167
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Mathematical analysis on the propagation of Griffith crack in an initially stressed strip subjected to punch pressure

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 4133-4151 | Received 14 Jul 2022, Accepted 29 May 2023, Published online: 22 Jun 2023

References

  • Abo-Dahab, S. M., A. M. Abd-Alla, and M. I. Othman. 2022. Reflection of plane waves on generalized thermoelastic medium under effect of temperature dependent properties and initial stress with three-phase-lag model. Mechanics Based Design of Structures and Machines 50 (4):1184–97. doi:10.1080/15397734.2020.1749069.
  • Achenbach, J. D. 1970. Extension of a crack by a shear wave. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 21 (6):887–900. doi:10.1007/BF01594848.
  • Achenbach, J. D., Z. P. Bažant, and R. P. Khetan. 1976. Elastodynamic near-tip fields for a rapidly propagating interface crack. International Journal of Engineering Science 14 (9):797–809. doi:10.1016/0020-7225(76)90065-3.
  • Ayatollahi, M., R. Bagheri, M. Nourazar, M. M. Monfared, and S. M. Mousavi. 2017. Analytic solutions of multiple moving cracks in an orthotropic layer bonded to an orthotropic FGM coating. Applied Mathematics and Computation 293:394–403. doi:10.1016/j.amc.2016.08.015.
  • Biot, M. A. 1940. The influence of initial stress on elastic waves. Journal of Applied Physics 11 (8):522–30. doi:10.1063/1.1712807.
  • Das, S., and L. Debnath. 2001. Stress intensity factor around a Griffith crack in an orthotropic punched layer. Mathematical and Computer Modelling 33 (8–9):957–63. doi:10.1016/S0895-7177(00)00292-2.
  • Dey, S. 1971. Wave propagation in two layered medium under initial stresses. Pure and Applied Geophysics PAGEOPH 90 (1):38–52. doi:10.1007/BF00875507.
  • Du, J., X. Jin, and J. Wang. 2007. Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mechanica 192 (1–4):169–89. doi:10.1007/s00707-006-0435-3.
  • Freund, L. B. 1972. Crack propagation in an elastic solid subjected to general loading—II. Non- uniform rate of extension. Journal of the Mechanics and Physics of Solids 20 (3):141–52. doi:10.1016/0022-5096(72)90007-5.
  • Gubbins, D. 1990. Seismology and Plate Tectonics. Cambridge: Cambridge University Press.
  • Guo, X., and P. Wei. 2016. Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with initial stresses. International Journal of Mechanical Sciences 106:231–44. doi:10.1016/j.ijmecsci.2015.12.020.
  • Guz, A. N. 2002. Elastic waves in bodies with initial (residual) stresses. International Applied Mechanics 38 (1):23–59. doi:10.1023/A:1015379824503.
  • Ha, Y. D., and F. Bobaru. 2010. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture 162 (1–2):229–44. doi:10.1007/s10704-010-9442-4.
  • Kassir, M. K., and S. Tse. 1983. Moving Griffith crack in an orthotropic material. International Journal of Engineering Science 21 (4):315–25. doi:10.1016/0020-7225(83)90116-7.
  • Khiem, N. T., T. T. Hai, and L. Q. Huong. 2021. Modal analysis of cracked FGM beam with piezoelectric layer. Mechanics Based Design of Structures and Machines :1–21. doi:10.1080/15397734.2021.1992775.
  • Kumar, P., M. Mahanty, A. K. Singh, and A. Chattopadhyay. 2021. Analytical study on stress intensity factor due to the propagation of Griffith crack in a crystalline monoclinic layer subjected to punch pressure. Fatigue & Fracture of Engineering Materials & Structures 44 (2):475–87. doi:10.1111/ffe.13374.
  • Laird, C., and G. C. Smith. 1962. Crack propagation in high stress fatigue. Philosophical Magazine 7 (77):847–57. doi:10.1080/14786436208212674.
  • Lewandowski, K., Ł. Kaczmarczyk, I. Athanasiadis, J. F. Marshall, and C. J. Pearce. 2021. A computational framework for crack propagation in spatially heterogeneous materials. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 379 (2203):20200291. doi:10.1098/rsta.2020.0291.
  • Liu, H., Z. K. Wang, and T. J. Wang. 2001. Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. International Journal of Solids and Structures 38 (1):37–51. doi:10.1016/S0020-7683(00)00009-3.
  • Lotfy, K., A. A. El-Bary, M. Allan, and M. H. Ahmed. 2020. Generalized thermal microstretch elastic solid with harmonic wave for mode-I crack problem. Archives of Thermodynamics 41 (2). doi:10.24425/ather.2020.133626.
  • Lotfy, K., and A. El-Bary. 2021. A Mode-I crack for a rotational fibre-reinforced thermoelastic medium with thermal relaxation time. Waves in Random and Complex Media 1–22. doi:10.1080/17455030.2021.1905913.
  • Majumdar, B. S., and S. J. Burns. 1983. A Griffith crack shielded by a dislocation pile-up. International Journal of Fracture 21 (3):229–40. doi:10.1007/BF00963390.
  • Monfared, M. M., and R. Bagheri. 2021. In-plane stress analysis in a cracked functionally graded piezoelectric plane. Mechanics Based Design of Structures and Machines :1–27. doi:10.1080/15397734.2021.1967166.
  • Negi, A., A. K. Singh, and R. P. Yadav. 2020. Analysis on dynamic interfacial crack impacted by SH-wave in bi-material poroelastic strip. Composite Structures 233:111639. doi:10.1016/j.compstruct.2019.111639.
  • Othman, M. I., and E. E. Eraki. 2017. Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model. Mechanics Based Design of Structures and Machines 45 (2):145–59. doi:10.1080/15397734.2016.1152193.
  • Othman, M. I., and S. Y. Atwa. 2013. 2-D problem of a Mode-I crack for a generalized thermoelasticity under Green-Naghdi theory. Meccanica 48 (6):1543–51. doi:10.1007/s11012-012-9683-6.
  • Othman, M. I., and S. Y. Atwa. 2014. Propagation of plane waves of a mode-I crack for a generalized thermoelasticity under influence of gravity for different theories. Mechanics of Advanced Materials and Structures 21 (9):697–709. doi:10.1080/15376494.2012.707298.
  • Qian, Z., F. Jin, Z. Wang, and K. Kishimoto. 2004. Love waves propagation in a piezoelectric layered structure with initial stresses. Acta Mechanica 171 (1–2):41–57. doi:10.1007/s00707-004-0128-8.
  • Shah, R. C., and A. S. Kobayashi. 1971. Stress intensity factor for an elliptical crack under arbitrary normal loading. Engineering Fracture Mechanics 3 (1):71–96. doi:10.1016/0013-7944(71)90052-X.
  • Singh, A. K., A. K. Singh, and R. P. Yadav. 2020. Stress intensity factor of dynamic crack in double-layered dry sandy elastic medium due to shear wave under different loading conditions. International Journal of Geomechanics 20 (11):04020215. doi:10.1061/(ASCE)GM.1943-5622.0001827.
  • Singh, A. K., and A. K. Singh. 2022a. Analysis on the propagation of crack in a functionally graded orthotropic strip under pre-stress. Waves in Random and Complex Media :1–19. doi:10.1080/17455030.2022.2048128.
  • Singh, A. K., and A. K. Singh. 2022b. Dynamic stress concentration of a smooth moving punch influenced by a shear wave in an initially stressed dry sandy layer. Acta Mechanica 233 (5):1757–68. doi:10.1007/s00707-022-03197-4.
  • Singh, A. K., R. P. Yadav, K. C. Mistri, and A. Chattopadhyay. 2016. Influence of anisotropy, porosity and initial stresses on crack propagation due to Love‐type wave in a poroelastic medium. Fatigue & Fracture of Engineering Materials & Structures 39 (5):624–36. doi:10.1111/ffe.12393.
  • Singh, A. K., and A. K. Singh. 2022. Mathematical study on the propagation of Griffith crack in a dry sandy strip subjected to punch pressure. Waves in Random and Complex Media 1–18. doi:10.1080/17455030.2022.2118397.
  • Singh, A. K., R. P. Yadav, S. Kumar, and A. Chattopadhyay. 2016. Propagation of crack in a pre-stressed inhomogeneous poroelastic medium influenced by shear wave. Engineering Fracture Mechanics 154:191–206. doi:10.1016/j.engfracmech.2015.12.024.
  • Srivastava, K. N., O. P. Gupta, and R. M. Palaiya. 1981. Interaction of elastic waves with a Griffith crack situated in an infinitely long strip. ZAMM – Zeitschrift Für Angewandte Mathematik Und Mechanik 61 (11):583–7. doi:10.1002/zamm.19810611106.
  • Tait, R. J., and T. B. Moodie. 1981. Complex variable methods and closed form solutions to dynamic crack and punch problems in the classical theory of elasticity. International Journal of Engineering Science 19 (2):221–9. doi:10.1016/0020-7225(81)90022-7.
  • Tricomi, F. G. 1951. On the finite Hilbert transformation. The Quarterly Journal of Mathematics 2 (1):199–211. doi:10.1093/qmath/2.1.199.
  • Yadav, R. P., A. K. Singh, and A. Chattopadhyay. 2018. Analytical study on the propagation of rectilinear semi-infinite crack due to Love-type wave propagation in a structure with two dissimilar transversely isotropic layers. Engineering Fracture Mechanics 199:201–19. doi:10.1016/j.engfracmech.2018.05.025.
  • Yu, J., and C. Zhang. 2013. Influences of initial stresses on guided waves in functionally graded hollow cylinders. Acta Mechanica 224 (4):745–57. doi:10.1007/s00707-012-0748-3.
  • Zhang, X. M., and J. G. Yu. 2013. Effects of initial stresses on guided waves in unidirectional plates. Archives of Mechanics 65 (1):3–26.
  • Zhou, Y., Z. Yang, and Z. Lu. 2014. Dynamic crack propagation in copper bicrystals grain boundary by atomistic simulation. Materials Science and Engineering: A 599:116–24. doi:10.1016/j.msea.2014.01.070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.