321
Views
1
CrossRef citations to date
0
Altmetric
Articles

Tool–workpiece separation characteristic and surface generation in ultrasonic assisted milling

, , , &
Pages 3182-3209 | Received 09 Jan 2023, Accepted 30 Mar 2023, Published online: 18 Apr 2023

References

  • Abootorabi Zarchi, M. M., M. R. Razfar, and A. Abdullah. 2013. Influence of ultrasonic vibrations on side milling of AISI 420 stainless steel. The International Journal of Advanced Manufacturing Technology 66 (1–4):83–9. doi:10.1007/s00170-012-4307-9.
  • Amini, S., H. N. Hosseinabadi, and S. A. Sajjady. 2016. Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance. Applied Surface Science 390:633–48. doi:10.1016/j.apsusc.2016.07.064.
  • Börner, R., S. Winkler, T. Junge, C. Titsch, A. Schubert, and W.-G. Drossel. 2018. Generation of functional surfaces by using a simulation tool for surface prediction and micro structuring of cold-working steel with ultrasonic vibration assisted face milling. Journal of Materials Processing Technology 255:749–59. doi:10.1016/j.jmatprotec.2018.01.027.
  • Brehl, D. E., and T. A. Dow. 2008. Review of vibration-assisted machining. Precision Engineering 32 (3):153–72. doi:10.1016/j.precisioneng.2007.08.003.
  • Buj-Corral, I., J. Vivancos-Calvet, and A. Domínguez-Fernández. 2012. Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut. International Journal of Machine Tools and Manufacture 53 (1):151–9. doi:10.1016/j.ijmachtools.2011.10.006.
  • Chen, W., D. Huo, J. Hale, and H. Ding. 2018. Kinematics and tool-workpiece separation analysis of vibration assisted milling. International Journal of Mechanical Sciences 136:169–78. doi:10.1016/j.ijmecsci.2017.12.037.
  • Chen, W., L. Zheng, W. Xie, K. Yang, and D. Huo. 2019. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling. Journal of Materials Processing Technology 266:339–50. doi:10.1016/j.jmatprotec.2018.11.011.
  • Chern, G.-L., and Y.-C. Chang. 2006. Using two-dimensional vibration cutting for micro-milling. International Journal of Machine Tools and Manufacture 46 (6):659–66. doi:10.1016/j.ijmachtools.2005.07.006.
  • Elhami, S., M. R. Razfar, and M. Farahnakian. 2015. Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140. International Journal of Mechanical Sciences 103:158–71. doi:10.1016/j.ijmecsci.2015.09.007.
  • Guo, P., and K. F. Ehmann. 2013. An analysis of the surface generation mechanics of the elliptical vibration texturing process. International Journal of Machine Tools and Manufacture 64:85–95. doi:10.1016/j.ijmachtools.2012.08.003.
  • Hao, Y., L. Zhu, B. Yan, S. Qin, D. Cui, and H. Lu. 2022. Milling chatter detection with WPD and power entropy for Ti-6Al-4V thin-walled parts based on multi-source signals fusion. Mechanical Systems and Signal Processing 177:109225. doi:10.1016/j.ymssp.2022.109225.
  • Kawasegi, N., H. Sugimori, H. Morimoto, N. Morita, and I. Hori. 2009. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precision Engineering 33 (3):248–54. doi:10.1016/j.precisioneng.2008.07.005.
  • Kurniawan, R., G. Kiswanto, and T. J. Ko. 2016. Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing. International Journal of Machine Tools and Manufacture 106:127–40. doi:10.1016/j.ijmachtools.2016.03.007.
  • Kurniawan, R., G. Kiswanto, and T. J. Ko. 2017. Surface roughness of two-frequency elliptical vibration texturing (TFEVT) method for micro-dimple pattern process. International Journal of Machine Tools and Manufacture 116:77–95. doi:10.1016/j.ijmachtools.2016.12.011.
  • Li, S., D. Zhang, C. Liu, Z. Shao, and L. Ren. 2021. Influence of dynamic angles and cutting strain on chip morphology and cutting forces during titanium alloy Ti-6Al-4 V vibration-assisted drilling. Journal of Materials Processing Technology 288:116898. doi:10.1016/j.jmatprotec.2020.116898.
  • Liu, X., D. Wu, and J. Zhang. 2018. Fabrication of micro-textured surface using feed-direction ultrasonic vibration-assisted turning. The International Journal of Advanced Manufacturing Technology 97 (9–12):3849–57. doi:10.1007/s00170-018-2082-y.
  • Liu, X., J. Zhang, X. Hu, and D. Wu. 2019. Influence of tool material and geometry on micro-textured surface in radial ultrasonic vibration-assisted turning. International Journal of Mechanical Sciences 152:545–57. doi:10.1016/j.ijmecsci.2019.01.027.
  • Lu, H., L. Zhu, Z. Yang, H. Lu, B. Yan, Y. Hao, and S. Qin. 2021. Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling. International Journal of Mechanical Sciences 208:106681. doi:10.1016/j.ijmecsci.2021.106681.
  • Ma, C., E. Shamoto, T. Moriwaki, and L. Wang. 2004. Study of machining accuracy in ultrasonic elliptical vibration cutting. International Journal of Machine Tools and Manufacture 44 (12–13):1305–10. doi:10.1016/j.ijmachtools.2004.04.014.
  • Nath, C., and M. Rahman. 2008. Effect of machining parameters in ultrasonic vibration cutting. International Journal of Machine Tools and Manufacture 48 (9):965–74. doi:10.1016/j.ijmachtools.2008.01.013.
  • Ni, C., and L. Zhu. 2020. Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. Journal of Materials Processing Technology 278:116518. doi:10.1016/j.jmatprotec.2019.116518.
  • Ni, C., L. Zhu, C. Liu, and Z. Yang. 2018. Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. International Journal of Mechanical Sciences 142-143:97–111. doi:10.1016/j.ijmecsci.2018.04.037.
  • Ni, C., L. Zhu, and Z. Yang. 2019. Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view. Wear 436–437:203006. doi:10.1016/j.wear.2019.203006.
  • Pan, Y., R. Kang, Z. Dong, W. Du, S. Yin, and Y. Bao. 2022. On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning. Journal of Intelligent Manufacturing 33 (3):675–85. doi:10.1007/s10845-020-01669-9.
  • Qin, S., Y. Hao, L. Zhu, M. Wiercigroch, Z. Yuan, C. Shi, and D. Cui. 2023. CWE identification and cutting force prediction in ball-end milling process. International Journal of Mechanical Sciences 239:107863. doi:10.1016/j.ijmecsci.2022.107863.
  • Qin, S., L. Zhu, Y. Hao, C. Shi, S. Wang, and Z. Yang. 2023. Theoretical and experimental investigations of surface generation induced by ultrasonic assisted grinding. Tribology International 179:108120. doi:10.1016/j.triboint.2022.108120.
  • Qin, S., L. Zhu, M. Wiercigroch, T. Ren, Y. Hao, J. Ning, and J. Zhao. 2022. Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling. International Journal of Mechanical Sciences 227:107375. doi:10.1016/j.ijmecsci.2022.107375.
  • Sajjady, S. A., H. Nouri Hossein Abadi, S. Amini, and R. Nosouhi. 2016. Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Materials & Design 93:311–23. doi:10.1016/j.matdes.2015.12.119.
  • Shen, X. H., Y. L. Shi, J. H. Zhang, Q. J. Zhang, G. C. Tao, and L. J. Bai. 2020. Effect of process parameters on micro-textured surface generation in feed direction vibration assisted milling. International Journal of Mechanical Sciences 167:105267. doi:10.1016/j.ijmecsci.2019.105267.
  • Shimizu, J., T. Nakayama, K. Watanabe, T. Yamamoto, T. Onuki, H. Ojima, and L. Zhou. 2020. Friction characteristics of mechanically microtextured metal surface in dry sliding. Tribology International 149:105634. doi:10.1016/j.triboint.2019.02.042.
  • Sun, Y., L. Jin, Y. Gong, X. Wen, G. Yin, Q. Wen, and B. Tang. 2022. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. Journal of Manufacturing Processes 73:799–814. doi:10.1016/j.jmapro.2021.11.049.
  • Tao, G., C. Ma, L. Bai, X. Shen, and J. Zhang. 2017. Feed-direction ultrasonic vibration − assisted milling surface texture formation. Materials and Manufacturing Processes 32 (2):193–8. doi:10.1080/10426914.2016.1198029.
  • Verma, G. C., and P. M. Pandey. 2019. Machining forces in ultrasonic-vibration assisted end milling. Ultrasonics 94:350–63. doi:10.1016/j.ultras.2018.07.004.
  • Wan, S., X. Jin, N. K. Maroju, and J. Hong. 2019. Effect of vibration assistance on chatter stability in milling. International Journal of Machine Tools and Manufacture 145:103432. doi:10.1016/j.ijmachtools.2019.103432.
  • Wang, J., W.-H. Liao, and P. Guo. 2020. Modulated ultrasonic elliptical vibration cutting for ductile-regime texturing of brittle materials with 2-D combined resonant and non-resonant vibrations. International Journal of Mechanical Sciences 170:105347. doi:10.1016/j.ijmecsci.2019.105347.
  • Xu, S., K. Shimada, M. Mizutani, and T. Kuriyagawa. 2014. Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool. International Journal of Machine Tools and Manufacture 86:12–7. doi:10.1016/j.ijmachtools.2014.06.005.
  • Yang, Z., L. Zhu, G. Zhang, C. Ni, and B. Lin. 2020. Review of ultrasonic vibration-assisted machining in advanced materials. International Journal of Machine Tools and Manufacture 156:103594. doi:10.1016/j.ijmachtools.2020.103594.
  • Yuan, S., X. Guo, S. Zhang, C. Zhang, P. Li, Z. Jin, R. Kang, and D. Guo. 2021. Influence mechanism of defects on the subsurface damage and structural evolution of diamond in CMP process. Applied Surface Science 566:150638. doi:10.1016/j.apsusc.2021.150638.
  • Zhang, M., D. Zhang, D. Geng, J. Liu, Z. Shao, and X. Jiang. 2020. Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V. Materials & Design 191:108658. doi:10.1016/j.matdes.2020.108658.
  • Zheng, Z., J. Zhang, P. Feng, and J. Wang. 2023. Controllable fabrication of microstructures on the metallic surface using oblique rotary ultrasonic milling. International Journal of Mechanical Sciences 237:107805. doi:10.1016/j.ijmecsci.2022.107805.
  • Zheng, Z., J. Zhang, P. Feng, Z. Li, and J. Wang. 2022. Fabrication of hierarchical micro/nanostructures on titanium alloy by combining rotary ultrasonic milling and anodizing. Manufacturing Letters 34:43–8. doi:10.1016/j.mfglet.2022.09.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.