275
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic response analysis of a shaft-disk-drum rotor system with interval uncertainties

, , &
Pages 3951-3973 | Received 08 Feb 2023, Accepted 29 Apr 2023, Published online: 24 May 2023

References

  • Abramowitz, M., and I. A. Stegun. 1964. Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government Printing Office.
  • Anilkumar, A., and V. Kartik. 2020. In-plane vibration of a rigid body attached to a flexible rotating beam. Journal of Sound and Vibration 475:115245. doi:10.1016/j.jsv.2020.115245.
  • Bishop, E. 1961. A generalization of the Stone-Weierstrass theorem. Pacific Journal of Mathematics 11 (3):777–83. doi:10.2140/pjm.1961.11.777.
  • Chivens, D. R., and H. D. Nelson. 1975. The natural frequencies and critical speeds of a rotating, flexible-shaft-disk system. Journal of Engineering for Industry 97 (3):881–6. doi:10.1115/1.3438696.
  • Chen, Y., H. B. Zhao, Z. P. Shen, I. Grieger, and B. H. Kroplin. 1993. Vibrations of high speed rotating shells with calculations for cylindrical shells. Journal of Sound and Vibration 160 (1):137–60. doi:10.1006/jsvi.1993.1010.
  • Didier, J., J. J. Sinou, and B. Faverjon. 2012a. Study of the non-linear dynamic response of a rotor system with faults and uncertainties. Journal of Sound and Vibration 331 (3):671–703. doi:10.1016/j.jsv.2011.09.001.
  • Didier, J., J. J. Sinou, and B. Faverjon. 2012b. Multi-dimensional harmonic balance with uncertainties applied to rotor dynamics. Journal of Vibration and Acoustics 134 (6):061003. doi:10.1115/1.4006645.
  • Didier, J., J. J. Sinou, and B. Faverjon. 2013. Nonlinear vibrations of a mechanical system with non-regular nonlinearities and uncertainties. Communications in Nonlinear Science and Numerical Simulation 18 (11):3250–70. doi:10.1016/j.cnsns.2013.03.005.
  • Dourado, A. G. S., Jr. A. A. Cavalini, Jr., and V. Steffen. 2018. Uncertainty quantification techniques applied to rotating systems: A comparative study. Journal of Vibration and Control 24 (14):3010–25. and doi:10.1177/1077546317698556.
  • Fu, C., X. Ren, Y. Yang, Y. Xia, and W. Deng. 2018. An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty. Mechanical Systems and Signal Processing 107:137–48. doi:10.1016/j.ymssp.2018.01.031.
  • Fu, C., J. J. Sinou, W. Zhu, K. Lu, and Y. Yang. 2023. A state-of-the-art review on uncertainty analysis of rotor systems. Mechanical Systems and Signal Processing 183:109619. doi:10.1016/j.ymssp.2022.109619.
  • Fu, C., Z. Zheng, W. Zhu, K. Lu, and Y. Yang. 2022. Non-intrusive frequency response analysis of nonlinear systems with interval uncertainty: A comparative study. Chaos, Solitons and Fractals 165:112815. doi:10.1016/j.chaos.2022.112815.
  • Gan, C. B., Y. H. Wang, S. X. Yang, and Y. L. Cao. 2014. Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset. International Journal of Mechanical Sciences 78:126–34. doi:10.1016/j.ijmecsci.2013.11.009.
  • Gong, J., X. Wang, and T. Lv. 2023. A credible interval analysis method for uncertain structures under nonprobabilistic framework. Computer Methods in Applied Mechanics and Engineering 404:115833. doi:10.1016/j.cma.2022.115833.
  • Heydari, H., and A. Khorram. 2019. Effects of location and aspect ratio of a flexible disk on natural frequencies and critical speeds of a rotating shaft-disk system. International Journal of Mechanical Sciences 152:596–612. doi:10.1016/j.ijmecsci.2019.01.022.
  • Heydarpour, Y., P. Malekzadeh, R. Dimitri, and F. Tornabene. 2020. Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme. Composite Structures 235:111707. doi:10.1016/j.compstruct.2019.111707.
  • Jia, H. S., S. B. Chun, and C. W. Lee. 1997. Evaluation of the longitudinal coupled vibrations in rotating, flexible disks/spindle systems. Journal of Sound and Vibration 208 (2):175–87. doi:10.1006/jsvi.1997.1127.
  • Langer, and Ernest R. 1959. On numerical approximation.
  • Lee, C. W., and S. B. Chun. 1998. Vibration analysis of a rotor with multiple flexible disks using assumed modes method. Journal of Vibration and Acoustics 120 (1):87–94. doi:10.1115/1.2893831.
  • Liu, L., D. Cao, and S. Sun. 2015. Dynamic characteristics of a disk–drum–shaft rotor system with rub-impact. Nonlinear Dynamics 80 (1-2):1017–38. doi:10.1007/s11071-015-1925-4.
  • Ma, Y., Z. Liang, M. Chen, and J. Hong. 2013. Interval analysis of rotor dynamic response with uncertain parameters. Journal of Sound and Vibration 332 (16):3869–80. doi:10.1016/j.jsv.2013.03.001.
  • Muscolino, G., A. Sofi, and F. Giunta. 2018. Dynamics of structures with uncertain-but-bounded parameters via pseudo-static sensitivity analysis. Mechanical Systems and Signal Processing 111:1–22. doi:10.1016/j.ymssp.2018.02.023.
  • Phadatare, H. P., and B. Pratiher. 2020. Dynamic stability and bifurcation phenomena of an axially loaded flexible shaft-disk system supported by flexible bearing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, 2951–67.
  • Qi, W., and Z. Qiu. 2012. A collocation interval analysis method for interval structural parameters and stochastic excitation. Science China Physics, Mechanics and Astronomy 55 (1):66–77. doi:10.1007/s11433-011-4570-z.
  • Qiu, Z., L. Ma, and X. Wang. 2009. Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. Journal of Sound and Vibration 319 (1-2):531–40. doi:10.1016/j.jsv.2008.06.006.
  • Qiu, Z., X. Wang, and J. Chen. 2006. Exact bounds for the static response set of structures with uncertain-but-bounded parameters. International Journal of Solids and Structures 43 (21):6574–93. doi:10.1016/j.ijsolstr.2006.01.012.
  • Qiu, Z., and I. Elishakoff. 1998. Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Computer Methods in Applied Mechanics and Engineering 152 (3-4):361–72. doi:10.1016/S0045-7825(96)01211-X.
  • Qiu, Z., and X. Wang. 2003. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures 40 (20):5423–39. doi:10.1016/S0020-7683(03)00282-8.
  • Qiu, Z., and X. Wang. 2005. Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. International Journal of Solids and Structures 42 (18-19):4958–70. doi:10.1016/j.ijsolstr.2005.02.023.
  • Shen, I. Y. 1997. Closed-form forced response of a damped, rotating, multiple disks/spindle system. Journal of Applied Mechanics 64 (2):343–52. doi:10.1115/1.2787313.
  • Sinou, J. J., J. Didier, and B. Faverjon. 2015. Stochastic non-linear response of a flexible rotor with local non-linearities. International Journal of Non-Linear Mechanics 74:92–9. doi:10.1016/j.ijnonlinmec.2015.03.012.
  • Sinou, J. J., and E. Jacquelin. 2015. Influence of Polynomial Chaos expansion order on an uncertain asymmetric rotor system response. Mechanical Systems and Signal Processing 50-51:718–31. doi:10.1016/j.ymssp.2014.05.046.
  • Tornabene, F., and M. Bacciocchi. 2018. Dynamic stability of doubly-curved multilayered shells subjected to arbitrarily oriented angular velocities: Numerical evaluation of the critical speed. Composite Structures 201:1031–55. doi:10.1016/j.compstruct.2018.06.060.
  • Tornabene, F. 2019. On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials. Thin-Walled Structures 140:85–98. doi:10.1016/j.tws.2019.03.018.
  • Tobias, S. A., and R. N. Arnold. 1957. The influence of dynamical imperfection on the vibration of rotating disks. Proceedings of the Institution of Mechanical Engineers 171 (1):669–90. doi:10.1243/PIME_PROC_1957_171_056_02.
  • Wang, L., Z. Chen, and G. Yang. 2020. An interval uncertainty analysis method for structural response bounds using feedforward neural network differentiation. Applied Mathematical Modelling 82:449–68. doi:10.1016/j.apm.2020.01.059.
  • Wu, F., and G. T. Flowers. 1992. A transfer matrix technique for evaluating the natural frequencies and critical speeds of a rotor with multiple flexible disks. Journal of Vibration and Acoustics 114 (2):242–8. doi:10.1115/1.2930254.
  • Wu, J., Z. Luo, H. Li, and N. Zhang. 2017. Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Computer Methods in Applied Mechanics and Engineering 319:414–41. doi:10.1016/j.cma.2017.03.002.
  • Wu, J., Z. Luo, N. Zhang, and Y. Zhang. 2015. A new uncertain analysis method and its application in vehicle dynamics. Mechanical Systems and Signal Processing 50-51:659–75. doi:10.1016/j.ymssp.2014.05.036.
  • Wu, J., Y. Zhang, L. Chen, and Z. Luo. 2013. A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Applied Mathematical Modelling 37 (6):4578–91. doi:10.1016/j.apm.2012.09.073.
  • Yang, T., H. Ma, Z. Qin, H. Guan, and Q. Xiong. 2022. Coupling vibration characteristics of the shaft-disk-drum rotor system with bolted joints. Mechanical Systems and Signal Processing 169:108747. doi:10.1016/j.ymssp.2021.108747.
  • Yu, T. J., S. Zhou, X. D. Yang, and W. Zhang. 2018. Global dynamics of a flexible asymmetrical rotor. Nonlinear Dynamics 91 (2):1041–60. doi:10.1007/s11071-017-3927-x.
  • Zhao, S., L. Zhang, R. Zhu, Q. Han, Z. Qin, and F. Chu. 2022. Modeling approach for flexible shaft-disk-drum rotor systems with elastic connections and supports. Applied Mathematical Modelling 106:402–25. doi:10.1016/j.apm.2022.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.