170
Views
1
CrossRef citations to date
0
Altmetric
Articles

Analytical investigation of asymmetric forced vibration behavior of functionally graded porous plates with structural damping

, , &
Pages 2749-2774 | Received 16 Nov 2022, Accepted 06 Mar 2023, Published online: 30 Mar 2023

References

  • Akbaş, Ş. D., Y. A. Fageehi, A. E. Assie, and M. A. Eltaher. 2020. Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Engineering with Computers 38:365–77. doi:10.1007/s00366-020-01070-3.
  • Al Jahwari, F., and H. E. Naguib. 2016. Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution. Applied Mathematical Modelling 40 (3):2190–205. doi:10.1016/j.apm.2015.09.038.
  • Alavi, S. H., and H. Eipakchi. 2019. Geometry and load effects on transient response of a VFGM annular plate: An analytical approach. Structural Engineering and Mechanics 70 (2):179–97.
  • Alavi, S. H., and H. Eipakchi. 2020a. Analytic solution for transient responses of viscoelastic FG plates subjected to various asymmetrically loads. International Journal for Computational Methods in Engineering Science and Mechanics 22 (4):278–96. doi:10.1080/15502287.2020.1861129.
  • Alavi, S. H., and H. Eipakchi. 2020b. An analytical approach for free vibrations analysis of viscoelastic circular and annular plates using FSDT. Mechanics of Advanced Materials and Structures 27 (3):250–64. doi:10.1080/15376494.2018.1472348.
  • Alavi, S. H, and H. Eipakchi. 2020c. On the asymmetric transient responses of annular/circular viscoelastic plates based on shear deformation theory: An analytical approach. Ships and Offshore Structures 15 (2):110–22. doi:10.1080/17445302.2019.1589048.
  • Alavi, S. H., and H. Eipakchi. 2021a. An analytical approach for dynamic response of viscoelastic annular sector plates. Mechanics of Advanced Materials and Structures 29 (23):3372–86. doi:10.1080/15376494.2021.1896821.
  • Alavi, S. K., M. R. Ayatollahi, M. Petrů, and S. S. R. Koloor. 2022. On the dynamic response of viscoelastic functionally graded porous plates under various hybrid loadings. Ocean Engineering 264:112541. doi:10.1016/j.oceaneng.2022.112541.
  • Alavi, S. K., M. R. Ayatollahi, S. S. Rahimian Koloor, and M. Petru. 2022. Study on fundamental damped frequency parameters of plates made of FG porous material: A close-form solution. Waves in Random and Complex Media 1–26. doi:10.1080/17455030.2022.2139010.
  • Alavi, S. K., and H. R. Eipakchi. 2021b. Parametric vibration analysis of sector plates using perturbation technique. Mechanics Based Design of Structures and Machines 1–20. doi:10.1080/15397734.2021.1999268.
  • Bisadi, H., M. Es’ Haghi, H. Rokni, and M. Ilkhani. 2012. Benchmark solution for transverse vibration of annular Reddy plates. International Journal of Mechanical Sciences 56 (1):35–49. doi:10.1016/j.ijmecsci.2011.12.007.
  • Brinson, H. F., and L. C. Brinson. 2008. Polymer engineering science and viscoelasticity. An introduction. Berlin, Germany: Springer.
  • Chaudhary, S. K., V. R. Kar, and K. K. Shukla. 2021. Flexural behavior of perforated functionally graded composite panels under complex loading conditions: Higher-order finite-element approach. Journal of Aerospace Engineering 34 (6):04021081. doi:10.1061/(ASCE)AS.1943-5525.0001334.
  • Chaudhary, S. K., V. R. Kar, and K. K. Shukla. 2022. Geometrically nonlinear large-deflection analysis of heated functionally graded composite panels with single and multiple perforations. Mechanics of Advanced Materials and Structures 1–18. doi:10.1080/15376494.2022.2092798.
  • Civalek, Ö. M. E. R. 2014. Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations. International Journal of Pressure Vessels and Piping 113:1–9. doi:10.1016/j.ijpvp.2013.10.014.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2022. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines 50 (6):1914–31. doi:10.1080/15397734.2020.1766494.
  • Daemi, H., and H. Eipakchi. 2019. Closed form solution for free vibrations analysis of FGPM thick cylinders employing FSDT under various boundary conditions. Composite Structures 229:111403. doi:10.1016/j.compstruct.2019.111403.
  • Dassault Systèmes. 2011. ABAQUS/standard user’s manual, version 6.14. Providence, RI: Dassault Systèmes.
  • Dastjerdi, S., B. Akgöz, and Ö. Civalek. 2020. On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science 149:103236. doi:10.1016/j.ijengsci.2020.103236.
  • Eipakchi, H., and S. K. Moshir. 2020. Dynamic response determination of viscoelastic annular plates using FSDT–perturbation approach. Journal of Computational Applied Mechanics 51 (1):98–106.
  • Esmaeilzadeh, M., and M. Kadkhodayan. 2019. Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping. Aerospace Science and Technology 93:105333. doi:10.1016/j.ast.2019.105333.
  • Gao, K., R. Li, and J. Yang. 2019. Dynamic characteristics of functionally graded porous beams with interval material properties. Engineering Structures 197:109441. doi:10.1016/j.engstruct.2019.109441.
  • Habibi, M., A. Mohammadi, H. Safarpour, A. Shavalipour, and M. Ghadiri. 2021. Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mechanics Based Design of Structures and Machines 49 (5):640–58. doi:10.1080/15397734.2019.1697932.
  • Hosseini-Hashemi, S., A. R. Abaei, and M. R. Ilkhani. 2015. Free vibrations of functionally graded viscoelastic cylindrical panel under various boundary conditions. Composite Structures 126:1–15. doi:10.1016/j.compstruct.2015.02.031.
  • Hsu, M.-H. 2007. Vibration analysis of annular plates. Journal of Applied Science and Engineering 10 (3):193–99.
  • Jalaei, M. H., and Ö. Civalek. 2019. On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. International Journal of Engineering Science 143:14–32. doi:10.1016/j.ijengsci.2019.06.013.
  • Jalaei, M. H., and H.-T. Thai. 2019. Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Composites Part B: Engineering 175:107164. doi:10.1016/j.compositesb.2019.107164.
  • Jodaei, A., M. Jalal, and M. H. Yas. 2012. Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Composites Part B: Engineering 43 (2):340–53. doi:10.1016/j.compositesb.2011.08.052.
  • Joshi, K. K., and V. R. Kar. 2021. Effect of material heterogeneity on the deformation behaviour of multidirectional (1D/2D/3D) functionally graded composite panels. Engineering Computations 38 (8):3325–52.
  • Joshi, K. K., V. R. Kar, and B. Thomas. 2022. Higher-order finite element solution of graphene platelets reinforced nanocomposite curved panels with uniform/non-uniform porosity. Mechanics Based Design of Structures and Machines 1–20. doi:10.1080/15397734.2022.2104311.
  • Karakoti, A., S. Pandey, and V. R. Kar. 2022. Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment. Thin-Walled Structures 173:108985. doi:10.1016/j.tws.2022.108985.
  • Liu, Z., S. Su, D. Xi, and M. Habibi. 2020. Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method. Mechanics Based Design of Structures and Machines 50 (8):2688–13.
  • Luong, V. H., T. N. T. Cao, J. N. Reddy, K. K. Ang, M. T. Tran, and J. Dai. 2018. Static and dynamic analyses of Mindlin plates resting on viscoelastic foundation by using moving element method. International Journal of Structural Stability and Dynamics 18 (11):1850131. doi:10.1142/S0219455418501316.
  • Mao, Y. Q., Y. M. Fu, and H. L. Dai. 2011. Creep buckling and post-buckling analysis of the laminated piezoelectric viscoelastic functionally graded plates. European Journal of Mechanics A/Solids 30 (4):547–58. doi:10.1016/j.euromechsol.2011.03.004.
  • Mase, G. T., R. E. Smelser, and G. E. Mase. 2009. Continuum mechanics for engineers. New York: CRC Press.
  • Nayfeh, A. H. 2011. Introduction to perturbation techniques. England: John Wiley & Sons.
  • Nie, G., and Z. Zhong. 2010. Dynamic analysis of multi-directional functionally graded annular plates. Applied Mathematical Modelling 34 (3):608–16. doi:10.1016/j.apm.2009.06.009.
  • Pawlus, D. 2017. Stability of three-layered annular plate with composite facings. Applied Composite Materials 24 (1):141–58. doi:10.1007/s10443-016-9518-z.
  • Pawlus, D. 2020. Dynamic response of three-layered annular plates in time-dependent temperature field. International Journal of Structural Stability and Dynamics 20 (12):2050139. doi:10.1142/S0219455420501394.
  • Renault, A., L. Jaouen, and F. Sgard. 2011. Characterization of elastic parameters of acoustical porous materials from beam bending vibrations. Journal of Sound and Vibration 330 (9):1950–63. doi:10.1016/j.jsv.2010.11.013.
  • Sadd, M. H. 2009. Elasticity: Theory, applications, and numerics. USA: Academic Press.
  • Salih, A. 2014. The method of multiple scales.
  • Shariyat, M., and F. F. Nasab. 2014. Low-velocity impact analysis of the hierarchical viscoelastic FGM plates, using an explicit shear-bending decomposition theory and the new DQ method. Composite Structures 113:63–73. doi:10.1016/j.compstruct.2014.03.003.
  • Shi, X., D. Shi, W. L. Li, and Q. Wang. 2016. A unified method for free vibration analysis of circular, annular and sector plates with arbitrary boundary conditions. Journal of Vibration and Control 22 (2):442–56. doi:10.1177/1077546314533580.
  • Shi, X., D. Shi, Z. Qin, and Q. Wang. 2014. In-plane vibration analysis of annular plates with arbitrary boundary conditions. The Scientific World Journal 2014:1–10. doi:10.1155/2014/653836.
  • Shirmohammadi, F., and S. Bahrami. 2018. Dynamic response of circular and annular circular plates using spectral element method. Applied Mathematical Modelling 53:156–66. doi:10.1016/j.apm.2017.08.014.
  • Weisensel, G. N., and A. L. Schlack Jr. 1993. Response of annular plates to circumferentially and radially moving loads. Journal of Applied Mechanics 60:649–61.
  • Xie, X., G. Jin, T. Ye, and Z. Liu. 2014. Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method. Applied Acoustics 85:130–42. doi:10.1016/j.apacoust.2014.04.006.
  • Yaakoubi, M., M. Kchaou, and F. Dammak. 2013. Simulation of the thermomechanical and metallurgical behavior of steels by using ABAQUS software. Computational Materials Science 68:297–306. doi:10.1016/j.commatsci.2012.10.001.
  • Zamani, H. A., M. M. Aghdam, and M. Sadighi. 2017. Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory. Composite Structures 182:25–35. doi:10.1016/j.compstruct.2017.08.101.
  • Zhang, Y., G. Jin, M. Chen, T. Ye, C. Yang, and Y. Yin. 2020. Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core. Composite Structures 244:112298. doi:10.1016/j.compstruct.2020.112298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.