199
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic analysis of laminated shell panels with cutout and cracked corners carrying concentrated and distributed mass

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3648-3675 | Received 17 Mar 2023, Accepted 20 Apr 2023, Published online: 10 May 2023

References

  • Alibeigloo, A., M. Shakeri, and M. R. Kari. 2008. Free vibration analysis of antisymmetric laminated rectangular plates with distributed patch mass using third-order shear deformation theory. Ocean Engineering 35 (2):183–90. doi:10.1016/j.oceaneng.2007.09.002.
  • Arumugam, A. B., M. Subramani, M. Dalakoti, P. Jindal, R. Selvaraj, and E. Khalife. 2021. Dynamic characteristics of laminated composite CNT reinforced MRE cylindrical sandwich shells using HSDT. Mechanics Based Design of Structures and Machines 1–17. doi:10.1080/15397734.2021.1950550.
  • Aydogdu, M., and S. Filiz. 2016. Vibration analysis of symmetric laminated composite plates with attached mass. Mechanics of Advanced Materials and Structures 23 (2):136–45. doi:10.1080/15376494.2014.949919.
  • Bachiri, A., A. A. Daikh, and A. Tounsi. 2022. On the Thermo-elastic response of FG-CNTRC cross-ply laminated plates under temperature loading using a New HSDT. Journal of Applied and Computational Mechanics 8:1370–86.
  • Boay, C. G. 1996. Free vibration of laminated composite plates with a central circular hole. Composite Structures 35 (4):357–68. doi:10.1016/S0263-8223(96)00037-2.
  • Bose, C., S. Pal, and S. Haldar. 2023. Bending analysis of composite plate with cutout carrying uniformly distributed load. Journal of the Institution of Engineers (India): Series C 104 (1):55–67. doi:10.1007/s40032-022-00907-8.
  • Chakravorty, D., J. N. Bandyopadhyay, and P. K. Sinha. 1996. Finite element free vibration analysis of doubly curved laminated composite shells. Journal of Sound and Vibration 191 (4):491–504. doi:10.1006/jsvi.1996.0136.
  • Chandrasekhar, K. N. V., V. Bhikshma, and K. U. Bhaskara Reddy. 2022. Topology optimization of laminated composite plates and shells using optimality criteria. Journal of Applied and Computational Mechanics 8:405–15.
  • Chaubey, A. K., A. Kumar, and A. Chakrabarti. 2018. Vibration of laminated composite shells with cutouts and concentrated mass. AIAA Journal 56 (4):1662–78. doi:10.2514/1.J056320.
  • Chaubey, A. K., A. Kumar, and S. S. Mishra. 2018. Dynamic analysis of laminated composite rhombic elliptic paraboloid due to mass variation. Journal of Aerospace Engineering 31 (5):04018059. doi:10.1061/(ASCE)AS.1943-5525.0000881.
  • Corr, R. B., and A. Jennings. 1976. A simultaneous iteration algorithm for symmetric eigen value problems. International Journal for Numerical Methods in Engineering 10 (3):647–63. doi:10.1002/nme.1620100313.
  • Das, O., and C. Gonenli. 2022. The impact of the cracks on the harmonic response of stiffened steel plates. Latin American Journal of Solids and Structures 19 (2):1–18. doi:10.1590/1679-78256790.
  • Dewangan, H. C., N. Sharma, C. Kumar Hirwani, and S. K. Panda. 2022. Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure. Mechanics Based Design of Structures and Machines 50 (5):1640–57. doi:10.1080/15397734.2020.1759432.
  • Dey, S., T. Mukhopadhyay, and S. Adhikari. 2015. Stochastic free vibration analyses of composite shallow doubly curved shells–A Kriging model approach. Composites Part B: Engineering 70:99–112. doi:10.1016/j.compositesb.2014.10.043.
  • Draiche, K., and A. Tounsi. 2022. A new refined hyperbolic shear deformation theory for laminated composite spherical shells. Structural Engineering and Mechanics 84:707–22.
  • Geng, X., L. Zhao, and W. Zhou. 2021. Finite-element buckling analysis of functionally graded GPL-reinforced composite plates with a circular hole. Mechanics Based Design of Structures and Machines 49 (7):1028–44. doi:10.1080/15397734.2019.1707688.
  • Gonenli, C. 2022. Effect of cut-out location on the dynamic behaviour of plate frame structures. Journal of Vibration Engineering & Technologies 10 (4):1599–611. doi:10.1007/s42417-022-00476-1.
  • Gonenli, C., and O. Das. 2022. Free vibration analysis of circular and annular thin plates based on crack characteristics. Reports in Mechanical Engineering 3 (1):248–57. doi:10.31181/rme20016032022g.
  • Haldar, S. 2008. Free vibration of composite skewed cylindrical shell panel by finite element method. Journal of Sound and Vibration 311 (1–2):9–19. doi:10.1016/j.jsv.2007.08.022.
  • Haldar, S., S. Pal, and K. Kalita. 2019. Free vibration of skew laminates–a brief review and some benchmark results. International Journal of Maritime Engineering 161 (A4):357–80.
  • Hammou, Z., Z. Guezzen, F. Z. Zradni, Z. Sereir, A. Tounsi, and Y. Hammou. 2022. Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells. Steel and Composite Structures 44:141–55.
  • Jana, K., S. Pal, and S. Haldar. 2023. Modal analysis of power law functionally graded material plates with rectangular cutouts. Mechanics Based Design of Structures and Machines 1–29. doi:10.1080/15397734.2023.2180033.
  • Liu, M. L., and C. W. S. To. 2003. Free vibration analysis of laminated composite shell structures using hybrid strain based layerwise finite elements. Finite Elements in Analysis and Design 40 (1):83–120. doi:10.1016/S0168-874X(02)00193-2.
  • Merneedi, A., M. RaoNalluri, and V. V. Subba Rao. 2017. Free vibration analysis of a thin rectangular plate with multiple circular and rectangular cut-outs. Journal of Mechanical Science and Technology 31 (11):5185–202. doi:10.1007/s12206-017-1012-5.
  • Milić, P., D. Marinković, S. Klinge, and Ž. Ćojbašić. 2023. Reissner-mindlin based isogeometric finite element formulation for piezoelectric active laminated shells. Tehnički Vjesnik 30:416–25.
  • Mirzaei, M. 2022. Vibrations of FG-CNT reinforced composite cylindrical panels with cutout. Mechanics Based Design of Structures and Machines 50 (1):79–99. doi:10.1080/15397734.2019.1705165.
  • Mukhopadhyay, M. 2005. Mechanics of composite materials and structures. Universities Press.
  • Naidu, N. S., and P. K. Sinha. 2007. Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments. Composite Structures 77 (4):475–83. doi:10.1016/j.compstruct.2005.08.002.
  • Nanda, N., and J. N. Bandyopadhyay. 2007. Nonlinear free vibration analysis of laminated composite cylindrical shells with cutouts. Journal of Reinforced Plastics and Composites 26 (14):1413–27. doi:10.1177/0731684407079776.
  • Nguyen, V.-L., M.-T. Tran, S. Limkatanyu, H. Mohammad-Sedighi, and J. Rungamornrat. 2022. Reddy’s third-order shear deformation shell theory for free vibration analysis of rotating stiffened advanced nanocomposite toroidal shell segments in thermal environments. Acta Mechanica 233 (11):4659–84. doi:10.1007/s00707-022-03347-8.
  • Oğuzhan, D. A. Ş., and D. A. Ş. Duygu Bağci. 2022. Free vibration analysis of isotropic plates using regressive ensemble learning. Avrupa Bilim ve Teknoloji Dergisi 38:428–34.
  • Oğuzhan, D. A. Ş., H. Öztürk, and C. Gönenli. 2023. Dynamic and buckling analysis of the laminated composite curved plate frame structures. Afyon Kocatepe University Journal of Sciences and Engineering 23 (1):228–46. doi:10.35414/akufemubid.1071280.
  • Pal, S., C. Bose, and S. Haldar. 2021. Free vibration analysis of laminated composite plate with cut-out carrying concentrated and distributed mass. Journal of the Institution of Engineers (India): Series C 102 (6):1447–60. doi:10.1007/s40032-021-00747-y.
  • Pal, S., K. Kalita, and S. Haldar. 2022. Genetic algorithm-based fundamental frequency optimization of laminated composite shells carrying distributed mass. Journal of the Institution of Engineers (India): Series C 103 (3):389–401. doi:10.1007/s40032-021-00801-9.
  • Pal, S., S. Haldar, and K. Kalita. 2020. Dynamic analysis of plates with cut-out carrying concentrated and distributed mass. International Journal of Maritime Engineering 162 (A3):263–76. doi:10.3940/rina.ijme.2020.a3.612.
  • Panda, S. K., and B. N. Singh. 2013. Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM#. Mechanics Based Design of Structures and Machines 41 (4):468–88. doi:10.1080/15397734.2013.797330.
  • Pandit, M. K., S. Haldar, and M. Mukhopadhyay. 2007. Free vibration analysis of laminated composite rectangular plate using finite element method. Journal of Reinforced Plastics and Composites 26 (1):69–80. doi:10.1177/0731684407069955.
  • Roy, S., S. Nath Thakur, and C. Ray. 2022. Investigation on free vibration behavior of laminated angle ply shell with numerical validation. Mechanics Based Design of Structures and Machines 1–26. doi:10.1080/15397734.2022.2145306.
  • Safaei, B., E. C. Onyibo, M. Goren, K. Kotrasova, Z. Yang, S. Arman, and M. Asmael. 2022. Free vibration investigation on rve of proposed honeycomb sandwich beam and material selection optimization. Facta Universitatis, Series: Mechanical Engineering 21:3150.
  • Safaei, B., E. Chukwueloka Onyibo, and D. Hurdoganoglu. 2022. Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method. Facta Universitatis, Series: Mechanical Engineering 20 (2):279–306. doi:10.22190/FUME220201009S.
  • Safarpour, M., A. R. Rahimi, and A. Alibeigloo. 2020. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mechanics Based Design of Structures and Machines 48 (4):496–524. doi:10.1080/15397734.2019.1646137.
  • Sobhani, E., and B. Safaei. 2023. Vibrational features of graphene oxide powder nanocomposite coupled conical-cylindrical shells applicable for aerospace structures under various boundary conditions. Engineering Analysis with Boundary Elements 151:423–38. doi:10.1016/j.enganabound.2023.03.020.
  • Tornabene, F., N. Fantuzzi, and M. Bacciocchi. 2014. The local GDQ method applied to general higher-order theories of doubly-curved laminated composite shells and panels: The free vibration analysis. Composite Structures 116:637–60. doi:10.1016/j.compstruct.2014.05.008.
  • Xiang, S., Z-y Bi, S-x Jiang, Y-x Jin, and M-s Yang. 2011. Thin plate spline radial basis function for the free vibration analysis of laminated composite shells. Composite Structures 93 (2):611–5. doi:10.1016/j.compstruct.2010.08.018.
  • Ye, T., G. Jin, Y. Chen, X. Ma, and Z. Su. 2013. Free vibration analysis of laminated composite shallow shells with general elastic boundaries. Composite Structures 106:470–90. doi:10.1016/j.compstruct.2013.07.005.
  • Zhang, Y. P., C. M. Wang, D. M. Pedroso, and H. Zhang. 2018. Extension of Hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts. Journal of Sound and Vibration 432:65–87. doi:10.1016/j.jsv.2018.06.029.
  • Zhao, J., K. Choe, C. Shuai, A. Wang, and Q. Wang. 2019. Free vibration analysis of laminated composite elliptic cylinders with general boundary conditions. Composites Part B: Engineering 158:55–66. doi:10.1016/j.compositesb.2018.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.