77
Views
0
CrossRef citations to date
0
Altmetric
Articles

Large-amplitude vibration of rotating functionally graded blades including geometrical nonlinearity and stress stiffening effects

, &
Pages 3135-3159 | Received 28 Nov 2022, Accepted 23 Mar 2023, Published online: 18 Apr 2023

References

  • Ansari, E., A. R. Setoodeh, and T. Rabczuk. 2020. Isogeometric-stepwise vibrational behavior of rotating functionally graded blades with variable thickness at an arbitrary stagger angle subjected to thermal environment. Composite Structures 244:112281. doi:10.1016/j.compstruct.2020.112281.
  • Chen, Y., D. Zhang, and L. Li. 2019. Dynamics analysis of a rotating plate with a setting angle by using the absolute nodal coordinate formulation. European Journal of Mechanics - A/Solids 74:257–71. doi:10.1016/j.euromechsol.2018.11.018.
  • Cook, R. D., S. MalkusD, M. E. Plesha, and R. J. Witt. 2007. Concepts and applications of finite element analysis. John Wiley Sons; Fourth Edition, Singapore.
  • Dokainish, M. A., and S. Rawtani. 1971. Vibration analysis of rotating cantilever plates. International Journal for Numerical Methods in Engineering 3 (2):233–48. doi:10.1002/nme.1620030208.
  • Du, C. F., D. G. Zhang, and G. R. Liu. 2017. A cell-based smoothed finite element method for free vibration analysis of a rotating plate. International Journal of Computational Methods 15 (2):1840003.
  • Fang, J. S., and D. Zhou. 2017. Free vibration analysis of rotating mindlin plates with variable thickness. International Journal of Structural Stability and Dynamics 17 (04):1750046. doi:10.1142/S0219455417500468.
  • Fathi, R., H. Wei, B. Saleh, N. Radhika, J. Jiang, A. Ma, M. H. Ahmed, Q. Li, and K. K. Ostrikov. 2022. Past and present of functionally graded coatings: Advancements and future challenges. Applied Materials Today 26:101373. doi:10.1016/j.apmt.2022.101373.
  • Gibson, L. J., M. F. Ashby, G. N. Karam, U. Wegst, and H. R. Shercliff. 1995. The mechanical properties of natural materials. II. Microstructures for mechanical efficiency. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 450 (1938):141–62.
  • Gu, X. J., Y. X. Hao, W. Zhang, L. T. Liu, and J. Chen. 2019. Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection. Applied Mathematical Modelling 68:327–52. doi:10.1016/j.apm.2018.11.037.
  • Guo, H., X. Ouyang, K. K. Żur, X. Wu, T. Yang, and A. J. Ferreira. 2022. On the large-amplitude vibration of rotating pre-twisted graphene nanocomposite blades in a thermal environment. Composite Structures 282:115129. doi:10.1016/j.compstruct.2021.115129.
  • Heydarpour, Y., P. Malekzadeh, R. Dimitri, and F. Tornabene. 2020. Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme. Composite Structures 235:111707. doi:10.1016/j.compstruct.2019.111707.
  • Hu, X. X., and T. Tsuiji. 1999. Free vibration analysis of curved and twisted cylindrical thin panels. Journal of Sound and Vibration 219 (1):63–88. doi:10.1006/jsvi.1998.1825.
  • Hu, X. X., and T. Tsuiji. 1999. Free vibration analysis of rotating twisted cylindrical thin panels. Journal of Sound and Vibration 222 (2):209–24. doi:10.1006/jsvi.1998.2118.
  • Karroubi, R., and M. Irani-Rahaghi. 2019. Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: Free vibration analysis. Applied Mathematics and Mechanics 40 (4):563–78. doi:10.1007/s10483-019-2469-8.
  • Kiani, Y., M. Shakeri, and M. R. Eslami. 2012. Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation. Acta Mechanica 223 (6):1199–218. doi:10.1007/s00707-012-0629-9.
  • Kim, W. Y. 2005. Temperature dependent vibration analysis of functionally graded rectangular plates. Journal of Sound and Vibration 284 (3–5):531–49. doi:10.1016/j.jsv.2004.06.043.
  • Li, C., and H. Cheng. 2021. Free vibration analysis of a rotating varying-thickness-twisted blade with arbitrary boundary conditions. Journal of Sound and Vibration 492:115791. doi:10.1016/j.jsv.2020.115791.
  • Li, L., and D. G. Zhang. 2016. Free vibration analysis of rotating functionally graded rectangular plates. Composite Structures 136:493–504. doi:10.1016/j.compstruct.2015.10.013.
  • Macbain, J. C. 1975. Vibratory behavior of twisted cantilevered plates. Journal of Aircraft 12 (4):343–9. doi:10.2514/3.44453.
  • Niu, Y., M. Yao, and W. Zhang. 2021. Nonlinear transient responses of rotating twisted FGM cylindrical panels. Science China Technological Sciences 64 (2):317–30. doi:10.1007/s11431-019-1472-1.
  • Niu, Y., W. Zhang, and X. Y. Guo. 2019. Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets. European Journal of Mechanics - A/Solids 77:103798. doi:10.1016/j.euromechsol.2019.103798.
  • Pandya, B. N., and T. Kant. 1988. Finite element analysis of laminated composite plates using a higher-order displacement model. Composites Science and Technology 32 (2):137–55. doi:10.1016/0266-3538(88)90003-6.
  • Parida, S., and S. C. Mohanty. 2019a. Free vibration analysis of rotating functionally graded material plate under nonlinear thermal environment using higher order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (6):2056–73. doi:10.1177/0954406218777535.
  • Parida, S., and S. C. Mohanty. 2019b. Vibration analysis of FG rotating plate using nonlinear-FEM. Multidiscipline Modeling in Materials and Structures 15 (1):26–49., and doi:10.1108/MMMS-11-2017-0141.
  • Reddy, J. N., and C. D. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–626. doi:10.1080/01495739808956165.
  • Sathish, M., N. Radhika, and B. Saleh. 2021. A critical review on functionally graded coatings: Methods, properties, and challenges. Composites Part B: Engineering 225:109278. doi:10.1016/j.compositesb.2021.109278.
  • Sinha, S. K., and K. E. Turner. 2011. Natural frequencies of a pre-twisted blade in a centrifugal force field. Journal of Sound and Vibration 330 (11):2655–81. doi:10.1016/j.jsv.2010.12.017.
  • Tornabene, F. 2019. On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials. Thin-Walled Structures 140:85–98. doi:10.1016/j.tws.2019.03.018.
  • Wang, L., D. C. Li, J. S. Yang, F. Shao, X. H. Zhong, H. Y. Zhao, K. Yang, S. Y. Tao, and Y. Wang. 2016. Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review. Journal of the European Ceramic Society 36 (6):1313–31. doi:10.1016/j.jeurceramsoc.2015.12.038.
  • Xiao, S., and B. Chen. 2006. Dynamic behavior of thin rectangular plate attached to moving rigid. Applied Mathematics and Mechanics 27 (4):555–66. doi:10.1007/s10483-006-0416-1.
  • Yao, M. H., Y. P. Chen, and W. Zhang. 2012. Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dynamics 68 (4):487–504. doi:10.1007/s11071-011-0231-z.
  • Yao, M., Y. Niu, and Y. Hao. 2019. Nonlinear dynamic responses of rotating pretwisted cylindrical shells. Nonlinear Dynamics 95 (1):151–74. doi:10.1007/s11071-018-4557-7.
  • Yoo, H. H., and S. K. Kim. 2002. Free Vibration Analysis of Rotating Cantilever Plates. AIAA Journal 40 (11):2188–96. doi:10.2514/2.1572.
  • Yoo, H. H., and C. Pierre. 2003. Modal characteristic of a rotating rectangular cantilever plate. Journal of Sound and Vibration 259 (1):81–96. doi:10.1006/jsvi.2002.5182.
  • Zhao, J., Q. Tian, and H. Hu. 2011. Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics 6 (4):041013. doi:10.1115/1.4003975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.