178
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mathematical modeling and dynamic analysis of insulated bearing-steel pedestal system under shaft current damage

ORCID Icon, ORCID Icon, , &
Pages 3676-3699 | Received 03 Feb 2023, Accepted 13 Apr 2023, Published online: 02 May 2023

References

  • Ambrożkiewicz, B., A. Syta, A. Gassner, A. Georgiadis, G. Litak, and N. Meier. 2022. The influence of the radial internal clearance on the dynamic response of self-aligning ball bearings. Mechanical Systems and Signal Processing 171:108954. doi:10.1016/j.ymssp.2022.108954.
  • Bai, X. T., H. T. Shi, K. Zhang, X. C. Zhang, and Y. H. Wu. 2022. Effect of the fit clearance between ceramic outer ring and steel pedestal on the sound radiation of full ceramic ball bearing system. Journal of Sound and Vibration 529:116967. doi:10.1016/j.jsv.2022.116967.
  • Cao, H. R., F. Shi, Y. M. Li, B. J. Li, and X. F. Chen. 2019. Vibration and stability analysis of rotor-bearing-pedestal system due to clearance fit. Mechanical Systems and Signal Processing 133:106275. doi:10.1016/j.ymssp.2019.106275.
  • Fang, B., K. Yan, J. Hong, and J. H. Zhang. 2021. A comprehensive study on the off-diagonal coupling elements in the stiffness matrix of the angular contact ball bearing and their influence on the dynamic characteristics of the rotor system. Mechanism and Machine Theory 158:104251. doi:10.1016/j.mechmachtheory.2021.104251.
  • Gao, S., S. Chatterton, L. Naldi, and P. Pennacchi. 2021. Ball bearing skidding and over-skidding in large-scale angular contact ball bearings: Nonlinear dynamic model with thermal effects and experimental results. Mechanical Systems and Signal Processing 147:107120. doi:10.1016/j.ymssp.2020.107120.
  • Gao, S., S. Chatterton, P. Pennacchi, and F. Chu. 2021. Behaviour of an angular contact ball bearing with three-dimensional cubic-like defect: A comprehensive non-linear dynamic model for predicting vibration response. Mechanism and Machine Theory 163:104376. doi:10.1016/j.mechmachtheory.2021.104376.
  • Harris, T. A., and M. N. Kotzalas. 2007. Rolling bearing analysis: Essential concepts of bearing technology. Boca Raton, FL: Taylor & Francis. doi:10.1201/9781420006582.
  • Isomura, Y., K. Yamamoto, S. Morimoto, T. Maetani, A. Watanabe, and K. Nakano. 2014. Study of the further reduction of shaft voltage of brushless DC motor with insulated rotor driven by PWM inverter. IEEE Transactions on Industry Applications 50 (6):3738–43. doi:10.1109/PEDS.2013.6527199.
  • Jiang, Y. C., W. T. Huang, J. N. Luo, and W. J. Wang. 2019. An improved dynamic model of defective bearings considering the three-dimensional geometric relationship between the rolling element and defect area. Mechanical Systems and Signal Processing 129:694–716. doi:10.1016/j.ymssp.2019.04.056.
  • Jin, Y. L., Z. W. Liu, Y. Yang, F. S. Li, and Y. S. Chen. 2021. Nonlinear vibrations of a dual-rotor-bearing-coupling misalignment system with blade-casing rubbing. Journal of Sound and Vibration 497:115948. doi:10.1016/j.jsv.2021.115948.
  • Li, C. Y., M. T. Xu, G. K. He, H. Z. Zhang, Z. D. Liu, D. He, and Y. M. Zhang. 2020. Time-dependent nonlinear dynamic model for linear guideway with crowning. Tribology International 151:106413. doi:10.1016/j.triboint.2020.106413.
  • Li, F. J., X. P. Li, B. T. Li, H. Ma, and B. C. Wen. 2022. Nonlinear dynamic modeling and vibration analysis of bearing system considering shaft current damage. Mechanics Based Design of Structures and Machines:1–21. doi:10.1080/15397734.2022.2150639.
  • Li, Y. Q., Z. Luo, J. W. Wang, H. Ma, and D. S. Yang. 2021. Numerical and experimental analysis of the effect of eccentric phase difference in a rotor-bearing system with bolted-disk joint. Nonlinear Dynamics 105 (3):2105–32. doi:10.1007/s11071-021-06698-4.
  • Liu, J. 2020. A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone. Journal of Sound and Vibration 469:115144. doi:10.1016/j.jsv.2019.115144.
  • Liu, J., and Y. M. Shao. 2015. A new dynamic model for vibration analysis of a ball bearing due to a localized surface defect considering edge topographies. Nonlinear Dynamics 79 (2):1329–51. doi:10.1007/s11071-014-1745-y.
  • Liu, J., L. Xue, Z. D. Xu, H. Wu, and G. Pan. 2021. Vibration characteristics of a high-speed flexible angular contact ball bearing with the manufacturing error. Mechanism and Machine Theory 162:104335. doi:10.1016/j.mechmachtheory.2021.104335.
  • Liu, J., Y. J. Xu, and G. Pan. 2021. A combined acoustic and dynamic model of a defective ball bearing. Journal of Sound and Vibration 501:116029. doi:10.1016/j.jsv.2021.116029.
  • Luo, M. L., Y. Guo, X. Wu, and J. Na. 2019. An analytical model for estimating spalled zone size of rolling element bearing based on dual-impulse time separation. Journal of Sound and Vibration 453:87–102. doi:10.1016/j.jsv.2019.04.014.
  • Miao, H. H., C. Y. Li, C. Y. Wang, M. T. Xu, and Y. M. Zhang. 2021. The vibration analysis of the CNC vertical milling machine spindle system considering nonlinear and nonsmooth bearing restoring force. Mechanical Systems and Signal Processing 161:107970. doi:10.1016/j.ymssp.2021.107970.
  • Mo, S., Y. X. Zhang, B. R. Luo, H. Y. Bao, G. J. Cen, and Y. S. Huang. 2022. The global behavior evolution of non-orthogonal face gear-bearing transmission system. Mechanism and Machine Theory 175:104969. doi:10.1016/j.mechmachtheory.2022.104969.
  • Muetze, A., and A. Binder. 2006. Calculation of influence of insulated bearings and insulated inner bearing seats on circulating bearing currents in machines of inverter-based drive systems. IEEE Transactions on Industry Applications 42 (4):965–72. doi:10.1109/TIA.2006.876083.
  • Mufazzal, S., S. M. Muzakkir, and S. Khanam. 2021. Theoretical and experimental analyses of vibration impulses and their influence on accurate diagnosis of ball bearing with localized outer race defect. Journal of Sound and Vibration 513:116407. doi:10.1016/j.jsv.2021.116407.
  • Parmar, V., V. H. Saran, and S. P. Harsha. 2021. Effect of dynamic misalignment on the vibration response, trajectory followed and defect-depth achieved by the rolling-elements in a double-row spherical rolling-element bearing. Mechanism and Machine Theory 162:104366. doi:10.1016/j.mechmachtheory.2021.104366.
  • Plazenet, T., T. Boileau, C. C. Caironi, and B. Nahid-Mobarakeh. 2021. Influencing parameters on discharge bearing currents in inverter-fed induction motors. IEEE Transactions on Energy Conversion 36 (2):940–9. doi:10.1109/TEC.2020.3018630.
  • Prudhom, A., J. Antonino-Daviu, H. Razik, and V. Climente-Alarcon. 2017. Time-frequency vibration analysis for the detection of motor damages caused by bearing currents. Mechanical Systems and Signal Processing 84:747–62. doi:10.1016/j.ymssp.2015.12.008.
  • Qin, Y., F. L. Cao, Y. Wang, W. W. Chen, and H. Z. Chen. 2019. Dynamics modelling for deep groove ball bearings with local faults based on coupled and segmented displacement excitation. Journal of Sound and Vibration 447:1–19. doi:10.1016/j.jsv.2019.01.048.
  • Shi, H. T., Y. Y. Li, X. T. Bai, Z. N. Wang, D. F. Zou, Z. G. Bao, and Z. Wang. 2021. Investigation of the orbit-spinning behaviors of the outer ring in a full ceramic ball bearing-steel pedestal system in wide temperature ranges. Mechanical Systems and Signal Processing 149:107317. doi:10.1016/j.ymssp.2020.107317.
  • Song, C. S., H. Bai, C. C. Zhu, Y. W. Wang, Z. H. Feng, and Y. Wang. 2021. Computational investigation of off-sized bearing rollers on dynamics for hypoid gear-shaft-bearing coupled system. Mechanism and Machine Theory 156:104177. doi:10.1016/j.mechmachtheory.2020.104177.
  • Sun, Z., S. Y. Chen, Z. H. Hu, and D. C. Lei. 2022. Vibration response analysis of a gear-rotor-bearing system considering steady-state temperature. Nonlinear Dynamics 107 (1):477–93. doi:10.1007/s11071-021-07024-8.
  • Tsuha, N. A. H., and K. L. Cavalca. 2020. Stiffness and damping of elastohydrodynamic line contact applied to cylindrical roller bearing dynamic model. Journal of Sound and Vibration 481:115444. doi:10.1016/j.jsv.2020.115444.
  • Wang, H., Q. K. Han, and D. N. Zhou. 2017. Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings. Mechanical Systems and Signal Processing 85:16–40. doi:10.1016/j.ymssp.2016.07.049.
  • Wang, P. F., H. Y. Xu, H. Ma, H. Z. Han, and Y. Yang. 2022. Effects of three types of bearing misalignments on dynamic characteristics of planetary gear set-rotor system. Mechanical Systems and Signal Processing 169:108736. doi:10.1016/j.ymssp.2021.108736.
  • Wang, X. L., Y. L. He, H. P. Wang, A. J. Hu, and X. Zhang. 2022. A novel hybrid approach for damage identification of wind turbine bearing under variable speed condition. Mechanism and Machine Theory 169:104629. doi:10.1016/j.mechmachtheory.2021.104629.
  • Wen, B. G., M. L. Wang, X. W. Zhou, H. J. Ren, and Q. K. Han. 2018. Multi-harmonic motions of bearing cage affected by rotor unbalance. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (15):2610–25. doi:10.1177/0954406217722380.
  • Wen, C. W., X. H. Meng, C. C. Fang, J. W. Gu, L. Xiao, and S. Jiang. 2021. Dynamic behaviors of angular contact ball bearing with a localized surface defect considering the influence of cage and oil lubrication. Mechanism and Machine Theory 162:104352. doi:10.1016/j.mechmachtheory.2021.104352.
  • Xu, K. P., B. Wang, Z. X. Zhao, F. Zhao, X. X. Kong, and B. C. Wen. 2020. The influence of rolling bearing parameters on the nonlinear dynamic response and cutting stability of high-speed spindle systems. Mechanical Systems and Signal Processing 136:106448. doi:10.1016/j.ymssp.2019.106448.
  • Yang, R., Z. Y. Zhang, and Y. S. Chen. 2022. Analysis of vibration signals for a ball bearing-rotor system with raceway local defects and rotor eccentricity. Mechanism and Machine Theory 169:104594. doi:10.1016/j.mechmachtheory.2021.104594.
  • Yang, Y. Z., C. Liu, D. X. Jiang, and K. Behdinan. 2020. Nonlinear vibration signatures for localized fault of rolling element bearing in rotor-bearing-casing system. International Journal of Mechanical Sciences 173:105449. doi:10.1016/j.ijmecsci.2020.105449.
  • Yang, Y., H. J. Ouyang, Y. R. Yang, D. Q. Cao, and K. Wang. 2020. Vibration analysis of a dual-rotor-bearing-double casing system with pedestal looseness and multi-stage turbine blade-casing rub. Mechanical Systems and Signal Processing 143:106845. doi:10.1016/j.ymssp.2020.106845.
  • Yu, H., Y. Ran, G. B. Zhang, X. L. Li, and B. R. Li. 2020. A time-varying comprehensive dynamic model for the rotor system with multiple bearing faults. Journal of Sound and Vibration 488:115650. doi:10.1016/j.jsv.2020.115650.
  • Zeise, P., and B. Schweizer. 2022. Dynamics, stability and bifurcation analysis of rotors in air ring bearings. Journal of Sound and Vibration 521:116392. doi:10.1016/j.jsv.2021.116392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.