212
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and finite element analysis of utilizing rectangular and trapezoidal piezoelectric energy harvester with arrays of auxetic cells

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 4077-4097 | Received 17 Feb 2023, Accepted 15 May 2023, Published online: 08 Jun 2023

References

  • Adhikari, S., M. I. Friswell, and D. J. Inman. 2009. Piezoelectric energy harvesting from broadband random vibrations. Smart Materials and Structures 18 (11):115005. doi:10.1088/0964-1726/18/11/115005.
  • Ambrosio, R., A. Jimenez, J. Mireles, M. Moreno, K. Monfil, and H. Heredia. 2011. Study of piezoelectric energy harvesting system based on PZT. Integrated Ferroelectrics 126 (1):77–86. doi:10.1080/10584587.2011.574989.
  • Beards, C. F. 1984. Structural vibration analysis: Modelling, analysis and damping of vibration structures. Engineering Analysis 1 (1):63.
  • De Bellis, M. L., and A. Bacigalupo. 2017. Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors. Smart Materials and Structures 26 (8):085037. doi:10.1088/1361-665X/aa7772.
  • Cahill, P., B. Hazra, R. Karoumi, A. Mathewson, and V. Pakrashi. 2018. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mechanical Systems and Signal Processing 106:265–83. doi:10.1016/j.ymssp.2018.01.007.
  • Chandrasekharan, N., and L. L. Thompson. 2016. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures. 25.
  • Chen, N., and V. Bedekar. 2017. Modeling, simulation and optimization of piezoelectric bimorph transducer for broadband vibration energy harvesting. Journal of Materials Science Research 6 (4):5–18. doi:10.5539/jmsr.v6n4p5.
  • Eghbali, P., D. Younesian, and S. Farhangdoust. 2020a. Enhancement of piezoelectric vibration energy harvesting with auxetic boosters. International Journal of Energy Research 44 (2):1179–90. doi:10.1002/er.5010.
  • Eghbali, P., D. Younesian, and S. Farhangdoust. 2020b. Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators. Applied Energy 270 (November 2019):115217. doi:10.1016/j.apenergy.2020.115217.
  • Erturk, A., and D. J. Inman. 2007. Mechanical considerations for modeling of vibration-based energy harvesters. 21st Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C. ASME, vol. 1, 769–778. doi:10.1115/DETC2007-35440.
  • Erturk, A., and D. J. Inman. 2008. On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. Journal of Intelligent Material Systems and Structures 19 (11):1311–25. doi:10.1177/1045389X07085639.
  • Erturk, A., and D. J. Inman. 2009. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures 18 (2):025009. doi:10.1088/0964-1726/18/2/025009.
  • Ferguson, W. J. G., Y. Kuang, K. E. Evans, C. W. Smith, and M. Zhu. 2018. Auxetic structure for increased power output of strain vibration energy harvester. Sensors and Actuators A: Physical 282 (October):90–6. doi:10.1016/j.sna.2018.09.019.
  • Fey, T., F. Eichhorn, G. Han, K. Ebert, M. Wegener, A. Roosen, K. I. Kakimoto, and P. Greil. 2016. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure. Smart Materials and Structures 25 (1):015017. doi:10.1088/0964-1726/25/1/015017.
  • Khazaee, M., A. Rezaniakolaie, A. Moosavian, and L. Rosendahl. 2019. A novel method for autonomous remote condition monitoring of rotating machines using piezoelectric energy harvesting approach. Sensors and Actuators A: Physical 295:37–50. doi:10.1016/j.sna.2019.05.016.
  • Kim, M., J. Dugundji, and B. L. Wardle. 2015. Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Materials and Structures 24 (5):055006. doi:10.1088/0964-1726/24/5/055006.
  • Li, H., C. Tian, and Z. D. Deng. 2014. Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews 1 (4):041301. doi:10.1063/1.4900845.
  • Li, Q., Y. Kuang, and M. Zhu. 2017. Auxetic piezoelectric energy harvesters for increased electric power output. AIP Advances 7 (1):015104. doi:10.1063/1.4974310.
  • Liao, Y., and J. Liang. 2019. Unified modeling, analysis and comparison of piezoelectric vibration energy harvesters. Mechanical Systems and Signal Processing 123:403–25. doi:10.1016/j.ymssp.2019.01.025.
  • Malek, S., and L. Gibson. 2015. Effective elastic properties of periodic hexagonal honeycombs. Mechanics of Materials 91 (P1):226–40. doi:10.1016/j.mechmat.2015.07.008.
  • Martínez-Ayuso, G., M. I. Friswell, S. Adhikari, H. H. Khodaparast, and H. Berger. 2017a. Homogenization of porous piezoelectric materials. International Journal of Solids and Structures 113–114:218–29. doi:10.1016/j.ijsolstr.2017.03.003.
  • Martínez-Ayuso, G., M. I. Friswell, S. Adhikari, H. H. Khodaparast, and C. A. Featherston. 2017b. Energy harvesting using porous piezoelectric beam with impacts. Procedia Engineering 199:3468–73. doi:10.1016/j.proeng.2017.09.454.
  • Martínez-Ayuso, G., H. Haddad Khodaparast, Y. Zhang, C. Bowen, M. Friswell, A. Shaw, and H. Madinei. 2018. Model validation of a porous piezoelectric energy harvester using vibration test data. Vibration 1 (1):123–37. doi:10.3390/vibration1010010.
  • Maruccio, C., G. Quaranta, L. D. Lorenzis, and G. Monti. 2016. Energy harvesting from electrospun piezoelectric nano fibers for structural health monitoring of a cable-stayed bridge. Smart Materials and Structures 25 (8):085040. doi:10.1088/0964-1726/25/8/085040.
  • Mir, M., M. N. Ali, J. Sami, and U. Ansari. 2014. Review of mechanics and applications of auxetic structures. Advances in Materials Science and Engineering 2014:1–17. doi:10.1155/2014/753496.
  • Roscow, J., Y. Zhang, J. Taylor, and C. R. Bowen. 2015. Porous ferroelectrics for energy harvesting applications. The European Physical Journal Special Topics 224 (14–15):2949–66. doi:10.1140/epjst/e2015-02600-y.
  • Siddiqui, N. A., D. Kim, R. A. Overfelt, B. C. Prorok, W. Laboratories, M. Engineering, and A. Al. 2015. Shape optimization of cantilevered devices for piezoelectric energy harvesting shape optimization of cantilevered devices for piezoelectric energy harvesting (July 2014).
  • Sodano, H. A., D. J. Inman, and G. Park. 2005a. Generation and storage of electricity from power harvesting devices. Journal of Intelligent Material Systems and Structures 16 (1):67–75. doi:10.1177/1045389X05047210.
  • Sodano, H. A., D. J. Inman, and G. Park. 2005b. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures 16 (10):799–807. doi:10.1177/1045389X05056681.
  • Sorohan, S., D. M. Constantinescu, M. Sandu, and A. G. Sandu. 2018. On the homogenization of hexagonal honeycombs under axial and shear loading. Part I: Analytical formulation for free skin effect. Mechanics of Materials 119:74–91. doi:10.1016/j.mechmat.2017.09.003.
  • Stefan, S., S. Marin, C. Dan Mihai, and S. Adriana Georgeta. 2015. On the evaluation of mechanical properties of honeycombs by using finite element analyses. Incas Bulletin 7 (3):135–50. doi:10.13111/2066-8201.2015.7.3.13.
  • Taylor, M., L. Francesconi, M. Gerendás, A. Shanian, C. Carson, and K. Bertoldi. 2014. Low porosity metallic periodic structures with negative Poisson’s ratio. Advanced Materials (Deerfield Beach, FL) 26 (15):2365–70. doi:10.1002/adma.201304464.
  • Torabi, K., H. Afshari, and F. H. Aboutalebi. 2019. Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. Journal of Sandwich Structures & Materials 21 (8):2887–920. doi:10.1177/1099636217728746.
  • Tornabene, F., M. Viscoti, R. Dimitri, and M. A. Aiello. 2021a. Higher order formulations for doubly-curved shell structures with a honeycomb core. Thin-Walled Structures 164 (March):107789. doi:10.1016/j.tws.2021.107789.
  • Tornabene, F., M. Viscoti, R. Dimitri, and M. Antonietta Aiello. 2021b. Higher-order modeling of anisogrid composite lattice structures with complex geometries. Engineering Structures 244:112686. doi:10.1016/j.engstruct.2021.112686.
  • Umino, Y., T. Tsukamoto, S. Shiomi, K. Yamada, and T. Suzuki. 2018. Development of vibration energy harvester with 2D mechanical metamaterial structure. Journal of Physics: Conference Series 1052:3–6.
  • Zhang, G., S. Gao, H. Liu, and S. Niu. 2017. A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: Theory and experiment. Microsystem Technologies 23 (8):3457–66. doi:10.1007/s00542-016-3224-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.