64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nonlinear dynamic response and vibration of spiral stiffened FG toroidal shell segments with variable thickness

&
Received 11 Apr 2023, Accepted 22 Jul 2023, Published online: 10 Aug 2023

References

  • Ahmadi, H. 2019. Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation. Engineering with Computers 35 (4):1491–505. doi:10.1007/s00366-018-0679-2.
  • Ahmadi, H., A. Bayat, and N. D. Duc. 2021. Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method. Composite Structures 256:113090. doi:10.1016/j.compstruct.2020.113090.
  • Ahmadi, H., and K. Foroutan. 2019. Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales. Thin-Walled Structures 135:33–44. doi:10.1016/j.tws.2018.10.028.
  • Ali, A. Y., and H. M. Hasan. 2022. Non-linear large amplitude vibration of orthotropic FGM convex and concave toroidal shell segments including the damping effect using the shear deformation theory. Thin-Walled Structures 173:109035. doi:10.1016/j.tws.2022.109035.
  • Anh, V. T. T., N. D. Khoa, T. Ngo, and N. D. Duc. 2023. Vibration of hybrid eccentrically stiffened sandwich auxetic double curved shallow shells in thermal environment. Aerospace Science and Technology 137:108277. doi:10.1016/j.ast.2023.108277.
  • Aris, H., and H. Ahmadi. 2023. Nonlinear forced vibration and resonance analysis of rotating stiffened FGM truncated conical shells in a thermal environment. Mechanics Based Design of Structures and Machines 51 (7):4063–87. doi:10.1080/15397734.2021.1950011.
  • Bahranifard, F., P. Malekzadeh, and M. G. Haghighi. 2022. Moving load response of ring-stiffened sandwich truncated conical shells with GPLRC face sheets and porous core. Thin-Walled Structures 180:109984. doi:10.1016/j.tws.2022.109984.
  • Bakshi, K. 2021. A numerical study on nonlinear vibrations of laminated composite singly curved stiffened shells. Composite Structures 278:114718. doi:10.1016/j.compstruct.2021.114718.
  • Bich, D. H., and D. G. Ninh. 2017. An analytical approach: Nonlinear vibration of imperfect stiffened FGM sandwich toroidal shell segments containing fluid under external thermo-mechanical loads. Composite Structures 162:164–81. doi:10.1016/j.compstruct.2016.11.065.
  • Bidgoli, E. M. R., M. Arefi, and M. Mohammadimehr. 2022. Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers. Mechanics Based Design of Structures and Machines 50 (12):4409–40. doi:10.1080/15397734.2020.1836969.
  • Bidzard, A., P. Malekzadeh, and S. R. Mohebpour. 2019. Vibration of multilayer FG-GPLRC toroidal panels with elastically restrained against rotation edges. Thin-Walled Structures 143:106209. doi:10.1016/j.tws.2019.106209.
  • Bidzard, A., P. Malekzadeh, and S. R. Mohebpour. 2021. Influences of pressure and thermal environment on nonlinear vibration characteristics of multilayer FG-GPLRC toroidal panels on nonlinear elastic foundation. Composite Structures 259:113503. doi:10.1016/j.compstruct.2020.113503.
  • Binh, C. T., N. Van Long, T. M. Tu, and P. Q. Minh. 2021. Nonlinear vibration of functionally graded porous variable thickness toroidal shell segments surrounded by elastic medium including the thermal effect. Composite Structures 255:112891. doi:10.1016/j.compstruct.2020.112891.
  • Brush, D. O., and B. O. Almroth. 1975. Buckling of bars, plates, and shells. New York, NY: McGraw-Hill.
  • Cinefra, M., E. Carrera, and S. Brischetto. 2011. Refined shell models for the vibration analysis of multiwalled carbon nanotubes. Mechanics of Advanced Materials and Structures 18 (7):476–83. doi:10.1080/15376494.2011.604601.
  • Dai, L. 2008. Nonlinear dynamics of piecewise constant systems and implementation of piecewise constant arguments. Hackensack, NJ: World Scientific Publishing Co.
  • Dung, D. V., L. T. N. Anh, and L. K. Hoa. 2018. Analytical investigation on the free vibration behavior of rotating FGM truncated conical shells reinforced by orthogonal eccentric stiffeners. Mechanics of Advanced Materials and Structures 25 (1):32–46. doi:10.1080/15376494.2016.1255807.
  • Foroutan, K., and H. Ahmadi. 2020a. Nonlinear free vibration analysis of SSMFG cylindrical shells resting on nonlinear viscoelastic foundation in thermal environment. Applied Mathematical Modelling 85:294–317. doi:10.1016/j.apm.2020.04.017.
  • Foroutan, K., and H. Ahmadi. 2020b. Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations. Steel and Composite Structures 37 (1):51–73. doi:10.12989/scs.2020.37.1.051.
  • Foroutan, K., and H. Ahmadi. 2022. Nonlinear parametric vibration of imperfect SSMFG cylindrical shells in thermal environment including internal and subharmonic resonances. Mechanics of Advanced Materials and Structures 29 (24):3499–522. doi:10.1080/15376494.2021.1904526.
  • Foroutan, K., L. Dai, and H. Zhao. 2023. Non-linear parametric vibration of the laminated composite shallow shells including primary and 1: 2 internal resonances. Mechanics of Advanced Materials and Structures 1–32. doi:10.1080/15376494.2023.2177911.
  • Foroutan, K., and L. Dai. 2022a. Subharmonic and superharmonic resonances of five-layered porous functionally graded sandwich cylindrical shells with two-layered viscoelastic cores. Journal of Vibration and Control 10775463221122091:107754632211220. doi:10.1177/10775463221122091.
  • Foroutan, K., and L. Dai. 2022b. Nonlinear dynamic responses of porous FG sandwich cylindrical shells with a viscoelastic core resting on a nonlinear viscoelastic foundation. Mechanics of Advanced Materials and Structures 30 (15):3184–203. doi:10.1080/15376494.2022.2070803.
  • Foroutan, K., A. Shaterzadeh, and H. Ahmadi. 2018. Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression. Structural Engineering and Mechanics 66 (3):295–303. doi:10.12989/sem.2018.66.3.295.
  • Gao, K., W. Gao, B. Wu, D. Wu, and C. Song. 2018. Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Structures 125:281–93. doi:10.1016/j.tws.2017.12.039.
  • Ghasemi, A. R., A. Tabatabaeian, M. H. Hajmohammad, and F. Tornabene. 2021. Multi-step buckling optimization analysis of stiffened and unstiffened polymer matrix composite shells: A new experimentally validated method. Composite Structures 273:114280. doi:10.1016/j.compstruct.2021.114280.
  • Golchi, M., M. Talebitooti, and R. Talebitooti. 2019. Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method. Mechanics Based Design of Structures and Machines 47 (3):255–82. doi:10.1080/15397734.2018.1545588.
  • Hung, D. X., T. M. Tu, N. Van Long, and P. H. Anh. 2020. Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerospace Science and Technology 107:106253. doi:10.1016/j.ast.2020.106253.
  • Kalgutkar, A. P., S. Banerjee, and T. Rajanna. 2023. Effect of elliptical cutouts on buckling and vibration characteristics of stiffened composite panels under non-uniform edge loads. Mechanics Based Design of Structures and Machines 51 (9):5340–54. doi:10.1080/15397734.2021.1999266.
  • Li, X., C. C. Du, and Y. H. Li. 2018. Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment. Applied Mathematical Modelling 59:393–409. doi:10.1016/j.apm.2018.01.048.
  • Li, Z. M., and P. Qiao. 2014. Nonlinear vibration analysis of geodesically-stiffened laminated composite cylindrical shells in an elastic medium. Composite Structures 111:473–87. doi:10.1016/j.compstruct.2014.01.022.
  • Mirjavadi, S. S., I. Khan, M. Forsat, M. R. Barati, and A. M. S. Hamouda. 2023. Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution. Mechanics Based Design of Structures and Machines 51 (1):310–26. doi:10.1080/15397734.2020.1841654.
  • Mirjavadi, S. S., M. Forsat, M. R. Barati, and A. S. Hamouda. 2022. Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments. Mechanics Based Design of Structures and Machines 50 (6):2206–20. doi:10.1080/15397734.2020.1771729.
  • Neves, A. M. A., A. J. M. Ferreira, E. Carrera, M. Cinefra, C. M. C. Roque, R. M. N. Jorge, and C. M. M. Soares. 2013. Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. European Journal of Mechanics - A Solids 37:24–34. doi:10.1016/j.euromechsol.2012.05.005.
  • Nguyen, V. L., M. T. Tran, S. Limkatanyu, H. Mohammad-Sedighi, and J. Rungamornrat. 2022. Reddy’s third-order shear deformation shell theory for free vibration analysis of rotating stiffened advanced nanocomposite toroidal shell segments in thermal environments. Acta Mechanica 233 (11):4659–84. doi:10.1007/s00707-022-03347-8.
  • Quan, T. Q., and N. D. Duc. 2016. Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments. Journal of Thermal Stresses 39 (4):437–59. doi:10.1080/01495739.2016.1158601.
  • Rodrigues, L., P. B. Gonçalves, and F. M. Silva. 2017. Internal resonances in a transversally excited imperfect circular cylindrical shell. Procedia Engineering 199:838–43. doi:10.1016/j.proeng.2017.09.010.
  • Roy, S., S. Nath Thakur, and C. Ray. 2022. Investigation on free vibration behavior of laminated angle ply shell with numerical validation. Mechanics Based Design of Structures and Machines 1–26. doi:10.1080/15397734.2022.2145306.
  • Salehi, M., R. Gholami, and R. Ansari. 2023. Analytical solution approach for nonlinear vibration of shear deformable imperfect FG-GPLR porous nanocomposite cylindrical shells. Mechanics Based Design of Structures and Machines 51 (4):2177–99. doi:10.1080/15397734.2021.1891096.
  • Sewall, J. L., and E. C. Naumann. 1968. An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners. NASA TN D-4705.
  • Shaterzadeh, A. R., and K. Foroutan. 2016. Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation. Structural Engineering and Mechanics 60 (4):615–31. doi:10.12989/sem.2016.60.4.615.
  • Sheng, G. G., and X. Wang. 2018. The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells. Applied Mathematical Modelling 56:389–403. doi:10.1016/j.apm.2017.12.021.
  • Sofiyev, A. H., and E. Schnack. 2012. The vibration analysis of FGM truncated conical shells resting on two-parameter elastic foundations. Mechanics of Advanced Materials and Structures 19 (4):241–9. doi:10.1080/15376494.2011.642934.
  • Sofiyev, A. H., and N. Kuruoglu. 2013. Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Composites Part B: Engineering 45 (1):1133–42. doi:10.1016/j.compositesb.2012.09.046.
  • Sofiyev, A. H. 2016. Parametric vibration of FGM conical shells under periodic lateral pressure within the shear deformation theory. Composites Part B: Engineering 89:282–94. doi:10.1016/j.compositesb.2015.11.017.
  • Tesár, A. 1984. Nonlinear interactions in resonance response of thin shells. Computers & Structures 18 (6):1047–55. doi:10.1016/0045-7949(84)90149-4.
  • Tesar, A. 1985. Nonlinear three-dimensional resonance analysis of shells. Computers & Structures 21 (4):797–805. doi:10.1016/0045-7949(85)90156-7.
  • Thinh, T. I., D. H. Bich, T. M. Tu, and N. Van Long. 2020. Nonlinear analysis of buckling and postbuckling of functionally graded variable thickness toroidal shell segments based on improved Donnell shell theory. Composite Structures 243:112173. doi:10.1016/j.compstruct.2020.112173.
  • Vu, H. N., T. P. Nguyen, S. L. Ho, M. D. Vu, and V. D. Cao. 2023. Nonlinear buckling analysis of stiffened FG-GRC laminated cylindrical shells subjected to axial compressive load in thermal environment. Mechanics Based Design of Structures and Machines 51 (7):3678–94. doi:10.1080/15397734.2021.1932522.
  • Wang, Y. Q., L. Liang, and X. H. Guo. 2013. Internal resonance of axially moving laminated circular cylindrical shells. Journal of Sound and Vibration 332 (24):6434–50. doi:10.1016/j.jsv.2013.07.007.
  • Wang, J., Y. Q. Wang, and Q. Chai. 2022. Free vibration analysis of a spinning functionally graded spherical–cylindrical–conical shell with general boundary conditions in a thermal environment. Thin-Walled Structures 180:109768. doi:10.1016/j.tws.2022.109768.
  • Ye, C., and Y. Q. Wang. 2021. On the use of Chebyshev polynomials in the Rayleigh-Ritz method for vibration and buckling analyses of circular cylindrical three-dimensional graphene foam shells. Mechanics Based Design of Structures and Machines 49 (7):932–46. doi:10.1080/15397734.2019.1704776.
  • Zhang, W., T. Liu, A. Xi, and Y. N. Wang. 2018. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. Journal of Sound and Vibration 423:65–99. doi:10.1016/j.jsv.2018.02.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.