142
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Cutout effects on the dynamic analysis of laminated composite plates resting on two-parameter elastic foundation

&
Pages 5195-5226 | Received 22 Mar 2023, Accepted 15 Aug 2023, Published online: 25 Aug 2023

References

  • Akavci, S. S. 2007. Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation. Journal of Reinforced Plastics and Composites 26 (18):1907–19. doi: 10.1177/0731684407081766.
  • Aydogdu, M., and T. Timarci. 2003. Vibration analysis of cross-ply laminated square plates with general boundary conditions. Composites Science and Technology 63 (7):1061–70. doi: 10.1016/S0266-3538(03)00016-2.
  • Chanda, A. G., and S. Rosalin. 2021. A study on the stress and vibration characteristics of laminated composite plates resting on elastic foundations using analytical and finite element solutions. The European Physical Journal Plus 136 (11):1186. doi: 10.1140/epjp/s13360-021-02090-8.
  • Civalek, Ö., and M. Avcar. 2022. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers 38 (S1):489–521. doi: 10.1007/s00366-020-01168-8.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2022. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines 50 (6):1914–31. doi: 10.1080/15397734.2020.1766494.
  • Dai, Q., Z. Qin, and F. Chu. 2021. Parametric study of damping characteristics of rotating laminated composite cylindrical shells using haar wavelets. Thin-Walled Structures 161 (February):107500. doi: 10.1016/j.tws.2021.107500.
  • Daikh, A.-A., M.-O. Belarbi, D. Ahmed, S. A. H. Mohamed, M. Avcar, A. Tounsi, and M. A. Eltaher. 2023. Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions. Acta Mechanica 234 (2):775–806. doi: 10.1007/s00707-022-03405-1.
  • Dastjerdi, S., B. Akgöz, Ö. Civalek, M. Malikan, and V. A. Eremeyev. 2020. On the non-linear dynamics of torus-shaped and cylindrical shell structures. International Journal of Engineering Science 156:103371. doi: 10.1016/j.ijengsci.2020.103371.
  • Dewangan, H. C., S. K. Panda, and N. Sharma. 2023. A review of linear and nonlinear structural responses of laminated flat/curved panels with and without cutout under thermo-mechanical loading. Composite Structures 303:116340. doi: 10.1016/j.compstruct.2022.116340.
  • Dewangan, H. C., N. Sharma, C. Kumar Hirwani, and S. K. Panda. 2022. Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure. Mechanics Based Design of Structures and Machines 50 (5):1640–57. doi: 10.1080/15397734.2020.1759432.
  • Garg, A., M. O. Belarbi, H. D. Chalak, L. Li, A. Sharma, M. Avcar, N. Sharma, S. Paruthi, and R. Gulia. 2023. Buckling and free vibration analysis of bio-inspired laminated sandwich plates with helicoidal/bouligand face sheets containing softcore. Ocean Engineering 270 (January):113684. doi: 10.1016/j.oceaneng.2023.113684.
  • Ghosh, S., S. Haldar, and S. Haldar. 2022. Free vibration analysis of laminated composite plate with elastic point and line supports using finite element method. Journal of the Institution of Engineers (India): Series C 103 (3):369–80. doi: 10.1007/s40032-021-00799-0.
  • Ghosh, S., S. Pal, and S. Haldar. 2023. Dynamic analysis of rectangular cut-out plates resting on elastic foundation. International Journal of Mechanics and Materials in Design. Advance online publication. doi: 10.1007/s10999-023-09662-9.
  • Girija Vallabhan, C. V., W. Thomas Straughan, and Y. C. Das. 1991. Refined model for analysis of plates on elastic foundations. Journal of Engineering Mechanics 117 (12):2830–43. doi: 10.1061/(ASCE)0733-9399(1991)117:12(2830).
  • Habibi, M., A. Mohammadi, H. Safarpour, A. Shavalipour, and M. Ghadiri. 2021. Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mechanics Based Design of Structures and Machines 49 (5):640–58. doi: 10.1080/15397734.2019.1697932.
  • Hachemi, M., and S. M. Hamza-Cherif. 2020. Free vibration of composite laminated plate with complicated cutout. Mechanics Based Design of Structures and Machines 48 (2):192–216. doi: 10.1080/15397734.2019.1633341.
  • Hadji, L., M. Avcar, and N. Zouatnia. 2022. Natural frequency analysis of imperfect FG sandwich plates resting on winkler-pasternak foundation. Materials Today: Proceedings 53:153–60. doi: 10.1016/j.matpr.2021.12.485.
  • Hetényi, M. 1950. A general solution for the bending of beams on an elastic foundation of arbitrary continuity. Journal of Applied Physics 21 (1):55–8. doi: 10.1063/1.1699420.
  • Huang, J., N. Nguyen-Thanh, J. Gao, Z. Fan, and K. Zhou. 2022. Static, free vibration, and buckling analyses of laminated composite plates via an isogeometric meshfree collocation approach. Composite Structures 285:115011. doi: 10.1016/j.compstruct.2021.115011.
  • Huang, B., J. Wang, J. Du, T. Ma, Y. Guo, and Z. Qian. 2016. Vibration analysis of a specially orthotropic composite laminate with rectangular cutout using independent coordinate coupling method. Composite Structures 150:53–61. doi: 10.1016/j.compstruct.2016.05.010.
  • Huang, B., J. Wang, and Y. Guo. 2022. Investigation of delamination effect on nonlinear vibration behaviors of a composite plate resting on nonlinear elastic foundation. Composite Structures 280:114897. doi: 10.1016/j.compstruct.2021.114897.
  • Jahromi, H. N., M. M. Aghdam, and A. Fallah. 2013. Free vibration analysis of mindlin plates partially resting on pasternak foundation. International Journal of Mechanical Sciences 75:1–7. doi: 10.1016/j.ijmecsci.2013.06.001.
  • Jamali, M., T. Shojaee, and B. Mohammadi. 2016. Uniaxial buckling analysis comparison of nanoplate and nanocomposite plate with central square cut out using domain decomposition method. Journal of Applied and Computational Mechanics 2 (4):230–42. doi: 10.22055/jacm.2016.12543.
  • Kalita, K., and S. Haldar. 2016. “Free vibration analysis of rectangular plates with central cutout.” Edited by Duc Pham. Cogent Engineering 3 (1):1163781. doi: 10.1080/23311916.2016.1163781.
  • Kalita, K., M. Ramachandran, P. Raichurkar, S. D. Mokal, and S. Haldar. 2016. Free vibration analysis of laminated composites by a nine node isoparametric plate bending element. Advanced Composites Letters 25 (5):096369351602500. doi: 10.1177/096369351602500501.
  • Kumar, R. 2022. Thermomechanically Induced post-buckling analysis of functionally graded material plates with circular cut-outs resting on elastic foundations. Journal of Thermoplastic Composite Materials 35 (10):1728–56. doi: 10.1177/0892705720904105.
  • Lal, A., B. N. Singh, and R. Kumar. 2008. Nonlinear free vibration of laminated composite plates on elastic foundation with random system properties. International Journal of Mechanical Sciences 50 (7):1203–12. doi: 10.1016/j.ijmecsci.2008.04.002.
  • Liew, K. M., J. B. Han, Z. M. Xiao, and H. Du. 1996. Differential quadrature method for mindlin plates on Winkler foundations. International Journal of Mechanical Sciences 38 (4):405–21. doi: 10.1016/0020-7403(95)00062-3.
  • Li, H., Z. Li, B. Safaei, W. Rong, W. Wang, Z. Qin, and J. Xiong. 2021. Nonlinear vibration analysis of fiber metal laminated plates with multiple viscoelastic layers. Thin-Walled Structures 168 (July):108297. doi: 10.1016/j.tws.2021.108297.
  • Liu, Y., Z. Qin, and F. Chu. 2021. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. International Journal of Mechanical Sciences 201 (April):106474. doi: 10.1016/j.ijmecsci.2021.106474.
  • Liu, Y., Z. Qin, and F. Chu. 2022a. Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells. Communications in Nonlinear Science and Numerical Simulation 107 (April):106146. doi: 10.1016/j.cnsns.2021.106146.
  • Liu, Y., Z. Qin, and F. Chu. 2022b. Nonlinear forced vibrations of rotating cylindrical shells under multi-harmonic excitations in thermal environment. Nonlinear Dynamics 108 (4):2977–91. doi: 10.1007/s11071-022-07449-9.
  • Li, H., D. Wang, Z. Xiao, Z. Qin, J. Xiong, Q. Han, and X. Wang. 2022. Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints. Aerospace Science and Technology 121:107196. doi: 10.1016/j.ast.2021.107196.
  • Li, Y., M. Zhou, and M. Li. 2020. Analysis of the free vibration of thin rectangular plates with cut-outs using the discrete singular convolution method. Thin-Walled Structures 147 (February):106529. doi: 10.1016/j.tws.2019.106529.
  • Mandal, A., C. Ray, and S. Haldar. 2020. Experimental and numerical free vibration analysis of laminated composite plates with arbitrary cut-outs. Journal of the Institution of Engineers (India): Series C 101 (2):281–9. doi: 10.1007/s40032-019-00537-7.
  • Mehmet, A., H. Lazreg, and A. Recep. 2022. The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams. Geomechanics and Engineering 31 (1):99–112. doi: 10.12989/GAE.2022.31.1.099.
  • Motezaker, M., and A. Eyvazian. 2020. Post – buckling analysis of mindlin cut out – plate reinforced by FG-CNTs. Steel and Composite Structures 34 (2):289–97. doi: 10.12989/scs.2020.34.2.289.
  • Nedri, K., N. El Meiche, and A. Tounsi. 2014. Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory. Mechanics of Composite Materials 49 (6):629–40. doi: 10.1007/s11029-013-9379-6.
  • Ngo-Cong, D., N. Mai-Duy, W. Karunasena, and T. Tran-Cong. 2011. Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method. Computers & Structures 89 (1–2):1–13. doi: 10.1016/j.compstruc.2010.07.012.
  • Pandit, M. K., S. Haldar, and M. Mukhopadhyay. 2007. Free vibration analysis of laminated composite rectangular plate using finite element method. Journal of Reinforced Plastics and Composites 26 (1):69–80. doi: 10.1177/0731684407069955.
  • Pasternak, P. L. 1954. On a new method of analysis of an elastic foundation by means of two foundation constants.
  • Qin, Z., S. Zhao, X. Pang, B. Safaei, and F. Chu. 2020. A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. International Journal of Mechanical Sciences 170:105341. doi: 10.1016/j.ijmecsci.2019.105341.
  • Reddy, J. N. 1982. Large amplitude flexural vibration of layered composite plates with cutouts. Journal of Sound and Vibration 83 (1):1–10. doi: 10.1016/S0022-460X(82)80071-0.
  • Sahoo, R., and B. N. Singh. 2013. A new shear deformation theory for the static analysis of laminated composite and sandwich plates. International Journal of Mechanical Sciences 75:324–36. doi: 10.1016/j.ijmecsci.2013.08.002.
  • Sahoo, R., and B. N. Singh. 2014. A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates. Composite Structures 117 (1):316–32. doi: 10.1016/j.compstruct.2014.05.002.
  • Shahmohammadi, M. A., M. Azhari, H. Salehipour, and H. Tai Thai. 2023. Buckling of multilayered CNT/GPL/fibre/polymer hybrid composite plates resting on elastic support using modified nonlocal first-order plate theory. Mechanics Based Design of Structures and Machines. Advance online publication. doi: 10.1080/15397734.2022.2164301.
  • Shahrestani, M. G., A. Mojtaba, and H. Foroughi. 2018. Elastic and inelastic buckling of square and skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite strip method. Acta Mechanica 229 (5):2079–96. doi: 10.1007/s00707-017-2082-2.
  • Sharma, L. K., G. Bhardwaj, and N. Grover. 2023. Finite element framework for static analysis of temperature dependent IHSDT based functionally graded CNT reinforced plates. Mechanics Based Design of Structures and Machines 51 (9):5318–39. doi: 10.1080/15397734.2021.1999265.
  • Shen, S. H.., J. J. Zheng, and X. L. Huang. 2003. Dynamic response of shear deformable laminated plates under thermomechanical loading and resting on elastic foundatios. Composite Structures 60 (1):57–66. doi: 10.1016/S0263-8223(02)00295-7.
  • Shi, D., H. Zhang, Q. Wang, and S. Zha. 2017. Free and forced vibration of the moderately thick laminated composite rectangular plate on various elastic winkler and pasternak foundations. Shock and Vibration 2017:1–23. doi: 10.1155/2017/7820130.
  • Sobhani, E., A. Arbabian, Ö. Civalek, and M. Avcar. 2022. The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Engineering with Computers 38 (S4):3125–52. doi: 10.1007/s00366-021-01453-0.
  • Sobhani, E., and M. Avcar. 2022. Natural frequency analysis of imperfect GNPRN conical shell, cylindrical shell, and annular plate structures resting on winkler-pasternak foundations under arbitrary boundary conditions. Engineering Analysis with Boundary Elements 144 (April):145–64. doi: 10.1016/j.enganabound.2022.08.018.
  • Sobhani, E., A. R. Masoodi, O. Civalek, and A. R. Ahmadi-Pari. 2022. Agglomerated impact of CNT vs. gnp nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells. Aerospace Science and Technology 120:107257. doi: 10.1016/j.ast.2021.107257.
  • Tabatabaei, S. J., and A. M. Fattahi. 2022. A finite element method for modal analysis of FGM plates. Mechanics Based Design of Structures and Machines 50 (4):1111–22. doi: 10.1080/15397734.2020.1744004.
  • Vinh, P. V., M. Avcar, M. Ouejdi Belarbi, A. Tounsi, and L. Quang Huy. 2023. A new higher-order mixed four-node quadrilateral finite element for static bending analysis of functionally graded plates. Structures 47:1595–612. doi: 10.1016/j.istruc.2022.11.113.
  • Vlazov, V. Z., and U. N. Leontiev. 1966. Beams, Plates and Shells on Elastic Foundations. Jerusalem: Israel Program for Scientific Translations.
  • Wang, M., Y. G. Xu, P. Qiao, and Z. M. Li. 2022. Buckling and free vibration analysis of shear deformable graphene-reinforced composite laminated plates. Composite Structures 280:114854. doi: 10.1016/j.compstruct.2021.114854.
  • Xue, K., W. Huang, and Q. Li. 2020. Three-dimensional vibration analysis of laminated composite rectangular plate with cutouts. Materials (Basel, Switzerland) 13 (14):3113. doi: 10.3390/ma13143113.
  • Yang, W., G. Yan, W. Wu, X. Zou, Y. Sun, and S. He. 2023. Wave dispersion analysis of natural fiber-strengthened composite beam lying on variable elastic foundation. Mechanics Based Design of Structures and Machines. Advance online publication. doi: 10.1080/15397734.2023.2177864.
  • Zhang, P., P. Schiavone, and H. Qing. 2023. Unified Two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation. Applied Mathematics and Mechanics 44 (1):89–108. doi: 10.1007/s10483-023-2948-9.
  • Zhu, P., Z. X. Lei, and K. M. Liew. 2012. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures 94 (4):1450–60. doi: 10.1016/j.compstruct.2011.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.