102
Views
2
CrossRef citations to date
0
Altmetric
Articles

Higher order kinematic formulas and its numerical computation employing dual numbers

, & ORCID Icon
Pages 3511-3526 | Received 08 Jun 2022, Accepted 06 Apr 2023, Published online: 02 May 2023

References

  • Abderazek, H., A. R. Yildiz, and S. Mirjalili. 2020. Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowledge-Based Systems 191:105237. doi:10.1016/j.knosys.2019.105237.
  • Abreu, R., D. Stich, and J. Morales. 2013. On the generalization of the complex step method. Journal of Computational and Applied Mathematics 241:84–102. doi:10.1016/j.cam.2012.10.001.
  • Al-Mohy, A. H., and N. J. Higham. 2010. The complex step approximation to the Fréchet derivative of a matrix function. Numerical Algorithms 53 (1):133–48. doi:10.1007/s11075-009-9323-y.
  • Ball, R. S. 1900. A Treatise on the Theory of Screws. Cambridge: University of Cambridge.
  • Barre, P.-J., R. Bearee, P. Borne, and E. Dumetz. 2005. Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. Journal of Intelligent and Robotic Systems 42 (3):275–93. doi:10.1007/s10846-004-4002-7.
  • Baydin, A. G., B. A. Pearlmutter, A. Andreyevich Radul, and J. M. Siskind. 2018. Automatic differentiation in machine learning: Survey. Journal of Machine Learning Research 18 (153):1–43. http://jmlr.org/papers/v18/17-468.html.
  • Bornemann, F. 2011. Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals. Foundations of Computational Mathematics 11 (1):1–63. doi:10.1007/s10208-010-9075-z.
  • Bücker, H. M., and G. F. Corliss. 2006. A bibliography of automatic differentiation. In Automatic Differentiation: Applications, Theory, and Implementations, edited by Martin Bücker, George Corliss, Uwe Naumann, Paul Hovland, and Boyana Norris, pp. 321–2. Berlin, Heidelberg: Springer.
  • Caliò, F., M. Frontini, and G. V. Milovanović. 1991. Numerical differentiation of analytic functions using quadratures on the semicircle. Computers & Mathematics with Applications 22 (10):99–106. doi:10.1016/0898-1221(91)90196-B.
  • Cervantes-Sánchez, J. J., J. M. Rico-Martínez, and V. H. Pérez-Muñoz. 2014. On the angular velocity of a rigid body: Matrix and vector representations. European Journal of Mechanics - A/Solids 45:123–32. doi:10.1016/j.euromechsol.2013.11.016.
  • Chen, G., L. Zhang, C. Wang, H. Xiang, G. Tong, and D. Zhao. 2022. High-precision modeling of CNCs’ spatial errors based on screw theory. SN Applied Sciences 4 (2):45–59. doi:10.1007/s42452-021-04929-2.
  • Cheng, H. H. 1994. Programming with dual numbers and its applications in mechanisms design. Engineering with Computers 10 (4):212–29. doi:10.1007/BF01202367.
  • Cheng, Q., Q. Feng, Z. Liu, P. Gu, and G. Zhang. 2016. Sensitivity analysis of machining accuracy of multi-axis machine tool based on POE screw theory and Morris method. The International Journal of Advanced Manufacturing Technology 84 (9–12):2301–18. doi:10.1007/s00170-015-7791-x.
  • Clifford, W. K. 1873. Preliminary sketch of biquaternions. Proc. London Mathematical Society 1 (1–4):381–95.
  • Cline, D. 2017. Variational principles in classical mechanics. Rochester, NY: University of Rochester River Campus Librarie.
  • Dhingra, A. K., and N. K. Mani. 1993. Finitely and multiply separated synthesis of Link and Geared mechanisms using symbolic computing. Journal of Mechanical Design 115 (3):560–7. doi:10.1115/1.2919226.
  • Diez-Martínez, C. R., J. M. Rico, J. J. Cervantes-Sánchez, and J. Gallardo. 2006. Mobility and connectivity in multiloop linkages. In Advances in Robot Kinematics, edited by Jadran Lennarčič and B. Roth, Dordrecht, pp. 455–64. Netherlands: Springer.
  • Eager, D., A.-M. Pendrill, and N. Reistad. 2016. Beyond velocity and acceleration: Jerk, snap and higher derivatives. European Journal of Physics 37 (6):65008. doi:10.1088/0143-0807/37/6/065008.
  • Erkorkmaz, K., and Y. Altintas. 2001. High speed CNC system design. Part I: Jerk limited trajectory generation and quintic spline interpolation. International Journal of Machine Tools and Manufacture 41 (9):1323–45. doi:10.1016/S0890-6955(01)00002-5.
  • Fang, Y., J. Qi, J. Hu, W. Wang, and Y. Peng. 2020. An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints. Mechanism and Machine Theory 153:103957. doi:10.1016/j.mechmachtheory.2020.103957.
  • Fenton, R. G., and R. A. Willgoss. 1990. Comparison of methods for determining screw parameters of infinitesimal rigid body motion from position and velocity data. Journal of Dynamic Systems, Measurement, and Control 112 (4):711–6. doi:10.1115/1.2896199.
  • Figliolini, G., and C. Lanni. 2016. Jerk and jounce relevance for the kinematic performance of Long-Dwell mechanisms. Advances in Mechanism and Machine Science 73:219–28.
  • Fike, J., and J. Alonso. 2011. The development of hyper-dual numbers for exact second-derivative calculations, AIAA2011-886. 49th AIAA Aerospace Sciences Meeting including the NewHorizons Forum and Aerospace Exposition. doi:10.2514/6.2011–886.
  • Fike, J. A., and J. J. Alonso. 2012. Automatic differentiation through the use of hyper-dual numbers for second derivatives. In Recent Advances in Algorithmic Differentiation, edited by Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and Andrea Walther, pp. 163–73. Berlin Heidelberg: Springer.
  • Floudas, A., and P. M. Pardalos. 2009. Encyclopedia of Optimisation, 2nd Edition. Boston. MA: Springer-Verlag.
  • Fornberg, B. 1981. Numerical differentiation of analytic functions. ACM Transactions on Mathematical Software 7 (4):512–26. doi:10.1145/355972.355979.
  • Gallardo-Alvarado, J. 2014. Hyper-Jerk analysis of robot manipulators. Journal of Intelligent & Robotic Systems 74 (3–4):625–41. doi:10.1007/s10846-013-9849-z.
  • Gasparetto, A., and V. Zanotto. 2008. A technique for time-jerk optimal planning of robot trajectories. Robotics and Computer-Integrated Manufacturing 24 (3):415–26. doi:10.1016/j.rcim.2007.04.001.
  • Giftthaler, M., M. Neunert, M. Stäuble, M. Frigerio, C. Semini, and J. Buchli. 2017. Automatic differentiation of rigid body dynamics for optimal control and estimation. Advanced Robotics 31 (22):1225–37. doi:10.1080/01691864.2017.1395361.
  • Gilat, A., and V. Subramaniam. 2008. Numerical methods for engineers and scientists: An introduction with applications using MATLAB. 1st ed. United States of America: John Wiley\& Sons.
  • Griewank, A. 1989. Mathematical programming: Recent developments and applications. In On Automatic Differentiation, edited by M. Iri and K. Tanabe, pp. 83–108. Dordrecht: Kluwer Academic Publishers.
  • Huang, J., P. Hu, K. Wu, and M. Zeng. 2018. Optimal time-jerk trajectory planning for industrial robots. Mechanism and Machine Theory 121:530–44. doi:10.1016/j.mechmachtheory.2017.11.006.
  • Rico, J. M., and A. J. Gallardo. 1996. Acceleration analysis, via screw theory and characterization of singularities of closed chains, pp. 139–48. Dordrecht: Springer Netherlands.
  • Kiran, R., and K. Khandelwal. 2014. Numerically approximated Cauchy integral (NACI) for implementation of constitutive models. Finite Elements in Analysis and Design 89:33–51. doi:10.1016/j.finel.2014.05.016.
  • Lai, K.-L., and J. L. Crassidis. 2008. Extensions of the first and second complex-step derivative approximations. Journal of Computational and Applied Mathematics 219 (1):276–93. doi:10.1016/j.cam.2007.07.026.
  • Lerbet, J. 1998. Analytic geometry and singularities of mechanisms. ZAMM 78 (10):687–94. doi:10.1002/(SICI)1521-4001(199810)78:10<687::AID-ZAMM687>3.0.CO;2-T.
  • López-Custodio, P. C., J. M. Rico, J. J. Cervantes-Sánchez, G. I. Pérez-Soto, and C. R. Díez-Martínez. 2017. Verification of the higher order kinematic analyses equations. European Journal of Mechanics—A/Solids 61 (1):198–215. doi:10.1016/j.euromechsol.2016.09.010.
  • Martins, J. R. R. A., P. Sturdza, and J. J. Alonso. 2003. The complex-step derivative approximation. ACM Transactions on Mathematical Software 29 (3):245–62. doi:10.1145/838250.838251.
  • Martins, J. R. R. A., and J. T. Hwang. 2013. Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA Journal 51 (11):2582–99. doi:10.2514/1.J052184.
  • Müller, A. 2014. Higher derivatives of the kinematic mapping and some applications. Mechanism and Machine Theory 76:70–85. doi:10.1016/j.mechmachtheory.2014.01.007.
  • Müller, A. 2018. Higher-order analysis of kinematic singularities of lower pair linkages and serial manipulators. Journal of Mechanisms and Robotics 10 (1) doi:10.1115/1.4038528.
  • Müller, A. 2019. An overview of formulae for the higher-order kinematics of lower-pair chains with applications in robotics and mechanism theory. Mechanism and Machine Theory 142 (12):103594. doi:10.1016/j.mechmachtheory.2019.103594.
  • Müller, A., and S. Kumar. 2021. Closed-form time derivatives of the equations of motion of rigid body systems. Multibody System Dynamics 53 (3):257–73. doi:10.1007/s11044-021-09796-8.
  • Nam, S.-H., and Y. Min-Yang. 2004. A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Computer-Aided Design 36 (1):27–36. doi:10.1016/S0010-4485(03)00066-6.
  • Peñuñuri, F., O. Carvente, M. A. Zambrano-Arjona, R. Peón, and C. A. Cruz-Villar. 2019. Dual numbers for algorithmic differentiation. Ingeniría–Revista Académica de la Facultad de Ingeniría, Universidad Autónoma de Yucatán 23 (3):71–81.
  • Peñuñuri, F., R. Peón, D. González-Sánchez, and M. A. Escalante-Soberanis. 2020. Dual numbers and automatic differentiation to efficiently compute velocities and accelerations. Acta Applicandae Mathematicae 170 (1):649–59. doi:10.1007/s10440-020-00351-9.
  • Peñuñuri, F., R. Peón-Escalante, and A. Espinosa-Romero. 2022. Data availability: Higher order kinematic formulas and its numerical computation employing dual numbers. doi:10.5281/zenodo.6615524.
  • Peón-Escalante, R., F. Cuenca Jiménez, M. A. Escalante Soberanis, and F. Peñuñuri. 2020. Path generation with dwells in the optimum dimensional synthesis of Stephenson III six-bar mechanisms. Mechanism and Machine Theory 144:103650. doi:10.1016/j.mechmachtheory.2019.103650.
  • Rico, J. M., and J. Duffy. 1996. An application of screw algebra to the acceleration analysis of serial chains. Mechanism and Machine Theory 31 (4):445–57. doi:10.1016/0094-114X(95)00089-H.
  • Rico, J. M., J. Gallardo, and J. Duffy. 1999. Screw theory and higher order kinematic analysis of open serial and closed chains. Mechanism and Machine Theory 34 (4):559–86. doi:10.1016/S0094-114X(98)00029-9.
  • Sandor, G. N., R. E. Kaufman, A. G. Erdman, T. J. Foster, J. P. Sadler, and T. N. Kershaw. 1970. Kinematic synthesis of geared linkages. Journal of Mechanisms 5 (1):59–87. doi:10.1016/0022-2569(70)90052-2.
  • Sateesh, N., C. S. Rao, and T. A. Janardhan Reddy. 2009. Optimisation of cam-follower motion using B-splines. International Journal of Computer Integrated Manufacturing 22 (6):515–23. doi:10.1080/09511920802546814.
  • Schot, S. H. 1978. Jerk: The time rate of change of acceleration. American Journal of Physics 46 (11):1090–4. doi:10.1119/1.11504.
  • Squire, W., and G. Trapp. 1998. Using complex variables to estimate derivatives of real functions. SIAM Review 40 (1):110–2. doi:10.1137/S003614459631241X.
  • Sun, T., B. Lian, S. Yang, and Y. Song. 2020. Kinematic calibration of serial and parallel robots based on finite and instantaneous screw theory. IEEE Transactions on Robotics 36 (3):816–34. doi:10.1109/TRO.2020.2969028.
  • Szirmay-Kalos, L. 2020. Higher order automatic differentiation with dual numbers. Periodica Polytechnica Electrical Engineering and Computer Science 65 (1):1–10. doi:10.3311/PPee.16341.
  • Valderrama-Rodríguez, J. I., J. M. Rico, and J. J. Cervantes-Sánchez. 2022. A screw theory approach to compute instantaneous rotation axes of indeterminate spherical linkages. Mechanics Based Design of Structures and Machines 50 (8):2836–76. doi:10.1080/15397734.2020.1787841.
  • Verulkar, A., C. Sandu, D. Dopico, and A. Sandu. 2022. Computation of direct sensitivities of spatial multibody systems with joint friction. Journal of Computational and Nonlinear Dynamics 17 (7):071006. doi:10.1115/1.4054110.
  • Xianwen, K., H. Yongguo, and Y. Tingli. 1993. Kinematic error analysis of robots. Robot 15 (3):7.
  • Yin, F. W., W. J. Tian, H. T. Liu, T. Huang, and D. G. Chetwynd. 2020. A screw theory based approach to determining the identifiable parameters for calibration of parallel manipulators. Mechanism and Machine Theory 145:103665. doi:10.1016/j.mechmachtheory.2019.103665.
  • Yu, W., and M. Blair. 2013. DNAD, a simple tool for automatic differentiation of Fortran codes using dual numbers. Computer Physics Communications 184 (5):1446–52. doi:10.1016/j.cpc.2012.12.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.