212
Views
0
CrossRef citations to date
0
Altmetric
Articles

Modeling and dynamic analysis of a robotic arm with pneumatic artificial muscle by transfer matrix method

, &
Pages 3316-3338 | Received 30 Sep 2022, Accepted 29 Mar 2023, Published online: 26 Apr 2023

References

  • Bærenholdt, M., L. Wang, and X. Zhang. 2019. Concept design and dynamic modelling of a fibre-based continuum robot for early cancer detection using DT-TMM. In New trends in medical and service robotics, 177–85. Cham: Springer.
  • Bamdad, M., and M. M. Bahri. 2019. Kinematics and manipulability analysis of a highly articulated soft robotic manipulator. Robotica 37 (5):868–82. doi:10.1017/S0263574718001376.
  • Bamdad, M., and M. Feyzollahzadeh. 2022. Computational efficient discrete time transfer matrix method for large deformation analysis of flexible manipulators. Mechanics Based Design of Structures and Machines 50 (12):4274–96. doi:10.1080/15397734.2020.1830800.
  • Bamdad, M., and H. Zarshenas. 2015. Robotic rehabilitation with the elbow stiffness adjustability. Modares Mechanical Engineering 14 (11) :151–8
  • Cammarata, A., R. Sinatra, and P. D. Maddìo. 2022. Interface reduction in flexible multibody systems using the Floating Frame of Reference Formulation. Journal of Sound and Vibration 523:116720. doi:10.1016/j.jsv.2021.116720.
  • Chen, D., J. Yang, W. Guo, Y. Liu, and C. Gu. 2022. Vibration study of a composite pipeline supported on elastic foundation using a transfer matrix method. Journal of Vibration and Control 28 (7–8):853–63. doi:10.1177/1077546320985370.
  • Chou, C. P., and B. Hannaford. 1996. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation 12 (1):90–102. doi:10.1109/70.481753.
  • Correll, N., Ç. D. Önal, H. Liang, E. Schoenfeld, and D. Rus. 2014. Soft autonomous materials—using active elasticity and embedded distributed computation. In Experimental robotics, 227–40. Berlin, Heidelberg: Springer.
  • Feldbusch, A., H. Sadegh-Azar, and P. Agne. 2017. Vibration analysis using mobile devices (smartphones or tablets). Procedia Engineering 199:2790–5. doi:10.1016/j.proeng.2017.09.543.
  • Feyzollahzadeh, M., and M. Bamdad. 2020. A modified transfer matrix method to reduce the calculation time: A case study on beam vibration. Applied Mathematics and Computation 378:125238. doi:10.1016/j.amc.2020.125238.
  • Feyzollahzadeh, M., and M. Bamdad. 2022. An efficient technique in transfer matrix method for beam-like structures vibration analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236 (14):7641–56. doi:10.1177/09544062221078730.
  • Habibi, H., C. Yang, I. S. Godage, R. Kang, I. D. Walker, and D. T. Branson. 2020. A lumped-mass model for large deformation continuum surfaces actuated by continuum robotic arms. Journal of Mechanisms and Robotics 12 (1):011014. doi:10.1115/1.4045037.
  • Hassan, T., M. Cianchetti, M. Moatamedi, B. Mazzolai, C. Laschi, and P. Dario. 2019. Finite-element modeling and design of a pneumatic braided muscle actuator with multifunctional capabilities. IEEE/ASME Transactions on Mechatronics 24 (1):109–19. doi:10.1109/TMECH.2018.2877125.
  • He, B., X. Rui, and G. Wang. 2007. Riccati discrete time transfer matrix method for elastic beam undergoing large overall motion. Multibody System Dynamics 18 (4):579–98. doi:10.1007/s11044-007-9063-5.
  • Jiang, M., X. Rui, W. Zhu, F. Yang, and Y. Zhang. 2021. Optimal design of 6-DOF vibration isolation platform based on transfer matrix method for multibody systems. Acta Mechanica Sinica 37 (1):127–37. doi:10.1007/s10409-020-01004-8.
  • Klute, G. K., and B. Hannaford. 2000. Accounting for elastic energy storage in McKibben artificial muscle actuators. Journal of Dynamic Systems, Measurement, and Control 122 (2):386–8. doi:10.1115/1.482478.
  • Krauss, R. W. 2014. Infinite-dimensional pole-optimization control design for flexible structures using the transfer matrix method. Journal of Computational and Nonlinear Dynamics 9 (1): 011004. doi:10.1115/1.4025352.
  • Kumar, A. S., and T. S. Sankar. 1986. A new transfer matrix method for response analysis of large dynamic systems. Computers & Structures 23 (4):545–52. doi:10.1016/0045-7949(86)90097-0.
  • Majidi, C. 2014. Soft robotics: A perspective—current trends and prospects for the future. Soft Robotics 1 (1):5–11. doi:10.1089/soro.2013.0001.
  • Dzahir, M., and S-i Yamamoto. 2014. Recent trends in lower-limb robotic rehabilitation orthosis: Control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 3 (2):120–48. doi:10.3390/robotics3020120.
  • Reynolds, D., D. Repperger, C. Phillips, and G. Bandry. 2003. Modeling the dynamic characteristics of pneumatic muscle. Annals of Biomedical Engineering 31 (3):310–7. doi:10.1114/1.1554921.
  • Rong, B., X. Rui, L. Tao, and G. Wang. 2019. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dynamics 98 (2):1519–53. doi:10.1007/s11071-019-05191-3.
  • Si, G., M. Chu, Z. Zhang, H. Li, and X. Zhang. 2020. Integrating dynamics into design and motion optimization of a 3-PRR planar parallel manipulator with discrete time transfer matrix method. Mathematical Problems in Engineering 2020:1–23. doi:10.1155/2020/2761508.
  • Tondu, B. 2012. Modelling of the McKibben artificial muscle: A review. Journal of Intelligent Material Systems and Structures 23 (3):225–53. doi:10.1177/1045389X11435435.
  • Trivedi, D., C. D. Rahn, W. M. Kier, and I. D. Walker. 2008. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics 5 (3):99–117. doi:10.1155/2008/520417.
  • Wu, M., T. Driver, S. K. Wu, and X. Shen. 2014. Design and preliminary testing of a pneumatic muscle-actuated transfemoral prosthesis. Journal of Medical Devices 8 (4): 044502. doi:10.1115/1.4026830.
  • Xavier, M. S., A. J. Fleming, and Y. K. Yong. 2021. Finite element modeling of soft fluidic actuators: Overview and recent developments. Advanced Intelligent Systems 3 (2):2000187. doi:10.1002/aisy.202000187.
  • Xing, K., J. Huang, Y. Wang, J. Wu, Q. Xu, and J. He. 2010. Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer. IET Control Theory & Applications 4 (10):2058–70. doi:10.1049/iet-cta.2009.0555.
  • Yakoub, R. Y., and A. A. Shabana. 1999. Use of Cholesky coordinates and the absolute nodal coordinate formulation in the computer simulation of flexible multibody systems. Nonlinear Dynamics 20 (3):267–82. doi:10.1023/A:1008323106689.
  • Yeh, T.-J., M.-J. Wu, T.-J. Lu, F.-K. Wu, and C.-R. Huang. 2010. Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics 20 (6):686–97. doi:10.1016/j.mechatronics.2010.07.004.
  • Zhang, X., R. Sørensen, M. R. Iversen, and H. Li. 2018. Computationally efficient dynamic modeling of robot manipulators with multiple flexible-links using acceleration-based discrete time transfer matrix method. Robotics and Computer-Integrated Manufacturing 49:181–93. doi:10.1016/j.rcim.2017.06.010.
  • Zhou, J., and Y. Zhou. 2007. A new simple method of implicit time integration for dynamic problems of engineering structures. Acta Mechanica Sinica 23 (1):91–9. doi:10.1007/s10409-006-0050-5.
  • Zuo, J., Q. Liu, W. Meng, Q. Ai, and S. Q. Xie. 2023. Enhanced compensation control of pneumatic muscle actuator with high-order modified dynamic model. ISA Transactions 132:444–61. doi:10.1016/j.isatra.2022.06.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.