear fault diagnosis with various crack progression scenarios. Mechanical Systems and Signal Processing 41 (1–2):176–95. doi:10.1016/j.ymssp.2013.06.040.
  • Muni, D. V., V. S. Kumar, and G. Muthuveerappan. 2007. Optimization of asymmetric spur gear drives for maximum bending strength using direct gear design method. Mechanics Based Design of Structures and Machines 35 (2):127–45. doi:10.1080/15397730701196637.
  • Muni, D. V., and G. Muthuveerappan. 2009. A comprehensive study on the asymmetric internal spur gear drives through direct and conventional gear design. Mechanics Based Design of Structures and Machines 37 (4):431–61. doi:10.1080/15397730903001783.
  • Ouyang, T., G. Wang, L. Cheng, J. Wang, and R. Yang. 2022. Comprehensive diagnosis and analysis of spur gears with crack-pitting coupling faults. Mechanism and Machine Theory 176:104968. doi:10.1016/j.mechmachtheory.2022.104968.
  • Ozguven, H. N. 1991. A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics. Journal of Sound and Vibration 145 (2):239–60. doi:10.1016/0022-460X(91)90590-G.
  • Pandya, Y., and A. Parey. 2013. Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack. Engineering Failure Analysis 27:286–96. doi:10.1016/j.engfailanal.2012.08.015.
  • Pedersen, N. L. 2010. Improving bending stress in spur gears using asymmetric gears and shape optimization. Mechanism and Machine Theory 45 (11):1707–20. doi:10.1016/j.mechmachtheory.2010.06.004.
  • Sharma, V., and A. Parey. 2016. Gear crack detection using modified TSA and proposed fault indicators for fluctuating speed conditions. Measurement 90:560–75. doi:10.1016/j.measurement.2016.04.076.
  • Shuai, M., M. Shuai, J. Guoguang, G. Jiabei, Z. Ting, and Z. Shengping. 2019. Design principle and modeling method of asymmetric involute internal helical gears. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (1):244–55. doi:10.1177/0954406218756443.
  • Verma, J. G., S. Kumar, and P. K. Kankar. 2018. Crack growth modeling in spur gear tooth and its effect on mesh stiffness using extended finite element method. Engineering Failure Analysis 94:109–20. doi:10.1016/j.engfailanal.2018.07.032.
  • Wang, X., D. Mao, and X. Li. 2021. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement 173:108518. doi:10.1016/j.measurement.2020.108518.
  • Wang, L., and Y. Shao. 2017. Fault mode analysis and detection for gear tooth crack during its propagating process based on dynamic simulation method. Engineering Failure Analysis 71:166–78. doi:10.1016/j.engfailanal.2016.11.003.
  • Wang, X., Y. Yang, W. Wang, and W. Chi. 2020. Simulating coupling behavior of spur gear meshing and fatigue crack propagation in tooth root. International Journal of Fatigue 134:105381. doi:10.1016/j.ijfatigue.2019.105381.
  • Wei, S., F. Chu, H. Ding, and L. Chen. 2021. Dynamic analysis of uncertain spur gear systems. Mechanical Systems and Signal Processing 150:107280. doi:10.1016/j.ymssp.2020.107280.
  • Wei, Y., and Y. Jiang. 2019. Fatigue fracture analysis of gear teeth using XFEM. Transactions of Nonferrous Metals Society of China 29 (10):2099–108. doi:10.1016/S1003-6326(19)65116-2.
  • Wu, J., Y. Yang, P. Wang, J. Wang, and J. Cheng. 2020. A novel method for gear crack fault diagnosis using improved analytical-FE and strain measurement. Measurement 163:107936. doi:10.1016/j.measurement.2020.107936.
  • Yang, Y., W. Xia, J. Han, Y. Song, J. Wang, and Y. Dai. 2019. Vibration analysis for tooth crack detection in a spur gear system with clearance nonlinearity. International Journal of Mechanical Sciences 157–158:648–61. doi:10.1016/j.ijmecsci.2019.05.012.
  • Yılmaz, T. G., O. Doğan, and F. Karpat. 2019. A comparative numerical study of forged bi-metal gears: Bending strength and dynamic response. Mechanism and Machine Theory 141:117–35. doi:10.1016/j.mechmachtheory.2019.07.007.
  • Yılmaz, T. G., O. Doğan, and F. Karpat. 2021. A numerical investigation on the hybrid spur gears: Stress and dynamic analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236:354–69. doi:10.1177/0954406220982007.
  • Yoon, K. Y., and S. S. Rao. 1996. Dynamic load analysis of spur gears using a new tooth profile. Journal of Mechanical Design 118 (1):1–6. doi:10.1115/1.2826851.
  • Yu, W., Y. Shao, and C. K. Mechefske. 2015. The effects of spur gear tooth spatial crack propagation on gear mesh stiffness. Engineering Failure Analysis 54:103–19. doi:10.1016/j.engfailanal.2015.04.013.
  • Yuce, C., O. Gecgel, O. Doğan, S. Dabetwar, Y. Yanik, O. C. Kalay, E. Karpat, F. Karpat, and S. Ekwaro-Osire. 2022. Prognostics and health management of wind energy infrastructure systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 8 (2):1–18. doi:10.1115/1.4053422.
  • Zhao, Z., T. Li, J. Wu, C. Sun, S. Wang, R. Yan, and X. Chen. 2020. Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study. ISA Transactions 107:224–55. doi:10.1016/j.isatra.2020.08.010.
  • Zheng, X., W. Luo, Y. Hu, Z. He, and S. Wang. 2022. Analytical approach to mesh stiffness modeling of high-speed spur gears. International Journal of Mechanical Sciences 224:107318. doi:10.1016/j.ijmecsci.2022.107318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.