126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thermal deflection and snap-buckling analysis of temperature-dependent FGP curved nanotubes via a nonlocal strain gradient theory

, & ORCID Icon
Pages 2902-2928 | Received 14 Nov 2022, Accepted 06 Mar 2023, Published online: 28 Mar 2023

References

  • Babaei, H. 2022. Nonlinear analysis of size-dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory. Engineering with Computers 38 (S3):1717–34. doi:10.1007/s00366-021-01317-7.
  • Babaei, H., and M. R. Eslami. 2020a. Limit load analysis and imperfection sensitivity of porous FG micro-tubes surrounded by a nonlinear softening elastic medium. Acta Mechanica 231 (11):4563–83. doi:10.1007/s00707-020-02781-w.
  • Babaei, H., and M. R. Eslami. 2020b. On nonlinear vibration and snap-through stability of porous FG curved micro-tubes using two-step perturbation technique. Composite Structures 247:112447. doi:10.1016/j.compstruct.2020.112447.
  • Babaei, H., and M. R. Eslami. 2021a. Thermally induced nonlinear stability and imperfection sensitivity of temperature- and size-dependent FG porous micro-tubes. International Journal of Mechanics and Materials in Design 17 (2):381–401. doi:10.1007/s10999-021-09531-3.
  • Babaei, H., and M. R. Eslami. 2021b. Nonlinear analysis of thermal-mechanical coupling bending of clamped FG porous curved micro-tubes. Journal of Thermal Stresses 44 (4):409–32. doi:10.1080/01495739.2020.1870417.
  • Babaei, H., Y. Kiani, and M. R. Eslami. 2018. Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment. Thin-Walled Structures 132:48–57. doi:10.1016/j.tws.2018.08.008.
  • Babaei, H., Y. Kiani, and M. R. Eslami. 2019a. Buckling and post-buckling analysis of geometrically imperfect FGM pin-ended tubes surrounded by nonlinear elastic medium under compressive and thermal loads. International Journal of Structural Stability and Dynamics 19 (8):1950089. doi:10.1142/S0219455419500895.
  • Babaei, H., Y. Kiani, and M. R. Eslami. 2019b. Thermally induced large deflection analysis of shear deformable FGM shallow curved tubes using perturbation method. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik 99 (2):e201800148. doi:10.1002/zamm.201800148.
  • Babaei, H., Y. Kiani, and M. R. Eslami. 2020. Large amplitude free vibrations of FGM shallow curved tubes in thermal environment. Smart Struct System 25:693–705.
  • Chen, Y., Y. Fu, J. Zhong, and Y. Li. 2017. Nonlinear dynamic responses of functionally graded tubes subjected to moving load based on a refined beam model. Nonlinear Dynamics 88 (2):1441–52. doi:10.1007/s11071-016-3321-0.
  • Civalek, O., C. Demir, and B. Akgöz. 2010. Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Mathematical and Computational Applications 15:289–98.
  • Dehrouyeh-Semnani, A. M., E. Dehdashti, M. R. Hairi Yazdi, and M. Nikkhah-Bahrami. 2019. Nonlinear thermo-resonant behavior of fluid-conveying FG pipes. International Journal of Engineering Science 144:103141. doi:10.1016/j.ijengsci.2019.103141.
  • Dehrouyeh-Semnani, A. M., M. Nikkhah-Bahrami, and M. R. Hairi Yazdi. 2017. On nonlinear stability of fluid-conveying imperfect micropipes. International Journal of Engineering Science 120:254–71. doi:10.1016/j.ijengsci.2017.08.004.
  • Ding, H. X., and G. L. She. 2022. A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid. Structural Engineering Mech 80:63–72.
  • Eltaher, M. A., N. Mohamed, S. Mohamed, and L. F. Seddek. 2019. Postbuckling of curved carbon nanotubes using energy equivalent model. Journal of Nano Research 57:136–57. doi:10.4028/www.scientific.net/JNanoR.57.136.
  • Eslami, M. R. 2018. Buckling and postbuckling of beams, plates, and shells. Switzerland: Springer.
  • Fu, Y., J. Zhong, X. Shao, and Y. Chen. 2015. Thermal postbuckling analysis of functionally graded tubes based on a refined beam model. International Journal of Mechanical Sciences 96:58–64.
  • Gao, Y., W. S. Xiao, and H. Zhu. 2019. Nonlinear vibration of different types of functionally graded nanotubes using nonlocal strain gradient theory. European Physical Journal Plus 134:345–65.
  • Ghazavi, M. R., H. Molki, and A. Ali Beigloo. 2017. Nonlinear vibration and stability analysis of the curved microtube conveying fluid as a model of the micro coriolis flowmeters based on strain gradient theory. Applied Mathematical Modelling 45:1020–30. doi:10.1016/j.apm.2017.01.048.
  • Huang, Y., and X. F. Li. 2010a. Buckling of functionally graded circular columns including shear deformation. Materials & Design 31 (7):3159–66. doi:10.1016/j.matdes.2010.02.032.
  • Huang, Y., and X. F. Li. 2010b. Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity. International Journal of Mechanical Sciences 52 (4):595–601. doi:10.1016/j.ijmecsci.2009.12.008.
  • Karami, B., and M. Janghorban. 2019. On the dynamics of porous nanotubes with variable material properties and variable thickness. International Journal of Engineering Science 136:53–66. doi:10.1016/j.ijengsci.2019.01.002.
  • Lei, Z. X., L. W. Zhang, and K. M. Liew. 2016. Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Composites Part B: Engineering 84:211–21. doi:10.1016/j.compositesb.2015.08.081.
  • Li, L., and Y. Hu. 2019. Torsional statics of two-dimensionally functionally graded microtubes. Mechanics of Advanced Materials and Structures 26 (5):430–42. doi:10.1080/15376494.2017.1400617.
  • Liew, K. M., Z. X. Lei, and L. W. Zhang. 2015. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures 120:90–7. doi:10.1016/j.compstruct.2014.09.041.
  • Liew, K. M., Z. Pan, and L. W. Zhang. 2020. The recent progress of functionally graded CNT reinforced composites and structures. Science China Physics, Mechanics & Astronomy 63:234601.
  • Lim, C. W., G. Zhang, and J. N. Reddy. 2015. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids 78:298–313. doi:10.1016/j.jmps.2015.02.001.
  • Liu, H., Z. Lv, and H. Tang. 2019. Nonlinear vibration and instability of FG nanopipes with initial imperfection conveying fluid. Applied Mathematical Modelling 76:133–50. doi:10.1016/j.apm.2019.06.011.
  • Lu, L., G. L. She, and X. Guo. 2021. Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection. International Journal of Mechanical Sciences 199:106428. doi:10.1016/j.ijmecsci.2021.106428.
  • Marin, M., S. Vlase, and M. Paun. 2015. Considerations on double porosity structure for micropolar bodies. AIP Advances 5 (3):037113. doi:10.1063/1.4914912.
  • Reddy, J. N. 2003. Mechanics of laminated composite plates and shells, theory and application. Boca Raton: CRC Press.
  • Saeed, T., I. Abbas, and M. Marin. 2020. A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry 12 (3):488. doi:10.3390/sym12030488.
  • Setoodeh, A. R., and S. Afrahim. 2014. Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Composite Structures 116:128–35. doi:10.1016/j.compstruct.2014.05.013.
  • She, G. L. 2021. Guided wave propagation of porous functionally graded plates: The effect of thermal loadings. Journal of Thermal Stresses 44 (10):1289–305. doi:10.1080/01495739.2021.1974323.
  • She, G. L., and H. X. Ding. 2023. Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection. Acta Mechanica Sinica 39:522392.
  • She, G. L., H. B. Liu, and B. Karami. 2021. Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin-Walled Structures 160:107407. doi:10.1016/j.tws.2020.107407.
  • Shen, H. S. 2009. Functionally graded materials nonlinear analysis of plates and shells. Boca Raton: CRC Press.
  • Shen, H. S. 2009. Thermal postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. Journal of Engineering Mechanics 94:372–83.
  • Shen, H. S. 2013. A two-step perturbation method in nonlinear analysis of beams, plates and shells. Singapore: John Wiley and Sons.
  • Shen, H. S., and Z. X. Wang. 2014. Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences 81:195–206. doi:10.1016/j.ijmecsci.2014.02.020.
  • She, G.-L., F.-G. Yuan, B. Karami, Y.-R. Ren, and W.-S. Xiao. 2019. On nonlinear bending behavior of FG porous curved nanotubes. International Journal of Engineering Science 135:58–74. doi:10.1016/j.ijengsci.2018.11.005.
  • Sofiyev, A. H. 2011. Thermal buckling of FGM shells resting on a two-parameter elastic foundation. Thin-Walled Structures 49 (10):1304–11. doi:10.1016/j.tws.2011.03.018.
  • Tang, M., Q. Ni, L. Wang, Y. Luo, and Y. Wang. 2014. Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. International Journal of Engineering Science 84:1–10. doi:10.1016/j.ijengsci.2014.06.007.
  • Tong, G., Y. Liu, Q. Cheng, and J. Dai. 2020. Stability analysis of cantilever functionally graded material nanotube under thermo-magnetic coupling effect. European Journal of Mechanics - A/Solids 80:103929. doi:10.1016/j.euromechsol.2019.103929.
  • Uzun, B., and B. O. Yaylı. 2022. Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory. Materials Today Communications 32:103969. doi:10.1016/j.mtcomm.2022.103969.
  • Wang, P., J. Huo, R. Dehini, and M. Forsat. 2021. Buckling of functionally graded nonuniform and imperfect nanotube using higher order theory. Waves in Random and Complex Media:1–24. doi:10.1080/17455030.2021.1892864.
  • Wang, Y., X. Jiang, and H. Babaei. 2021. Nonlinear thermal instability and vibration analysis of pre/post-buckled FG porous nanotubes using nonlocal strain gradient theory. Waves in Random and Complex Media:1–34. doi:10.1080/17455030.2021.1995636.
  • Wang, Y., K. Xie, and T. Fu. 2018. Vibration analysis of functionally graded porous shear deformable tubes excited by moving distributed load. Acta Astronautica 151:603–13. doi:10.1016/j.actaastro.2018.06.003.
  • Xiao, W. S., and P. Dai. 2020. Static analysis of a circular nanotube made of functionally graded bi-semi-tubes using nonlocal strain gradient theory and a refined shear model. European Journal of Mechanics - A/Solids 82:103979. doi:10.1016/j.euromechsol.2020.103979.
  • Zhang, P., and Y. Fu. 2013. A higher-order beam model for tubes. European Journal of Mechanics - A/Solids 38:12–9. doi:10.1016/j.euromechsol.2012.09.009.
  • Zhang, L. W., and K. M. Liew. 2016a. Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach. Composite Structures 138:40–51. doi:10.1016/j.compstruct.2015.11.031.
  • Zhang, L. W., and K. M. Liew. 2016b. Element-free geometrically nonlinear analysis of quadrilateral functionally graded material plates with internal column supports. Composite Structures 147:99–110. doi:10.1016/j.compstruct.2016.03.034.
  • Zhang, L. W., K. M. Liew, and Z. Jiang. 2016. An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation. Composites Part B: Engineering 95:18–28. doi:10.1016/j.compositesb.2016.03.078.
  • Zhang, L. W., K. M. Liew, and J. N. Reddy. 2016a. Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Computer Methods in Applied Mechanics and Engineering 298:1–28. doi:10.1016/j.cma.2015.09.016.
  • Zhang, L. W., K. M. Liew, and J. N. Reddy. 2016b. Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates. Computer Methods in Applied Mechanics and Engineering 300:593–610. doi:10.1016/j.cma.2015.11.030.
  • Zhang, L. W., W. H. Liu, and K. M. Liew. 2016. Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates. International Journal of Non-Linear Mechanics 86:122–32. doi:10.1016/j.ijnonlinmec.2016.08.004.
  • Zhang, Y. W., and G. L. She. 2022. Wave propagation and vibration of FG pipes conveying hot fluid. Steel and Composite Structures 42:397–405.
  • Zhang, L. W., Z. G. Song, and K. M. Liew. 2016. Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Computer Methods in Applied Mechanics and Engineering 300:427–41. doi:10.1016/j.cma.2015.11.029.
  • Zhang, L. W., Z. G. Song, and K. M. Liew. 2016. Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Composites Part B: Engineering 85:140–9. doi:10.1016/j.compositesb.2015.09.044.
  • Zhang, L. W., Z. G. Song, P. Qiao, and K. M. Liew. 2017. Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Computer Methods in Applied Mechanics and Engineering 313:889–903. doi:10.1016/j.cma.2016.10.020.
  • Zhang, Y. Y., Y. X. Wang, X. Zhang, H. M. Shen, and G. L. She. 2021. On snap-buckling of FG-CNTRC curved nanobeams considering surface effects. Steel and Composite Structures 38:293–304.
  • Zhang, L. W., L. N. Xiao, G. L. Zou, and K. M. Liew. 2016. Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Composite Structures 148:144–54. doi:10.1016/j.compstruct.2016.04.006.
  • Zhang, L. W., Y. Zhang, G. L. Zou, and K. M. Liew. 2016. Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Composite Structures 149:247–60. doi:10.1016/j.compstruct.2016.04.019.
  • Zhong, J., Y. Fu, D. Wan, and Y. Li. 2016. Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model. Applied Mathematical Modelling 40:1–14.
  • Zhu, X., and L. Li. 2017. Closed form solution for a nonlocal strain gradient rod in tension. International Journal of Engineering Science 119:16–28. doi:10.1016/j.ijengsci.2017.06.019.
  • Zhu, X., Z. Lu, Z. Wang, L. Xue, and A. Ebrahimi-Mamaghani. 2022. Vibration of spinning functionally graded nanotubes conveying fluid. Engineering with Computers 38 (2):1771–92. doi:10.1007/s00366-020-01123-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.