119
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of base material and magnetic field on the dynamic response of MR-laminated composite structures

&
Pages 3389-3403 | Received 01 Feb 2023, Accepted 03 Apr 2023, Published online: 27 Apr 2023

References

  • Avcar, M., L. Hadji, and Ö. Civalek. 2021. Natural frequency analysis of sigmid functionally graded sandwich beams in the framework of high order shear deformation theory. Composite Structures 276 (15):114564. doi:10.1016/j.compstruct.2021.114564.
  • Cavallo, T., E. Zappino, and E. Carrera. 2018. Free vibration analysis of space vehicle structures made by composite materials. Composite Structures 183:53–62. doi:10.3390/aerospace5030095.
  • Civalek, Ö., and M. Avcar. 2022. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering With Computers 38 (S1):489–521. 10.1007/s00366-020-01168-8.
  • Eshaghi, M., R. Sedaghati, and S. Rakheja. 2016. Analytical and experimental free vibration analysis of multi-layer mr fluid circular plates under varying magnetic flux. Journal of Composite Structures 157:78–86. doi:10.1016/j.compstruct.2016.08.024.
  • Feng, J., B. Safaei, Z. Qin, and F. Chu. 2023. Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Composites Science and Technology 233:109925. doi:10.1016/j.compscitech.2023.109925.
  • Ferreira, A. J., C. M. C. Roque, R. M. N. Jorge, and E. J. Kansa. 2005. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations. Engineering Analysis with Boundary Elements 29 (12):1104–14. doi:10.1016/j.enganabound.2005.07.004.
  • Galias, Z. 2022. On rigorous integration of continuous piecewise linear systems. Communications in Nonlinear Science and Numerical Simulation 107:106109. doi:10.1016/j.cnsns.2021.106109.
  • Garg, A., M. O. Belarbi, H. D. Chalak, L. Li, A. Sharma, M. Avcar, N. Sharma, S. Paruthi, and R. Gulia. 2023. Buckling and free vibration analysis of bio-inspired laminated sandwich plates with helicoidal/Bouligand face sheets containing softcore. Ocean Engineering 270 (15):113684. doi:10.1016/j.oceaneng.2023.113684.
  • Jalaei, M. H., H.-T. Thai, and Ö. Civalek. 2022. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. International Journal of Engineering Science 172:103629. doi:10.1016/j.ijengsci.2022.103629.
  • Latifi, M., M. Kharazi, and H. R. Ovesy. 2016. Nonlinear dynamic response of symmetric laminated composite beams under combined in-plane and lateral loadings using full layerwise theory. Thin-Walled Structures 104:62–70. doi:10.1016/j.tws.2016.03.006.
  • Li, H., Y. Liu, H. Zhang, Z. Qin, Z. Wang, Y. Deng, J. Xiong, X. Wang, and S. K. Ha. 2023. Amplitude-dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core. Mechanical Systems and Signal Processing 186:109845. doi:10.1016/j.ymssp.2022.109845.
  • Liu, Y., W. Hu, R. Zhu, B. Safaei, Z. Qin, and F. Chu. 2022a. Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact. Aerospace Science and Technology 121:107321. doi:10.1016/j.ast.2021.107321.
  • Liu, Y., Z. Qin, and F. Chu. 2021. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. International Journal of Mechanical Sciences 201:106474. doi:10.1016/j.ijmecsci.2021.106474.
  • Liu, Y., Z. Qin, and F. Chu. 2022b. Nonlinear forced vibrations of rotating cylindrical shells under multi-harmonic excitations in thermal environment. Nonlinear Dynamics 108 (4):2977–91. doi:10.1007/s11071-022-07449-9.
  • Liu, Y., R. Zhu, Z. Qin, and F. Chu. 2022c. A comprehensive study on vibration characteristic of corrugated cylindrical shells with arbitrary boundary conditions. Engineering Structures 269:114818. doi:10.1016/j.engstruct.2022.114818.
  • Momeni, S., A. Zabihollah, and M. Behzad. 2017. Experimental works on dynamic behavior of laminated composite beam incorporated with magneto rheological fluid under random excitation. 3rd International Conference on Mechatronics and Robotics (ICMRE), Paris, France, February 8–12.
  • Momeni, S., A. Zabihollah, and M. Behzad. 2018. Development of an accurate model for N-layer MR-laminated beams using a layerwise theory. Mechanics of Advanced Materials and Structures 25 (13):1148–55. doi:10.1080/15376494.2017.1341579.
  • Momeni, S., A. Zabihollah, and M. Behzad. 2020. A finite element model for tapered laminated beams incorporated with magnetorheological fluid using a layerwise model under random excitations. Mechanics of Advanced Materials and Structures 27 (1):12–9. doi:10.1080/15376494.2018.1472327.
  • Moreira, R. A., and J. D. Rodrigues. 2006. A layerwise model for thin soft core sandwich plates. Computers & Structures 84 (19–20):1256–63. doi:10.1016/j.compstruc.2006.01.020.
  • Nagiredla, S., S. Joladarashi, and H. Kumar. 2022. Influence of magnetorheological fluid pocket configuration on the dynamic response of the composite sandwich beam. Mechanics Based Design of Structures and Machines :1–27. doi:10.1080/15397734.2022.2138914.
  • Numanoğlu, H. M., H. Ersoy, B. Akgöz, and Ö. Civalek. 2022. A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovation nonlocal finite element method. Mathematical Methods in the Applied Sciences 45 (5):2592–614. doi:10.1002/mma.7942.
  • Phan-Dao, H. H., C. H. Thai, J. Lee, and H. Nguyen-Xuan. 2016. Analysis of laminated composite and sandwich plate structures using generalized layerwise HSDT and improved mesh free radial point interpolation method. Aerospace Science and Technology 58:641–60. doi:10.1016/j.ast.2016.09.017.
  • Rahul, S. P., and S. B. Shinde. 2014. Layerwise theories for cross-ply laminated composite beam. International Journal of Current Engineering 14:2277–4106.
  • Rajamohan, V., V. Sedaghati, and S. Rakheja. 2010. Vibration analysis of a partially treated multi-layer beam with magneto-rheological fluid. Journal of Sound and Vibration 329 (17):3451–69. doi:10.1016/j.jsv.2010.03.010.
  • Ramamoorthy, M., V. Rajamohan, and A. K. Jeevanantham. 2016. Vibration analysis of a partially treated laminated composite magneto-rheological fluid sandwich plate. Journal of Vibration and Control 22 (3):869–95. doi:10.1177/1077546314532302.
  • Romaskzo, M., and M. Wegrzynowski. 2014. FEM analysis of a cantilever sandwich beam with MR fluid based on ANSYS. Solid State Phenomena 208:63–9.
  • Rudykh, S., and K. Bertoldi. 2013. Stability of anisotropic magnetorheological elastomers in finite deformations: A micromechanical approach. Journal of Mechanics and Physics of Solids 61 (4):949–67. doi:10.1016/j.jmps.2012.12.008.
  • Sapinski, B., and J. Snamina. 2008. Vibration control capabilities of a cantilever beam with a magneto-rheological fluid. Journal of Mechanics 27:70–5.
  • Sobhani, E., M. Koohestani, Ö. Civalek, and M. Avcar. 2023. Natural frequency investigation of graphene oxide powder nanocomposite cylindrical shells surrounded by Winkler/Pasternak/Kerr elastic foundations with a focus on various boundary conditions. Engineering Analysis with Boundary Elements 149 :38–51. doi:10.1016/j.enganabound.2023.01.012.
  • Sobhani, E., and M. Avcar. 2022. The influence of various nanofiller materials (CNTs, GNPs, and GOPs) on the natural frequencies of nanocomposite cylindrical shells: A comparative study. Materials Today Communications 33:104547. doi:10.1016/j.mtcomm.2022.104547.
  • Song, G., P. Z. Qiao, W. K. Binienda, and G. P. Zou. 2002. Active vibration damping of composite beam using smart sensors and actuators. Journal of Aerospace Engineering 15 (3):97–103. doi:10.1061/(ASCE)0893-1321(2002)15:3(97).
  • Sun, Q., X. Zhou, and L. Zhang. 2003. An adaptive beam model and dynamic characteristics of magneto rheological materials. Journal of Sound and Vibration 261 (3):465–81. doi:10.1016/S0022-460X(02)00985-9.
  • Vinh, P. V., Belarbi, M. O. Avcar, M, and Civalek, Ö. 2023. An improved first-order mixed plate element for static bending and free vibration analysis of functionally graded sandwich plates. Archive of Applied Mechanics :1–22. doi:10.1007/s00419-022-02359-z.
  • Yalcintas, M., and H. Dai. 1999. Magneto-rheological and electro-rheological materials in adaptive structures and their performance comparison. Smart Materials and Structures 8 (5):560–73. doi:10.1088/0964-1726/8/5/306.
  • Yang, Y., A. Pagani, and E. Carrera. 2017. Exact solutions for free vibration analysis of laminated, box and sandwich beams by refined layerwise theory. Journal of Composite Structures 175:28–45. doi:10.1016/j.compstruct.2017.05.003.
  • Zabihollah, A., S. Momeni, and A. S. Ghafari. 2016. Effects of nanoparticles on the improvement of the dynamic response of non-uniform thickness laminated composite beams. Journal of Mechanical Science and Technology 30 (1):121–5. doi:10.1007/s12206-015-1214-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.