129
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nonlinear vibration and resonance analysis of a rectangular hyperelastic membrane surrounded by nonlinear elastic foundation

, &
Pages 4616-4641 | Received 21 Jul 2021, Accepted 30 Jun 2023, Published online: 31 Aug 2023

References

  • Ait Atmane, H., A. Tounsi, I. Mechab, and E. A. Adda Bedia. 2010. Free vibration analysis of functionally graded plates resting on Winkler–Pasternak elastic foundations using a new shear deformation theory. International Journal of Mechanics and Materials in Design 6 (2):113–21. doi:10.1007/s10999-010-9110-x.
  • Babaei, H., Y. Kiani, and M. R. Eslami. 2022. Limit load analysis and imperfection sensitivity of heated or compressed FGM beams on nonlinear softening elastic foundation. Mechanics Based Design of Structures and Machines 50 (2):371–94. doi:10.1080/15397734.2020.1717343.
  • Bendenia, N., M. Zidour, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, and A. Tounsi. 2020. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Computers and Concrete 26 (3):213–26. doi:10.12989/cac.2020.26.3.213.
  • Breslavsky, I. D., M. Amabili, and M. Legrand. 2014. Nonlinear vibrations of thin hyperelastic plates. Journal of Sound and Vibration 333 (19):4668–81. doi:10.1016/j.jsv.2014.04.028.
  • Chang-Jun, C., and R. Jiu-Sheng. 2003. Transversely isotropic hyper-elastic material rectangular plate with voids under a uniaxial extension. Applied Mathematics and Mechanics 24 (7):763–73. doi:10.1007/BF02437808.
  • Chikr, S. C., A. Kaci, A. A. Bousahla, F. Bourada, A. Tounsi, E. A. Bedia, and A. Tounsi. 2020. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach. Geomechanics and Engineering 21 (5):471–87. doi:10.12989/gae.2020.21.5.471.
  • Dai, H. H., Y. Wang, and F. F. Wang. 2013. Primary and secondary bifurcations of a compressible hyperelastic layer: Asymptotic model equations and solutions. International Journal of Non-Linear Mechanics 52:58–72. doi:10.1016/j.ijnonlinmec.2013.01.019.
  • Esmaeilzadeh, M., M. E. Golmakani, and M. Sadeghian. 2023. A nonlocal strain gradient model for nonlinear dynamic behavior of bi-directional functionally graded porous nanoplates on elastic foundations. Mechanics Based Design of Structures and Machines 51 (1):418–37. doi:10.1080/15397734.2020.1845965.
  • Fang, X. Q., C. S. Zhu, J. X. Liu, and X. L. Liu. 2018. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Physica B: Condensed Matter 529:41–56. doi:10.1016/j.physb.2017.10.038.
  • Fang, X.-Q., H.-W. Ma, and C.-S. Zhu. 2022. Non-local multi-fields coupling response of a piezoelectric semiconductor nano-fiber under shear force. Mechanics of Advanced Materials and Structures 1–12. doi:10.1080/15376494.2022.2158503.
  • Foroutan, K., and H. Ahmadi. 2022. Nonlinear parametric vibration of imperfect SSMFG cylindrical shells in thermal environment including internal and subharmonic resonances. Mechanics of Advanced Materials and Structures 29 (24):3499–522. doi:10.1080/15376494.2021.1904526.
  • Foroutan, K., H. Ahmadi, and M. Shariyat. 2020. Asymmetric large deformation superharmonic and subharmonic resonances of spiral stiffened imperfect FG cylindrical shells resting on generalized nonlinear viscoelastic foundations. International Journal of Applied Mechanics 12 (05):2050052. doi:10.1142/S1758825120500520.
  • Forsat, M. 2020. Investigating nonlinear vibrations of higher-order hyper-elastic beams using the Hamiltonian method. Acta Mechanica 231 (1):125–38. doi:10.1007/s00707-019-02533-5.
  • Fu, Y., S. Pearce, and K. K. Liu. 2008. Post-bifurcation analysis of a thin-walled hyperelastic tube under inflation. International Journal of Non-Linear Mechanics 43 (8):697–706. doi:10.1016/j.ijnonlinmec.2008.03.003.
  • Gao, K., W. Gao, D. Wu, and C. Song. 2018. Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing load. Journal of Sound and Vibration 415:147–68. doi:10.1016/j.jsv.2017.11.038.
  • Gonçalves, P. B., R. M. Soares, and D. Pamplona. 2009. Nonlinear vibrations of a radially stretched circular hyperelastic membrane. Journal of Sound and Vibration 327 (1–2):231–48. doi:10.1016/j.jsv.2009.06.023.
  • Guellil, M., H. Saidi, F. Bourada, A. A. Bousahla, A. Tounsi, M. M. Al-Zahrani, and S. R. Mahmoud. 2021. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation. Steel and Composite Structures 38 (1):1–15. doi:10.12989/scs.2021.38.1.001.
  • Gupta, A., M. Talha, and W. Seemann. 2018. Free vibration and flexural response of functionally graded plates resting on Winkler–Pasternak elastic foundations using nonpolynomial higher-order shear and normal deformation theory. Mechanics of Advanced Materials and Structures 25 (6):523–38. doi:10.1080/15376494.2017.1285459.
  • Hagedorn, P., and A. DasGupta. 2007. Vibrations and waves in continuous mechanical systems. Chichester: John Wiley & Sons.
  • Hao, Y. X., L. H. Chen, W. Zhang, and J. G. Lei. 2008. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. Journal of Sound and Vibration 312 (4–5):862–92. doi:10.1016/j.jsv.2007.11.033.
  • Hussain, M., M. N. Naeem, and M. R. Isvandzibaei. 2018. Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (24):4564–77. doi:10.1177/0954406217753459.
  • Merazka, B., A. Bouhadra, A. Menasria, M. M. Selim, A. A. Bousahla, F. Bourada, and M. M. Al-Zahrani. 2021. Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations. Steel and Composite Structures 39 (5):631–43. doi:10.12989/scs.2021.39.5.631.
  • Mirjavadi, S. S., M. Forsat, and S. Badnava. 2020. Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models. Biomechanics and Modeling in Mechanobiology 19 (3):971–83. doi:10.1007/s10237-019-01265-8.
  • Mojiri, H. R., and S. J. Salami. 2022. Free vibration and dynamic transient response of functionally graded composite beams reinforced with graphene nanoplatelets (GPLs) resting on elastic foundation in thermal environment. Mechanics Based Design of Structures and Machines 50 (6):1872–92. doi:10.1080/15397734.2020.1766492.
  • Mudhaffar, I. M., A. Tounsi, A. Chikh, M. A. Al-Osta, M. M. Al-Zahrani, and S. U. Al-Dulaijan. 2021. Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. Structures 33:2177–89. doi:10.1016/j.istruc.2021.05.090.
  • Nayfeh, A. H., and D. T. Mook. 2008. Nonlinear oscillations. New York, NY: John Wiley & Sons.
  • Patil, A., and A. DasGupta. 2015. Constrained inflation of a stretched hyperelastic membrane inside an elastic cone. Meccanica 50 (6):1495–508. doi:10.1007/s11012-0150102-7.
  • Patil, A., A. DasGupta, and A. Eriksson. 2015. Contact mechanics of a circular membrane inflated against a soft adhesive substrate. International Journal of Solids and Structures 67–68:250–62. doi:10.1016/j.ijsolstr.2015.04.02533.
  • Saccomandi, G., and R. W. Ogden. 2004. Mechanics and thermomechanics of rubberlike solids, 1st ed. New York, NY: Springer.
  • Selvadurai, A. 2006. Deflections of a rubber membrane. Journal of the Mechanics and Physics of Solids 54 (6):1093–119. doi:10.1016/j.jmps.2006.01.001.
  • Shojaeifard, M., K. Wang, and M. Baghani. 2022. Large deformation of hyperelastic thick-walled vessels under combined extension-torsion-pressure: Analytical solution and FEM. Mechanics Based Design of Structures and Machines 50 (12):4139–56. doi:10.1080/15397734.2020.1826963.
  • Soares, R. M., and P. B. Gonçalves. 2012. Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane. International Journal of Solids and Structures 49 (3–4):514–26. doi:10.1016/j.ijsolstr.2011.10.019.
  • Soares, R. M., and P. B. Gonçalves. 2014. Large-amplitude nonlinear vibrations of a Mooney–Rivlin rectangular membrane. Journal of Sound and Vibration 333 (13):2920–35. doi:10.1016/j.jsv.2014.02.007.
  • Soares, R. M., and P. B. Gonçalves. 2018. Nonlinear vibrations of a rectangular hyperelastic membrane resting on a nonlinear elastic foundation. Meccanica 53 (4-5):937–55. doi:10.1007/s11012-017-0755-5.
  • Soares, R. M., P. F. Amaral, F. M. Silva, and P. B. Gonçalves. 2020. Nonlinear breathing motions and instabilities of a pressure-loaded spherical hyperelastic membrane. Nonlinear Dynamics 99 (1):351–72. doi:10.1007/s11071-019-04855-4.
  • Sun, X., and J. Z. Zhang. 2016. Nonlinear vibrations of a flexible membrane under periodic load. Nonlinear Dynamics 85 (4):2467–86. doi:10.1007/s11071-016-2838-6.
  • Refrafi, S., A. A. Bousahla, A. Bouhadra, A. Menasria, F. Bourada, and A. Tounsi. 2020. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations. Computers and Concrete 25 (4):311–25. doi:10.12989/cac.2020.25.4.311.
  • Rouabhia, A., A. Chikh, A. A. Bousahla, F. Bourada, H. Heireche, A. Tounsi, and M. M. Al-Zahrani. 2020. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory. Steel and Composite Structures 37 (6):695–709. doi:10.12989/scs.2020.37.6.695.
  • Tahir, S. I., A. Tounsi, A. Chikh, M. A. Al-Osta, S. U. Al-Dulaijan, and M. M. Al-Zahrani. 2021. An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation. Waves in Random and Complex Media 1–24. doi:10.1080/17455030.2021.1942310.
  • Tripathi, A., and A. K. Bajaj. 2016. Topology optimization and internal resonances in transverse vibrations of hyperelastic plates. International Journal of Solids and Structures 81:311–28. doi:10.1016/j.ijsolstr.2015.11.029.
  • Vahidi-Moghaddam, A., M. R. Hairi-Yazdi, and R. Vatankhah. 2023. Analytical solution for nonlinear forced vibrations of functionally graded micro resonators. Mechanics Based Design of Structures and Machines 51 (3):1543–62. doi:10.1080/15397734.2021.1873802.
  • Varatharajan, N., and A. DasGupta. 2017. Study of bifurcation in a pressurized hyperelastic membrane tube enclosed by a soft substrate. International Journal of Non-Linear Mechanics 95:233–41. doi:10.1016/j.ijnonlinmec.2017.05.004.
  • Wu, J. M., Z. Tian, Y. Wang, and X. X. Guo. 2016. Nonlinear vibration characteristics analysis of variable density printing moving membrane. 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Xi'an, China, October 21–24, 407–10. Xi’an: IEEE. doi:10.1109/SPAWDA.2016.7830035.
  • Xu, J., X. Yuan, H. Zhang, F. Zheng, and L. Chen. 2020. Nonlinear vibrations of thermo-hyperelastic moderately thick cylindrical shells with 2: 1 Internal resonance. International Journal of Structural Stability and Dynamics 20 (05):2050067. doi:10.1142/S0219455420500674.
  • Yarali, E., R. Noroozi, A. Moallemi, A. Taheri, and M. Baghani. 2022. Developing an analytical solution for a thermally tunable soft actuator under finite bending. Mechanics Based Design of Structures and Machines 50 (5):1793–807. doi:10.1080/15397734.2020.1763182.
  • Yuan, X. G., Z. Y. Zhu, and C. J. Cheng. 2005. Study on cavitated bifurcation problems for spheres composed of hyper-elastic materials. Journal of Engineering Mathematics 51 (1):15–34. doi:10.1007/s10665-004-1242-2.
  • Zaitoun, M. W., A. Chikh, A. Tounsi, A. Sharif, M. A. Al-Osta, S. U. Al-Dulaijan, and M. M. Al-Zahrani. 2023. An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects. Engineering with Computers 39 (2):1127–41. doi:10.1007/s00366-021-01498-1.
  • Zhang, J., J. Xu, X. Yuan, H. Ding, D. Niu, and W. Zhang. 2019. Nonlinear vibration analyses of cylindrical shells composed of hyperelastic materials. Acta Mechanica Solida Sinica 32 (4):463–82. doi:10.1007/s10338-019-00114-6.
  • Zhang, W., Y. Hao, X. Guo, and L. Chen. 2012. Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations. Meccanica 47 (4):985–1014. doi:10.1007/s11012-011-9491-4.
  • Zhu, C., X. Fang, and J. Liu. 2020. A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells. Applied Mathematical Modelling 77:137–68. doi:10.1016/j.apm.2019.07.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.