105
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental and numerical study of telescopic conical energy absorber under inversion process

, ORCID Icon & ORCID Icon
Pages 3210-3228 | Received 31 Oct 2022, Accepted 04 Apr 2023, Published online: 24 Apr 2023

References

  • Ahmad, Z., and D. Thambiratnam. 2009. Crushing response of foam-filled conical tubes under quasi-static axial loading. Materials & Design 30 (7):2393–403. doi:10.1016/j.matdes.2008.10.017.
  • Ahn, S. H., H. S. Jung, J. S. Kim, and S. W. Son. 2022. Crashworthiness analysis and shape design optimization of corrugated tubes for railway application. International Journal of Crashworthiness1–12. doi:10.1080/13588265.2022.2083748.
  • Asanjarani, A., A. Mahdian, and S. Dibajian. 2020. Comparative analysis of energy absorption behavior of tapered and grooved thin-walled tubes with the various geometry of the cross section. Mechanics of Advanced Materials and Structures 27 (8):633–44. doi:10.1080/15376494.2018.1488311.
  • Belytschko, T., J. I. Lin, and T. Chen-Shyh. 1984. Explicit algorithms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering 42 (2):225–51. doi:10.1016/0045-7825(84)90026-4.
  • Chahardoli, S., M. Shabanzadeh, and S. M. Marashi. 2022. Introducing a new mechanism for energy absorption through simultaneous inversion-folding process. International Journal of Crashworthiness 27 (1):92–106. doi:10.1080/13588265.2020.1774481.
  • Ghamarian, A. and H. Zarei. 2012. Crashworthiness investigation of conical and cylindrical end-capped tubes under quasi-static crash loading. International Journal of Crashworthiness 17 (1):19–28. doi:10.1080/13588265.2011.623025.
  • Guist, L. and D. P. Marble. 1966. Prediction of the inversion load of a circular tube.
  • Guler, M. A., M. E. Cerit, B. Bayram, B. Gerceker, and E. Karakaya. 2010. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. International Journal of Crashworthiness 15 (4):377–90. doi:10.1080/13588260903488750.
  • Gupta, P. 2011. A study on inversion of metallic thin-walled conical shells. International Journal of Crashworthiness 16 (6):607–19. doi:10.1080/13588265.2011.606997.
  • Gupta, P. 2014. Numerical investigation of process parameters on external inversion of thin-walled tubes. Journal of Materials Engineering and Performance 23 (8):2905–17. doi:10.1007/s11665-014-1041-5.
  • Jafarian, N., and M. J. Rezvani. 2019. Crushing behavior of multi-component conical tubes as energy absorber: A comparative analysis between end-capped and non-capped conical tubes. Engineering Structures 178:128–35. doi:10.1016/j.engstruct.2018.09.092.
  • Jiang, H., Y. Ren, and J. Zheng. 2020. Gradient-degraded material-induced trigger to improve crashworthiness of composite tubes in a controlled manner. Journal of Reinforced Plastics and Composites 39 (1–2):60–77. doi:10.1177/0731684419872004.
  • Kathiresan, M. 2020. Influence of shape, size and location of cutouts on crashworthiness performance of aluminium conical frusta under quasi-static axial compression. Thin-Walled Structures 154:106793. doi:10.1016/j.tws.2020.106793.
  • Liu, Y., X. Qiu, and T. Yu. 2018. A theoretical model of the inversion tube over a conical die. Thin-Walled Structures 127:31–9. doi:10.1016/j.tws.2018.01.035.
  • Lu, G., and T. Yu. 2003. Energy absorption of structures and materials. Cambridge, UK: Elsevier.
  • Luo, Y., Z. Huang, and X. Zhang. 2007. FEM analysis of external inversion and energy absorbing characteristics of inverted tubes. Journal of Materials Processing Technology 187–188:279–82. doi:10.1016/j.jmatprotec.2006.11.125.
  • Magrinho, J., G. Centeno, M. Silva, D. Morales-Palma, C. Vallellano, and P. Martins. 2019. Process window of tube-end inversion: Experimentation and numerical analysis. Procedia Manufacturing 41:944–51. doi:10.1016/j.promfg.2019.10.019.
  • Magrinho, J., G. Centeno, M. Silva, C. Vallellano, and P. Martins. 2019. On the formability limits of thin-walled tube inversion using different die fillet radii. Thin-Walled Structures 144:106328. doi:10.1016/j.tws.2019.106328.
  • Masmoudi, M., H. Ketata, and A. Krichen. 2016. External curling process of thin tubes: Finite element and experimental investigation. The International Journal of Advanced Manufacturing Technology 87 (9–12):3169–84. doi:10.1007/s00170-016-8742-x.
  • Nagel, G., and D. Thambiratnam. 2004. Dynamic simulation and energy absorption of tapered tubes under impact loading. International Journal of Crashworthiness 9 (4):389–99. doi:10.1533/ijcr.2004.0298.
  • Özbek, Ö., Ö. Y. Bozkurt, and A. Erkliğ. 2022. Development of a trigger mechanism with circular cut-outs to improve crashworthiness characteristics of glass fiber-reinforced composite pipes. Journal of the Brazilian Society of Mechanical Sciences and Engineering 44 (1):1–14. doi:10.1007/s40430-021-03304-x.
  • Patel, V., G. Tiwari, and R. Dumpala. 2020a. Crashworthiness analysis of multi-configuration thin walled co-axial frusta tube structures under quasi-static loading. Thin-Walled Structures 154:106872. doi:10.1016/j.tws.2020.106872.
  • Patel, V., G. Tiwari, and R. Dumpala. 2020b. Effect of cut-outs on the axial crushing response of cap and open-end hybrid frusta tube. Materials Today: Proceedings 28:2539–46.
  • Qiu, X., L. He, J. Gu, and X. Yu. 2013. A three-dimensional model of circular tube under quasi-static external free inversion. International Journal of Mechanical Sciences 75:87–93. doi:10.1016/j.ijmecsci.2013.06.009.
  • Qiu, X. M., L. H. He, J. Gu, and X. H. Yu. 2014. An improved theoretical model of a metal tube under free external inversion. Thin-Walled Structures 80:32–7. doi:10.1016/j.tws.2014.02.025.
  • Razazan, M., M. Rezvani, and H. Souzangarzadeh. 2018. Evaluation of the performance of initiator on energy absorption of foam-filled rectangular tubes: Experimental and numerical assessment. Experimental Techniques 42 (2):129–39. doi:10.1007/s40799-017-0206-1.
  • Reddy, T. 1992. Guist and Marble revisited—On the natural knuckle radius in tube inversion. International Journal of Mechanical Sciences 34 (10):761–8. doi:10.1016/0020-7403(92)90040-N.
  • Rezvani, M. J., and A. Jahan. 2015. Effect of initiator, design, and material on crashworthiness performance of thin-walled cylindrical tubes: A primary multi-criteria analysis in lightweight design. Thin-Walled Structures 96:169–82. doi:10.1016/j.tws.2015.07.026.
  • Rezvani, M. J., and H. Souzangarzadeh. 2020. Effects of triggering and polyurethane foam on energy absorption of thin-walled circular tubes under the inversion process. Journal of Energy Storage 27:101071. doi:10.1016/j.est.2019.101071.
  • Rosa, P., J. Rodrigues, and P. Martins. 2003. External inversion of thin-walled tubes using a die: Experimental and theoretical investigation. International Journal of Machine Tools and Manufacture 43 (8):787–96. doi:10.1016/S0890-6955(03)00062-2.
  • Rosa, P., J. Rodrigues, and P. Martins. 2006. Invert-forming of thin-walled tubes using a die. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (1):35–41. doi:10.1243/095440505X32580.
  • Rosa, P. A., J. M. Rodrigues, and P. A. Martins. 2004. Internal inversion of thin-walled tubes using a die: Experimental and theoretical investigation. International Journal of Machine Tools and Manufacture 44 (7–8):775–84. doi:10.1016/j.ijmachtools.2004.01.013.
  • Sadighi, A., M. B. Azimi, M. Asgari, and A. Eyvazian. 2022. Crashworthiness of hybrid composite-metal tubes with lateral corrugations in axial and oblique loadings. International Journal of Crashworthiness 27 (6):1813–29. doi:10.1080/13588265.2021.2017654.
  • Santosa, S. P., T. Wierzbicki, A. G. Hanssen, and M. Langseth. 2000. Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering 24 (5):509–34. doi:10.1016/S0734-743X(99)00036-6.
  • Sarkabiri, B., A. Jahan, and M. J. Rezvani. 2017. Crashworthiness multi-objective optimization of the thin-walled grooved conical tubes filled with polyurethane foam. Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (7):2721–34. doi:10.1007/s40430-017-0747-3.
  • Shahi, V. J., and J. Marzbanrad. 2012. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes. Thin-Walled Structures 60:24–37. doi:10.1016/j.tws.2012.05.015.
  • Souzangarzadeh, H., M. J. Rezvani, and A. Jahan. 2017. Selection of optimum design for conical segmented aluminum tubes as energy absorbers: Application of MULTIMOORA method. Applied Mathematical Modelling 51:546–60. doi:10.1016/j.apm.2017.07.005.
  • Tian, K., Y. Zhang, F. Yang, Q. Zhao, and H. Fan. 2020. Enhancing energy absorption of circular tubes under oblique loads through introducing grooves of non-uniform depths. International Journal of Mechanical Sciences 166:105239. doi:10.1016/j.ijmecsci.2019.105239.
  • Yu, X., X. Qiu, and T. Yu. 2015. Analysis of the free external inversion of circular tubes based on deformation theory. International Journal of Mechanical Sciences 100:262–8. doi:10.1016/j.ijmecsci.2015.06.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.