73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stress-driven nonlocal integral model with discontinuity for size-dependent buckling and bending of cracked nanobeams using Laplace transform

&
Received 09 Nov 2023, Accepted 01 Feb 2024, Published online: 15 Feb 2024

References

  • Allgöwer, E. L., K. Glashoff, and H.-O. Peitgen. 1981. Numerical Solution of Nonlinear Equations. Bremen: Springer.
  • Ansari, R., M. Faraji Oskouie, M. Roghani, and H. Rouhi. 2021. “Nonlinear Analysis of Laminated FG-GPLRC Beams Resting on an Elastic Foundation Based on the Two-Phase Stress-Driven Nonlocal Model.” Acta Mechanica 232 (6): 2183–2199. https://doi.org/10.1007/s00707-021-02935-4
  • Ansari, R., R. Gholami, and H. Rouhi. 2012a. “Vibration Analysis of Single-Walled Carbon Nanotubes Using Different Gradient Elasticity Theories.” Composites Part B: Engineering 43 (8): 2985–2989. https://doi.org/10.1016/j.compositesb.2012.05.049
  • Ansari, R., R. Gholami, and H. Rouhi. 2013. “Various Gradient Elasticity Theories in Predicting Vibrational Response of Single-Walled Carbon Nanotubes with Arbitrary Boundary Conditions.” Journal of Vibration and Control 19 (5): 708–719. https://doi.org/10.1177/1077546312439223
  • Ansari, R., M. F. Oskouie, and R. Gholami. 2016. “Size-Dependent Geometrically Nonlinear Free Vibration Analysis of Fractional Viscoelastic Nanobeams Based on the Nonlocal Elasticity Theory.” Physica E: Low-Dimensional Systems and Nanostructures 75: 266–271. https://doi.org/10.1016/j.physe.2015.09.022
  • Ansari, R., H. Ramezannezhad, and R. Gholami. 2012b. “Nonlocal Beam Theory for Nonlinear Vibrations of Embedded Multiwalled Carbon Nanotubes in Thermal Environment.” Nonlinear Dynamics 67 (3): 2241–2254. https://doi.org/10.1007/s11071-011-0142-z
  • Apuzzo, A., R. Barretta, R. Luciano, F. M. de Sciarra, and R. Penna. 2017. “Free Vibrations of Bernoulli-Euler Nano-Beams by the Stress-Driven Nonlocal Integral Model.” Composites Part B: Engineering 123: 105–111. https://doi.org/10.1016/j.compositesb.2017.03.057
  • Asano, K., H.-C. Tang, C.-Y. Chen, T. Nagoshi, T.-F. M. Chang, D. Yamane, K. Machida, K. Masu, and M. Sone. 2017. “Micro-Bending Testing of Electrodeposited Gold for Applications as Movable Components in MEMS Devices.” Microelectronic Engineering 180: 15–19. https://doi.org/10.1016/j.mee.2017.05.044
  • Barretta, R., M. Čanađija, R. Luciano, and F. M. de Sciarra. 2018a. “Stress-Driven Modeling of Nonlocal Thermoelastic Behavior of Nanobeams.” International Journal of Engineering Science 126: 53–67. https://doi.org/10.1016/j.ijengsci.2018.02.012
  • Barretta, R., S. A. Faghidian, R. Luciano, C. M. Medaglia, and R. Penna. 2018b. “Free Vibrations of FG Elastic Timoshenko Nano-Beams by Strain Gradient and Stress-Driven Nonlocal Models.” Composites Part B: Engineering 154: 20–32. https://doi.org/10.1016/j.compositesb.2018.07.036
  • Benvenuti, E., and A. Simone. 2013. “One-Dimensional Nonlocal and Gradient Elasticity: Closed-Form Solution and Size Effect.” Mechanics Research Communications 48: 46–51. https://doi.org/10.1016/j.mechrescom.2012.12.001
  • Bian, P. L., H. Qing, and T. T. Yu. 2022. “A New Finite Element Method Framework for Axially Functionally-Graded Nanobeam with Stress-Driven Two-Phase Nonlocal Integral Model.” Composite Structures 295: 115769. https://doi.org/10.1016/j.compstruct.2022.115769
  • Caporale, A., H. Darban, and R. Luciano. 2022. “Exact Closed-Form Solutions for Nonlocal Beams with Loading Discontinuities.” Mechanics of Advanced Materials and Structures 29 (5): 694–704. https://doi.org/10.1080/15376494.2020.1787565
  • Caporale, A., R. Luciano, D. Scorza, and S. Vantadori. 2023. “Local-Nonlocal Stress-Driven Model for Multi-Cracked Nanobeams.” International Journal of Solids and Structures 273: 112230. https://doi.org/10.1016/j.ijsolstr.2023.112230
  • Challamel, N., and C. M. Wang. 2008. “The Small Length Scale Effect for a Non-Local Cantilever Beam: A Paradox Solved.” Nanotechnology 19 (34): 345703. https://doi.org/10.1088/0957-4484/19/34/345703
  • Darban, H., F. Fabbrocino, L. Feo, and R. Luciano. 2021. “Size-Dependent Buckling Analysis of Nanobeams Resting on Two-Parameter Elastic Foundation through Stress-Driven Nonlocal Elasticity Model.” Mechanics of Advanced Materials and Structures 28 (23): 2408–2416. https://doi.org/10.1080/15376494.2020.1739357
  • Darban, H., F. Fabbrocino, and R. Luciano. 2020. “Size-Dependent Linear Elastic Fracture of Nanobeams.” International Journal of Engineering Science 157: 103381. https://doi.org/10.1016/j.ijengsci.2020.103381
  • Darban, H., R. Luciano, and M. Basista. 2022. “Free Transverse Vibrations of Nanobeams with Multiple Cracks.” International Journal of Engineering Science 177: 103703. https://doi.org/10.1016/j.ijengsci.2022.103703
  • Eringen, A. C. 1972. “Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves.” International Journal of Engineering Science 10 (5): 425–435. https://doi.org/10.1016/0020-7225(72)90050-x
  • Eringen, A. C. 1983. “On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves.” Journal of Applied Physics 54 (9): 4703–4710. https://doi.org/10.1063/1.332803
  • Eringen, A. C. 1987. “Theory of Nonlocal Elasticity and Some Applications.” Res Mechanica 21 (4): 313–342.
  • Eringen, A. C., and D. G. B. Edelen. 1972. “On Nonlocal Elasticity.” International Journal of Engineering Science 10 (3): 233–248. https://doi.org/10.1016/0020-7225(72)90039-0
  • Fakher, M., and S. Hosseini-Hashemi. 2022. “Vibration of Two-Phase Local/Nonlocal Timoshenko Nanobeams with an Efficient Shear-Locking-Free Finite-Element Model and Exact Solution.” Engineering with Computers 38 (1): 231–245. https://doi.org/10.1007/s00366-020-01058-z
  • Farajpour, M. R., A. R. Shahidi, and A. Farajpour. 2019. “Elastic Waves in Fluid-Conveying Carbon Nanotubes under Magneto-Hygro-Mechanical Loads via a Two-Phase Local/Nonlocal Mixture Model.” Materials Research Express 6 (8): 0850a8. https://doi.org/10.1088/2053-1591/ab2396
  • Feizi, S., S. Javadiyan, C. M. Cooksley, G. Shaghayegh, A. J. Psaltis, P. J. Wormald, and S. Vreugde. 2021. “Green Synthesized Colloidal Silver is Devoid of Toxic Effects on Primary Human Nasal Epithelial Cells in Vitro.” Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 157: 112606. https://doi.org/10.1016/j.fct.2021.112606
  • Fernández-Sáez, J., and C. Navarro. 2002. “Fundamental Frequency of Cracked Beams in Bending Vibrations: An Analytical Approach.” Journal of Sound and Vibration 256 (1): 17–31. https://doi.org/10.1006/jsvi.2001.4197
  • Fernández-Sáez, J., L. Rubio, and C. Navarro. 1999. “Approximate Calculation of the Fundamental Frequency for Bending Vibrations of Cracked Beams.” Journal of Sound and Vibration 225 (2): 345–352. https://doi.org/10.1006/jsvi.1999.2251
  • Fernández-Sáez, J., R. Zaera, J. A. Loya, and J. N. Reddy. 2016. “Bending of Euler-Bernoulli Beams Using Eringen’s Integral Formulation: A Paradox Resolved.” International Journal of Engineering Science 99: 107–116. https://doi.org/10.1016/j.ijengsci.2015.10.013
  • Gayen, D., R. Tiwari, and D. Chakraborty. 2019. “Static and Dynamic Analyses of Cracked Functionally Graded Structural Components: A Review.” Composites Part B: Engineering 173: 106982. https://doi.org/10.1016/j.compositesb.2019.106982
  • Günay, M. G. 2023a. “Buckling Analysis of Thin-Walled Beams by Two-Phase Local-Nonlocal Integral Model.” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 47 (2): 765–777. https://doi.org/10.1007/s40997-022-00546-5
  • Günay, M. G. 2023b. “Free Vibration Analysis of Thin-Walled Beams Using Two-Phase Local-Nonlocal Constitutive Model.” Journal of Vibration and Acoustics-Transactions of the Asme 145 (3): 031009. https://doi.org/10.1115/1.4056908
  • He, Y., H. Qing, and C.-F. Gao. 2020. “Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model.” International Journal of Structural Stability and Dynamics 20 (03): 2050040. https://doi.org/10.1142/S0219455420500406
  • Jiang, P., H. Qing, and C. Gao. 2020. “Theoretical Analysis on Elastic Buckling of Nanobeams Based on Stress-Driven Nonlocal Integral Model.” Applied Mathematics and Mechanics 41 (2): 207–232. https://doi.org/10.1007/s10483-020-2569-6
  • Karami, B., and M. H. Ghayesh. 2023. “Vibration Characteristics of Sandwich Microshells with Porous Functionally Graded Face Sheets.” International Journal of Engineering Science 189: 103884. https://doi.org/10.1016/j.ijengsci.2023.103884
  • Karami, B., M. H. Ghayesh, and N. Fantuzzi. 2024. “Quasi-3D Free and Forced Vibrations of Poroelastic Microplates in the Framework of Modified Couple Stress Theory.” Composite Structures 330: 117840. https://doi.org/10.1016/j.compstruct.2023.117840
  • Karami, B., and M. Janghorban. 2023. “Numerical Study on the Static Bending and Forced Vibration of Triclinic Plate with Arbitrary Boundary Conditions.” Archives of Civil and Mechanical Engineering 23 (4): 228. https://doi.org/10.1007/s43452-023-00728-1
  • Karami, B., M. Janghorban, and H. Fahham. 2022a. “Forced Vibration Analysis of Anisotropic Curved Panels via a Quasi-3D Model in Orthogonal Curvilinear Coordinate.” Thin-Walled Structures 175: 109254. https://doi.org/10.1016/j.tws.2022.109254
  • Karami, B., M. Janghorban, and H. Fahham. 2022b. “On the Stress Analysis of Anisotropic Curved Panels.” International Journal of Engineering Science 172: 103625. https://doi.org/10.1016/j.ijengsci.2022.103625
  • Ke, L.-L., J. Yang, S. Kitipornchai, and Y. Xiang. 2009. “Flexural Vibration and Elastic Buckling of a Cracked Timoshenko Beam Made of Functionally Graded Materials.” Mechanics of Advanced Materials and Structures 16 (6): 488–502. https://doi.org/10.1080/15376490902781175
  • Khaniki, H. B. 2018. “Vibration Analysis of Rotating Nanobeam Systems Using Eringen’s Two-Phase Local/Nonlocal Model.” Physica E: Low-Dimensional Systems and Nanostructures 99: 310–319. https://doi.org/10.1016/j.physe.2018.02.008
  • Khaniki, H. B., and M. H. Ghayesh. 2023. “Airy Stress Based Nonlinear Forced Vibrations and Internal Resonances of Nonlocal Strain Gradient Nanoplates.” Thin-Walled Structures 192: 111147. https://doi.org/10.1016/j.tws.2023.111147
  • Khaniki, H. B., S. Hosseini-Hashemi, and H. B. Khaniki. 2018. “Dynamic Analysis of Nano-Beams Embedded in a Varying Nonlinear Elastic Environment Using Eringen’s Two-Phase Local/Nonlocal Model.” The European Physical Journal Plus 133 (7): 283. https://doi.org/10.1140/epjp/i2018-12128-5
  • Kitipornchai, S., L. L. Ke, J. Yang, and Y. Xiang. 2009. “Nonlinear Vibration of Edge Cracked Functionally Graded Timoshenko Beams.” Journal of Sound and Vibration 324 (3-5): 962–982. https://doi.org/10.1016/j.jsv.2009.02.023
  • Li, C., L. Q. Yao, W. Q. Chen, and S. Li. 2015. “Comments on Nonlocal Effects in Nano-Cantilever Beams.” International Journal of Engineering Science 87: 47–57. https://doi.org/10.1016/j.ijengsci.2014.11.006
  • Loya, J., J. López-Puente, R. Zaera, and J. Fernández-Sáez. 2009. “Free Transverse Vibrations of Cracked Nanobeams Using a Nonlocal Elasticity Model.” Journal of Applied Physics 105 (4): 044309. https://doi.org/10.1063/1.3068370
  • Loya, J. A., L. Rubio, and J. Fernández-Sáez. 2006. “Natural Frequencies for Bending Vibrations of Timoshenko Cracked Beams.” Journal of Sound and Vibration 290 (3-5): 640–653. https://doi.org/10.1016/j.jsv.2005.04.005
  • Mahmoudpour, E., S. H. Hosseini-Hashemi, and S. A. Faghidian. 2018. “Nonlinear Vibration Analysis of FG Nano-Beams Resting on Elastic Foundation in Thermal Environment Using Stress-Driven Nonlocal Integral Model.” Applied Mathematical Modelling 57: 302–315. https://doi.org/10.1016/j.apm.2018.01.021
  • Meng, L., D. Zou, H. Lai, Z. Guo, X. He, Z. Xie, and C. Gao. 2018. “Semi-Analytic Solution of Eringen’s Two-Phase Local/Nonlocal Model for Euler-Bernoulli Beam with Axial Force.” Applied Mathematics and Mechanics 39 (12): 1805–1824. https://doi.org/10.1007/s10483-018-2395-9
  • Norouzzadeh, A., and R. Ansari. 2017. “Finite Element Analysis of Nano-Scale Timoshenko Beams Using the Integral Model of Nonlocal Elasticity.” Physica E: Low-Dimensional Systems and Nanostructures 88: 194–200. https://doi.org/10.1016/j.physe.2017.01.006
  • Okamura, H., K. Watanabe, and T. Takano. 1973. Applications of the compliance concept in fracture mechanics, Progress in flaw growth and fracture toughness testing. ASTM special technical publications, Philadelphia, Pa., 423–438.
  • Oskouie, M. F., R. Ansari, and H. Rouhi. 2018. “Bending of Euler-Bernoulli Nanobeams Based on the Strain-Driven and Stress-Driven Nonlocal Integral Models: A Numerical Approach.” Acta Mechanica Sinica 34 (5): 871–882. https://doi.org/10.1007/s10409-018-0757-0
  • Palmeri, A., and A. Cicirello. 2011. “Physically-Based Dirac’s Delta Functions in the Static Analysis of Multi-Cracked Euler-Bernoulli and Timoshenko Beams.” International Journal of Solids and Structures 48 (14-15): 2184–2195. https://doi.org/10.1016/j.ijsolstr.2011.03.024
  • Penna, R. 2023. “Bending Analysis of Functionally Graded Nanobeams Based on Stress-Driven Nonlocal Model Incorporating Surface Energy Effects.” International Journal of Engineering Science 189: 103887. https://doi.org/10.1016/j.ijengsci.2023.103887
  • Qing, H. 2022. “Well-Posedness of Two-Phase Local/Nonlocal Integral Polar Models for Consistent Axisymmetric Bending of Circular Microplates.” Applied Mathematics and Mechanics 43 (5): 637–652. https://doi.org/10.1007/s10483-022-2843-9
  • Qing, H. 2023. “Theoretical Fracture Analysis of Double Cantilever Microbeam Using Two-Phase Local/Nonlocal Integral Models with Discontinuity.” Mechanics Based Design of Structures and Machines: 1–16. https://doi.org/10.1080/15397734.2023.2207622
  • Qing, H., and Y. Tang. 2023. “Size-Dependent Fracture Analysis of Centrally-Cracked Nanobeam Using Stress-Driven Two-Phase Local/Nonlocal Integral Model with Discontinuity and Symmetrical Conditions.” Engineering Fracture Mechanics 282: 109193. https://doi.org/10.1016/j.engfracmech.2023.109193
  • Qing, H., and L. Wei. 2022. “Linear and Nonlinear Free Vibration Analysis of Functionally Graded Porous Nanobeam Using Stress-Driven Nonlocal Integral Model.” Communications in Nonlinear Science and Numerical Simulation 109: 106300. https://doi.org/10.1016/j.cnsns.2022.106300
  • Ren, Y., and H. Qing. 2021b. “On the Consistency of Two-Phase Local/Nonlocal Piezoelectric Integral Model.” Applied Mathematics and Mechanics 42 (11): 1581–1598. https://doi.org/10.1007/s10483-021-2785-7
  • Ren, Y., and H. Qing. 2022. “Bending and Buckling Analysis of Functionally Graded Timoshenko Nanobeam Using Two-Phase Local/Nonlocal Piezoelectric Integral Model.” Composite Structures 300: 116129. https://doi.org/10.1016/j.compstruct.2022.116129
  • Ren, Y.-M., and H. Qing. 2021a. “Bending and Buckling Analysis of Functionally Graded Euler–Bernoulli Beam Using Stress-Driven Nonlocal Integral Model with Bi-Helmholtz Kernel.” International Journal of Applied Mechanics 13 (04): 2150041. https://doi.org/10.1142/S1758825121500411
  • Romano, G., and R. Barretta. 2017. “Stress-Driven versus Strain-Driven Nonlocal Integral Model for Elastic Nano-Beams.” Composites Part B: Engineering 114: 184–188. https://doi.org/10.1016/j.compositesb.2017.01.008
  • Romano, G., R. Barretta, M. Diaco, and F. M. de Sciarra. 2017. “Constitutive Boundary Conditions and Paradoxes in Nonlocal Elastic Nanobeams.” International Journal of Mechanical Sciences 121: 151–156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
  • Scorza, D., R. Luciano, and S. Vantadori. 2022. “Fracture Behaviour of Nanobeams through Two-Phase Local/Nonlocal Stress-Driven Model.” Composite Structures 280: 114957. https://doi.org/10.1016/j.compstruct.2021.114957
  • Shahsavari, D., and B. Karami. 2022. “Assessment of Reuss, Tamura, and LRVE Models for Vibration Analysis of Functionally Graded Nanoplates.” Archives of Civil and Mechanical Engineering 22 (2): 92.https://doi.org/10.1007/s43452-022-00409-5
  • Singh, T., S. Shukla, P. Kumar, V. Wahla, and V. K. Bajpai. 2017. “Application of Nanotechnology in Food Science: Perception and Overview.” Frontiers in Microbiology 8: 1501. https://doi.org/10.3389/fmicb.2017.01501
  • Stan, G., C. V. Ciobanu, P. M. Parthangal, and R. F. Cook. 2007. “Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires.” Nano Letters 7 (12): 3691–3697. doi:. https://doi.org/10.1021/nl071986e
  • Tada, H., P. C. Paris, and G. R. Irwin. 2000. Stress Analysis of Cracks Handbook, 3rd ed. New York: ASME Press.
  • Tang, Y., and H. Qing. 2023. “Bi-Helmholtz Kernel Based Stress-Driven Nonlocal Integral Model with Discontinuity for Size-Dependent Fracture Analysis of Edge-Cracked Nanobeam.” Mechanics of Advanced Materials and Structures: 1–11. https://doi.org/10.1080/15376494.2023.2214922
  • Thrall, J. H. 2004. “Nanotechnology and Medicine.” Radiology 230 (2): 315–318. https://doi.org/10.1148/radiol.2302031698
  • Torabi, K., and J. N. Dastgerdi. 2012. “An Analytical Method for Free Vibration Analysis of Timoshenko Beam Theory Applied to Cracked Nanobeams Using a Nonlocal Elasticity Model.” Thin Solid Films. 520 (21): 6595–6602. https://doi.org/10.1016/j.tsf.2012.06.063
  • Tuna, M., and M. Kirca. 2016. “Exact Solution of Eringen’s Nonlocal Integral Model for Bending of Euler-Bernoulli and Timoshenko Beams.” International Journal of Engineering Science 105: 80–92. https://doi.org/10.1016/j.ijengsci.2016.05.001
  • Tuna, M., M. Kirca, and P. Trovalusci. 2019. “Deformation of Atomic Models and Their Equivalent Continuum Counterparts Using Eringen’s Two-Phase Local/Nonlocal Model.” Mechanics Research Communications 97: 26–32. https://doi.org/10.1016/j.mechrescom.2019.04.004
  • Vaccaro, M. S., R. Barretta, F. Marotti de Sciarra, and J. N. Reddy. 2022. “Nonlocal Integral Elasticity for Third-Order Small-Scale Beams.” Acta Mechanica 233 (6): 2393–2403. https://doi.org/10.1007/s00707-022-03210-w
  • Vaccaro, M. S., F. Marotti de Sciarra, and R. Barretta. 2021. “On the Regularity of Curvature Fields in Stress-Driven Nonlocal Elastic Beams.” Acta Mechanica 232 (7): 2595–2603. https://doi.org/10.1007/s00707-021-02967-w
  • Varadan, V. K., A. S. Pillai, D. Mukherji, M. Dwivedi, and L. Chen. 2010. Nanoscience and nanotechnology in engineering. Singapore: World Scientific Publishing Company.
  • Wang, Y. B., X. W. Zhu, and H. H. Dai. 2016. “Exact Solutions for the Static Bending of Euler-Bernoulli Beams Using Eringen’s Two-Phase Local/Nonlocal Model.” AIP Advances 6 (8): 085114. https://doi.org/10.1063/1.4961695
  • Wei, D., Y. Liu, and Z. Xiang. 2012. “An Analytical Method for Free Vibration Analysis of Functionally Graded Beams with Edge Cracks.” Journal of Sound and Vibration 331 (7): 1686–1700. https://doi.org/10.1016/j.jsv.2011.11.020
  • Xu, C., Y. Li, M. Lu, and Z. Dai. 2022a. “Buckling Analysis of Functionally Graded Nanobeams under Non-Uniform Temperature Using Stress-Driven Nonlocal Elasticity.” Applied Mathematics and Mechanics 43 (3): 355–370. https://doi.org/10.1007/s10483-022-2828-5
  • Xu, C., Y. Li, M. Lu, and Z. Dai. 2022b. “Stress-Driven Nonlocal Timoshenko Beam Model for Buckling Analysis of Carbon Nanotubes Constrained by Surface Van Der Waals Interactions.” Microsystem Technologies 28 (5): 1115–1127. https://doi.org/10.1007/s00542-022-05266-z
  • Yee, K., O. Z. S. Ong, M. H. Ghayesh, and M. Amabili. 2024. “Various Homogenisation Schemes for Vibration Characteristics of Axially FG Core Multilayered Microbeams with Metal Foam Face Layers Based on Third Order Shear Deformation Theory.” Applied Mathematical Modelling 125: 189–217. https://doi.org/10.1016/j.apm.2023.08.037
  • Yoon, H.-I., I.-S. Son, and S.-J. Ahn. 2007. “Free Vibration Analysis of Euler-Bernoulli Beam with Double Cracks.” Journal of Mechanical Science and Technology 21 (3): 476–485. https://doi.org/10.1007/BF02916309
  • Zhang, P., and H. Qing. 2022a. “Buckling Analysis of Curved Sandwich Microbeams Made of Functionally Graded Materials via the Stress-Driven Nonlocal Integral Model.” Mechanics of Advanced Materials and Structures 29 (9): 1211–1228. https://doi.org/10.1080/15376494.2020.1811926
  • Zhang, P., and H. Qing. 2022b. “Well-Posed Two-Phase Nonlocal Integral Models for Free Vibration of Nanobeams in Context with Higher-Order Refined Shear Deformation Theory.” Journal of Vibration and Control 28 (23-24): 3808–3822. https://doi.org/10.1177/10775463211039902
  • Zhang, J.-Q., H. Qing, and C.-F. Gao. 2020a. “Exact and Asymptotic Bending Analysis of Microbeams under Different Boundary Conditions Using Stress-Derived Nonlocal Integral Model.” Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 100 (1): e201900148. https://doi.org/10.1002/zamm.201900148
  • Zhang, P., H. Qing, and C. F. Gao. 2020b. “Analytical Solutions of Static Bending of Curved Timoshenko Microbeams Using Eringen’s Two-Phase Local/Nonlocal Integral Model.” Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 100 (7):e201900207. https://doi.org/10.1002/zamm.201900207
  • Zhang, P., H. Qing, and C. Gao. 2019a. “Theoretical Analysis for Static Bending of Circular Euler-Bernoulli Beam Using Local and Eringen’s Nonlocal Integral Mixed Model.” Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 99 (8): e201800329. https://doi.org/10.1002/zamm.201800329
  • Zhang, P., H. Qing, and C. Gao. 2019b. “Theoretical Analysis for Static Bending of Circular Euler–Bernoulli Beam Using Local and Eringen’s Nonlocal Integral Mixed Model.” ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik 99 (8): e201800329. https://doi.org/10.1002/zamm.201800329
  • Zhang, P., P. Schiavone, and H. Qing. 2022a. “Stress-Driven Local/Nonlocal Mixture Model for Buckling and Free Vibration of FG Sandwich Timoshenko Beams Resting on a Nonlocal Elastic Foundation.” Composite Structures 289: 115473. https://doi.org/10.1016/j.compstruct.2022.115473
  • Zhang, P., P. Schiavone, and H. Qing. 2022b. “Two-Phase Local/Nonlocal Mixture Models for Buckling Analysis of Higher-Order Refined Shear Deformation Beams under Thermal Effect.” Mechanics of Advanced Materials and Structures 29 (28): 7605–7622. https://doi.org/10.1080/15376494.2021.2003489
  • Zhang, S., M. Wang, C. Chen, D. Shahsavari, B. Karami, and A. Tounsi. 2022c. “Wave Propagation in Carbon Nanotube-Reinforced Nanocomposite Doubly-Curved Shells Resting on a Viscoelastic Foundation.” Waves in Random and Complex Media: 1–24. https://doi.org/10.1080/17455030.2022.2058710

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.