177
Views
3
CrossRef citations to date
0
Altmetric
Articles

Multi-objective design optimization of a high performance disk brake using lichtenberg algorithm

, , , &
Pages 3038-3051 | Received 15 Nov 2022, Accepted 23 Mar 2023, Published online: 11 Apr 2023

References

  • Belhocine, A., D. Shinde, and R. Patil. 2021. Thermo-mechanical coupled analysis based design of ventilated brake disk using genetic algorithm and particle swarm optimization. JMST Advances 3 (3):41–54. doi:10.1007/s42791-021-00040-0.
  • Belhocine, A., and O. I. Abdullah. 2020. A thermomechanical model for the analysis of disk brake using the finite element method in frictional contact. Journal of Thermal Stresses 43 (3):305–20. doi:10.1080/01495739.2019.1683482.
  • Belhocine, A., and W. Z. W. Omar. 2017. Three-dimensional finite element modeling and analysis of the mechanical behavior of dry contact slipping between the disk and the brake pads. The International Journal of Advanced Manufacturing Technology 88 (1–4):1035–51. doi:10.1007/s00170-016-8822-y.
  • Brakes. (n.d.). T RP brakes. T RP. Accessed April 3 2023. https://trpcycling.com/product-category/brakes/
  • Cavallari, G. 2012. Manual de Mountain Bike e Cicloturismo. Editora: Kalapalo.
  • Challan, M., S. Jeet, D. K. Bagal, L. Mishra, A. K. Pattanaik, and A. Barua. 2022. Fabrication and mechanical characterization of red mud based Al2025-T6 MMC using Lichtenberg optimization algorithm and Whale optimization algorithm. Materials Today: Proceedings 50:1346–53. doi:10.1016/j.matpr.2021.08.274.
  • Childs, P. R. 2018. Mechanical design engineering handbook. Oxford: Elselvier.
  • Elseify, M. A., S. Kamel, L. Nasrat, and F. Jurado. 2023. Multi-objective optimal allocation of multiple capacitors and distributed generators considering different load models using Lichtenberg and thermal exchange optimization techniques. Neural Computing and Applications. doi:10.1007/s00521-023-08327-0.
  • Francisco, M. B., D. M. Junqueira, G. A. Oliver, J. L. J. Pereira, S. S. da Cunha, and G. F. Gomes. 2021. Design optimizations of carbon fibre reinforced polymer isogrid lower limb prosthesis using particle swarm optimization and Lichtenberg algorithm. Engineering Optimization 53 (11):1922–45.
  • Hwang, P., X. Wu, and Y. B. Jeon. 2009. Thermal mechanical coupled simulation of a solid brake disk in repeated braking cycles. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 223 (7):1041–8. doi:10.1243/13506501JET587.
  • Ishak, M. R., A. R. Abu Bakar, A. Belhocine, J. M. Taib, and W. Z. W. Omar. 2016. Brake torque analysis of fully mechanical parking brake system: Theoretical and experimental approach. Measurement 94:487–97. doi:10.1016/j.measurement.2016.08.026.
  • Limpert, R. 2011. Brake design and safety. 3rd ed., 415. Pensilvânia: SAE International.
  • Lü, H., and D. Yu. 2016. Optimization design of a disk brake system with hybrid uncertainties. Advances in Engineering Software 98:112–22. ISSN 0965-9978. doi:10.1016/j.advengsoft.2016.04.009.
  • Lü, H., and D. Yu. 2014. Brake squeal reduction of vehicle disk brake system with interval parameters by uncertain optimization. Journal of Sound and Vibration 333 (26):7313–25. ISSN 0022-460X. doi:10.1016/j.jsv.2014.08.027.
  • Mohanty, A., K. S. Nag, D. K. Bagal, A. Barua, S. Jeet, S. S. Mahapatra, and H. Cherkia. 2022. Parametric optimization of parameters affecting dimension precision of FDM printed part using hybrid Taguchi-MARCOS-nature inspired heuristic optimization technique. Materials Today: Proceedings 50:893–903. doi:10.1016/j.matpr.2021.06.216.
  • Naveed, N, and Whitford, M. M. 2019. Design analysis of bicycle brake disk for carbon fiber – lightweight material, 109. Sunderland: University of Sunderland.
  • Pappalardo, C. M., A. G. Manca, and D. Guida. 2021. A combined use of the multibody system approach and the finite element analysis for the structural redesign and the topology optimization of the latching component of an aircraft hatch door. IAENG International Journal of Applied Mathematics 51 (1):175–91.
  • Ozaki, Y., and T. Ujiro. 2008. Martensitic stainless steel “JFE410DB-ER” with excellent heat resistancefor motorcycle brake disks. Jfe Technical REPORT 12:51–6.
  • Pereira, J. L. J., Antônio, O. G. Francisco, M. B. Cunha, S. S, and G. F. Gomes 2022a. Multi-objective Lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems. Expert Systems with Applications 187 (1):115939.
  • Pereira, J. L. J., M. B. Francisco, R. F. Ribeiro, S. S. Cunha, and G. F. Gomes. 2022b. Deep multiobjective design optimization of CFRP isogrid tubes using lichtenberg algorithm. Soft Computing 26 (15):7195–209. doi:10.1007/s00500-022-07105-9.
  • Pereira, J. L. J., M. B. Francisco, L. A. de Oliveira, J. A. S. Chaves, S. S. Cunha Jr, and G. F. Gomes. 2022c. Multi-objective sensor placement optimization of helicopter rotor blade based on feature selection. Mechanical Systems and Signal Processing 180:109466. doi:10.1016/j.ymssp.2022.109466.
  • Pereira, J. L. J., Francisco, M. B. Diniz, C. A. A. Oliver, G. Cunha, S. S, and G. F. Gomes. 2021. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Systems with Applications 170:114522.
  • Pereira, J. L. J., Francisco, M. B. Cunha , S. S. da, and G. F. Gomes. 2021. A powerful Lichtenberg optimization algorithm: A damage identification case study. Engineering Applications of Artificial Intelligence.97:104055. doi:10.1016/j.engappai.2020.104055.
  • Pereira, J. L. J., G. A. Oliver, M. B. Francisco, S. S. Cunha, and G. F. Gomes. 2021b. A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Archives of Computational Methods in Engineering 29 (4):2285–308. doi:10.1007/s11831-021-09663-x.
  • Pereira, J. L. J., M. Chuman, S. S. Cunha, and G. F. Gomes. 2021. Lichtenberg optimization algorithm applied to crack tip identification in thin plate-like structures. Engineering Computations 38 (1):151–66. doi:10.1108/EC-12-2019-0564.
  • Reibenschuh, M., G. Oder, F. Cuš, and I. Potrč. 2009. Modelling and analysis of thermal and stress loads in train disk brakes. Strojniški vestnik – Journal of Mechanical Engineering 55 (7–8):494–502.
  • Souza, T. A. Z., J. L. J. Pereira, M. B. Francisco, C. A. R. Sotomonte, B. Jun Ma, G. F. Gomes, and C. J. R. Coronado. 2022. Multi-objective optimization for methane, glycerol, and ethanol steam reforming using lichtenberg algorithm. International Journal of Green Energy 20 (4):390–407.
  • Tian, Z., and J. Wang. 2022. Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm. Energy 254:124249. doi:10.1016/j.energy.2022.124249.
  • Tirovic, M., N. Sergent, J. Campbell, P. Roberts, and R. Vignjevic. 2012. Structural analysis of a commercial vehicle disk brake caliper. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226 (5):613–22. doi:10.1177/0954407011423447.
  • Zhao, W., Z. Zhang, S. Mirjalili, L. Wang, N. Khodadadi, and S. M. Mirjalili. 2022. An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems. Computer Methods in Applied Mechanics and Engineering 398:115223. doi:10.1016/j.cma.2022.115223.
  • Witten, T. A., and L. M. Sander. 1981. Diffusion-limited aggregation: A kinetic critical phenomenon. Physical Review Letters 47 (19):1400–3. doi:10.1103/PhysRevLett.47.1400.
  • Witten, T. A., and L. M. Sander. 1983. Diffusion-limited aggregation. Physical Review Letters. 27:5687–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.