83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A dynamic analysis on the effect of support excitations on vibrations behavior of symmetrical on-board rotor

, , &
Pages 4035-4065 | Received 27 Mar 2023, Accepted 15 May 2023, Published online: 01 Jun 2023

References

  • Ahmed, F., H. Abdelhamid, B. Brahim, and S. Ahmed. 2019. Study of the effect of an open transverse crack on the vibratory behavior of rotors using the h-p version of the finite element method. Journal of Solid Mechanics 11 (1):181–200. doi:10.22034/jsm.2019.664228.
  • Ahmed, S., H. Abdelhamid, B. Ismail, and F. Ahmed. 2021. An differential quadrature finite element and the differential quadrature hierarchical finite element methods for the dynamics analysis of on board shaft. European Journal of Computational Mechanics 29 (4-6):30344. doi:10.13052/ejcm1779-7179.29461.
  • Assem, H., A. Hadjoui, and A. Saimi. 2022. Numerical analysis on the dynamics behavior of FGM rotor in thermal environment using h-p finite element method. Mechanics Based Design of Structures and Machines 50 (11):3925–48. doi:10.1080/15397734.2020.1824791.
  • Babaei, M., F. Kiarasi, K. Asemi, R. Dimitri, and F. Tornabene. 2022. Transient thermal stresses in FG porous rotating truncated cones reinforced by graphene platelets. Applied Sciences 12 (8):3932. https://www.mdpi.com/2076-3417/12/8/3932. doi:10.3390/app12083932.
  • Bardell, N. S. 1996. An engineering application of the h-p version of the finite element method to the static analysis of a Euler-Bernoulli beam. Computers & Structures 59 (2):195–211. doi:10.1016/0045-7949(95)00252-9.
  • Boukhalfa, A., and A. Hadjoui. 2010. Free vibration analysis of an embarked rotating composite shaft using the hp-version of the FEM. Latin American Journal of Solids and Structures 7 (2):105–41. doi:10.1590/S1679-78252010000200002.
  • Bouzidi, I., A. Hadjoui, and A. Fellah. 2021. Dynamic analysis of functionally graded rotor-blade system using the classical version of the finite element method. Mechanics Based Design of Structures and Machines 49 (7):1080–108. doi:10.1080/15397734.2019.1706558.
  • Choi, Y.-S., and S. T. Noah. 1987. Nonlinear steady-state response of a rotor-support system. Journal of Vibration, Acoustics, Stress, and Reliability in Design 109 (3):255–61. doi:10.1115/1.3269429.
  • Dakel, M., S. Baguet, and R. Dufour. 2014a. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings. Journal of Sound and Vibration 333 (10):2774–99. doi:10.1016/j.jsv.2013.12.021.
  • Dakel, M., S. Baguet, and R. Dufour. 2014b. Steady-state dynamic behavior of an on-board rotor under combined base motions. Journal of Vibration and Control 20 (15):2254–87. doi:10.1177/1077546313483791.
  • Duchemin, M., A. Berlioz, and G. Ferraris. 2006. Dynamic behavior and stability of a rotor under base excitation. Journal of Vibration and Acoustics 128 (5):576–85. doi:10.1115/1.2202159.
  • Fethi, H. A., I. Saimi, and A. H. Bensaid. 2023. Dynamic analysis of a functionally graded tapered rotating shaft under thermal load via differential quadrature finite elements method. Advances in Aircraft and Spacecraft Science, 10 (1):19–49. doi:10.12989/aas.2023.10.1.019.
  • Genta, G. 2005. Dynamics of rotating systems. New York, NY: Springer. doi:10.1007/0-387-28687-X.
  • Heydarpour, Y., P. Malekzadeh, R. Dimitri, and F. Tornabene. 2020. Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme. Composite Structures 235:111707. doi:10.1016/j.compstruct.2019.111707.
  • Hua, L., and K. Y. Lam. 1998. Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method. International Journal of Mechanical Sciences 40 (5):443–59. doi:10.1016/S0020-7403(97)00057-X.
  • Jafari Niasar, M., M. J. Babaei, A. A. Jafari, and M. Irani Rahaghi. 2022. Vibration analysis of a porous hollow conical rotor with circumferentially distributed piezoceramic strips. Mechanics Based Design of Structures and Machines :1–20. doi:10.1080/15397734.2022.2150638.
  • Lam, K. Y., and L. Hua. 1999. Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell. Journal of Sound and Vibration 223 (2):171–95. doi:10.1006/jsvi.1998.1432.
  • Lam, K. Y., and C. T. Loy. 1995. Analysis of rotating laminated cylindrical shells by different thin shell theories. Journal of Sound and Vibration 186 (1):23–35. doi:10.1006/jsvi.1995.0431.
  • Ng, T. Y., and K. Y. Lam. 1999. Vibration and critical speed of a rotating cylindrical shell subjected to axial loading. Applied Acoustics 56 (4):273–82. doi:10.1016/S0003-682X(98)00034-6.
  • Saimi, A., and A. Hadjoui. 2016. An engineering application of the h-p version of the finite elements method to the dynamics analysis of a symmetrical on-board rotor. European Journal of Computational Mechanics 25 (5):388–416. doi:10.1080/17797179.2016.1245597.
  • Saimi, A., A. Fellah, and A. Hadjoui. 2021. Nonlinear dynamic analysis of the response to the excitation forces of a symmetrical on-board rotor mounted on hydrodynamic bearings using h-p finite elements method. Mechanics Based Design of Structures and Machines :1–32. doi:10.1080/15397734.2021.1991806.
  • Tornabene, F. 2019. On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials. Thin-Walled Structures 140:85–98. doi:10.1016/j.tws.2019.03.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.