126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimized rotor structural design methodology for high-speed electrical machines based on mechanical characteristics

, , , &
Pages 2984-3006 | Received 09 Nov 2022, Accepted 23 Mar 2023, Published online: 12 Apr 2023

References

  • Atallah, K., D. Howe, P. H. Mellor, and D. A. Stone. 2000. Rotor loss in permanent-magnet brushless AC machines. IEEE Transactions on Industry Applications 36 (6):1612–8. doi:10.1109/28.887213.
  • Barta, J., N. Uzhegov, P. Losak, C. Ondrusek, M. Mach, and J. Pyrhönen. 2019. Squirrel-cage rotor design and manufacturing for high-speed applications. IEEE Transactions on Industrial Electronics 66 (9):6768–78. doi:10.1109/TIE.2018.2879285.
  • Biggs, M. C. 1978. On the convergence of some constrained minimization algorithms based on recursive quadratic programming. IMA Journal of Applied Mathematics 21 (1):67–81. doi:10.1093/imamat/21.1.67.
  • Boglietti, A., A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto. 2009. Evolution and Modern Approaches for Thermal Analysis of Electrical Machines. IEEE Transactions on Industrial Electronics 56 (3):871–82. doi:10.1109/TIE.2008.2011622.
  • Borisavljevic, A., H. Polinder, and J. A. Ferreira. 2010. On the speed limits of permanent-magnet machines. IEEE Transactions on Industrial Electronics 57 (1):220–7. doi:10.1109/TIE.2009.2030762.
  • Crevecoeur, G., A. A.-E. Abdallh, I. Couckuyt, L. Dupré, and T. Dhaene. 2012. Two-level refined direct optimization scheme using intermediate surrogate models for electromagnetic optimization of a switched reluctance motor. Engineering with Computers 28 (2):199–207. doi:10.1007/s00366-011-0239-5.
  • Cupertino, F., R. Leuzzi, V. G. Monopoli, and G. L. Cascella. 2018. Maximisation of power density in permanent magnet machines with the aid of optimisation algorithms. IET Electric Power Applications 12 (8):1067–74. doi:10.1049/iet-epa.2017.0874.
  • Deng, W., and S. Zuo. 2018. Analytical modeling of the electromagnetic vibration and noise for an external-rotor axial-flux in-wheel motor. IEEE Transactions on Industrial Electronics 65 (3):1991–2000. doi:10.1109/TIE.2017.2736487.
  • Du, G., W. Xu, J. Zhu, and N. Huang. 2020. Effects of design parameters on the multiphysics performance of high-speed permanent magnet machines. IEEE Transactions on Industrial Electronics 67 (5):3472–83. doi:10.1109/TIE.2019.2922933.
  • Ede, J. D., Z. Zhu, and D. Howe. 2002. Rotor resonances of high-speed permanent-magnet brushless machines. IEEE Transactions on Industry Applications 38 (6):1542–8. doi:10.1109/TIA.2002.804765.
  • Gerada, D., A. Mebarki, M. Shanel, N. L. Brown, and K. J. Bradley. 2008. Design considerations of high-speed induction machines for high-temperature applications. Paper presented at 18th International Conference on Electrical Machines, Vilamoura, Portugal, September 09.
  • Golovanov, D., L. Papini, D. Gerada, Z. Xu, and C. Gerada. 2018. Multidomain optimization of high-power-density PM electrical machines for system architecture selection. IEEE Transactions on Industrial Electronics 65 (7):5302–12. doi:10.1109/TIE.2017.2772188.
  • Han, B., Q. Xue, X. Liu, and K. Wang. 2017. Multi-objective optimization design of a high-speed PM machine supported by magnetic bearings. Mechanical Systems and Signal Processing 92:349–63. doi:10.1016/j.ymssp.2017.01.013.
  • Han, P., M. Cheng, Y. Jiang, and Z. Chen. 2017. Torque/power density optimization of a dual-stator brushless doubly-fed induction generator for wind power application. IEEE Transactions on Industrial Electronics 64 (12):9864–75. doi:10.1109/TIE.2017.2726964.
  • Horner, G. C., and W. D. Pilkey. 1978. The Riccati transfer matrix method. Journal of Mechanical Design 100 (2):297–302. doi:10.1115/1.3453915.
  • Huang, Z., J. Fang, X. Liu, and B. Han. 2015. Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines. IEEE Transactions on Industrial Electronics 63 (4):2027–35. doi:10.1109/TIE.2015.2500188.
  • Jokinen, T., V. Hrabovcova, and J. Pyrhonen. 2013. Design of rotating electrical machines. 2nd ed. West Sussex, UK: John Wiley & Sons Ltd.
  • Kolondzovski, Z., A. Arkkio, J. Larjola, and P. Sallinen. 2011. Power limits of high-speed permanent-magnet electrical machines for compressor applications. IEEE Transactions on Energy Conversion 26 (1):73–82. doi:10.1109/TEC.2010.2089459.
  • Kumar, S., T. A. Lipo, and B.-I. Kwon. 2016. A 32 000 r/min axial flux permanent magnet machine for energy storage with mechanical stress analysis. IEEE Transactions on Magnetics 52 (7):1–4. doi:10.1109/TMAG.2015.2512939.
  • Li, Z., Q. Wang, B. Qin, and W. Shao. 2022. Vibration characteristic analysis of flexible rotor-bearing system subjected to external combined loads. European Journal of Mechanics - A/Solids 96:104688. doi:10.1016/j.euromechsol.2022.104688.
  • Ou, J., Y. Liu, and M. Doppelbauer. 2021. Comparison study of a surface-mounted PM rotor and an interior PM rotor made from amorphous metal of high-speed motors. IEEE Transactions on Industrial Electronics 68 (10):9148–59. doi:10.1109/TIE.2020.3026305.
  • Pompermaier, C., K. Kalluf, A. Zambonetti, M. F. Da Luz, and I. Boldea. 2012. Small linear PM oscillatory motor: Magnetic circuit modeling corrected by axisymmetric 2-D FEM and experimental characterization. IEEE Transactions on Industrial Electronics 59 (3):1389–96. doi:10.1109/TIE.2011.2161650.
  • Prohl, M. 1945. A general method for calculating critical speeds of flexible rotors. Journal of Applied Mechanics 12 (3):A142–A148. doi:10.1115/1.4009455.
  • Ran, L., D. Halim, C. K. Thein, and M. Galea. 2021. Experimental Investigation into the Effect of Coupling on Transverse Vibration Characteristics of a Rotor System. Paper presented at 2021 International Conference on Mechanical, Aerospace and Automotive Engineering, Changsha, China, Dec 5. doi:10.1145/3518781.3519196.
  • Sarlioglu, B., and C. T. Morris. 2015. More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE Transactions on Transportation Electrification 1 (1):54–64. doi:10.1109/TTE.2015.2426499.
  • Shin, K.-H., T.-K. Bang, H.-W. Cho, and J.-Y. Choi. 2020. Design and analysis of high-speed permanent magnet synchronous generator with rotor structure considering electromechanical characteristics. IEEE Transactions on Applied Superconductivity 30 (4):1–5. doi:10.1109/TASC.2020.2980536.
  • Tenconi, A., S. Vaschetto, and A. Vigliani. 2014. Electrical machines for high-speed applications: Design considerations and tradeoffs. IEEE Transactions on Industrial Electronics 61 (6):3022–9. doi:10.1109/TIE.2013.2276769.
  • Uzhegov, N., A. Smirnov, C. H. Park, J. H. Ahn, J. Heikkinen, and J. Pyrhönen. 2017. Design aspects of high-speed electrical machines with active magnetic bearings for compressor applications. IEEE Transactions on Industrial Electronics 64 (11):8427–36. doi:10.1109/TIE.2017.2698408.
  • Wang, K., Z. Zhu, G. Ombach, and W. Chlebosz. 2014. Average torque improvement of interior permanent-magnet machine using third harmonic in rotor shape. IEEE Transactions on Industrial Electronics 61 (9):5047–57. doi:10.1109/TIE.2013.2286085.
  • Yang, Y., Y. Yang, D. Cao, G. Chen, and Y. Jin. 2019. Response evaluation of imbalance-rub-pedestal looseness coupling fault on a geometrically nonlinear rotor system. Mechanical Systems and Signal Processing 118:423–42. doi:10.1016/j.ymssp.2018.08.063.
  • Yim, K., and B.-J. Ryu. 2011. Effect of load torque on the stability of overhung rotors. Journal of Mechanical Science and Technology 25 (3):589–95. doi:10.1007/s12206-011-0105-9.
  • Yurchenko, D., L. Q. Machado, J. Wang, C. Bowen, S. Sharkh, M. Moshrefi-Torbati, and D. V. Val. 2022. Global optimisation approach for designing high-efficiency piezoelectric beam-based energy harvesting devices. Nano Energy. 93:106684. doi:10.1016/j.nanoen.2021.106684.
  • Zhang, Z., C. Wang, and W. Geng. 2020. Design and optimization of Halbach-array PM rotor for high-speed axial-flux permanent magnet machine with ironless stator. IEEE Transactions on Industrial Electronics 67 (9):7269–79. doi:10.1109/TIE.2019.2944033.
  • Zhao, H., C. Chu, H. H. Eldeeb, Y. Zhan, G. Xu, and O. A. Mohammed. 2020. Optimal design of high-speed solid-rotor cage induction motors considering ferromagnetic materials behavior and manufacturing process. IEEE Transactions on Industry Applications 56 (4):4345–55. doi:10.1109/TIA.2020.2984479.
  • Zhu, X., W. Hua, Z. Wu, W. Huang, H. Zhang, and M. Cheng. 2018. Analytical approach for cogging torque reduction in flux-switching permanent magnet machines based on magnetomotive force-permeance model. IEEE Transactions on Industrial Electronics 65 (3):1965–79. doi:10.1109/TIE.2017.2739688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.