0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of spoke structure for agricultural non-pneumatic tire based on the decrease in soil compaction

&
Received 05 Jan 2023, Accepted 28 May 2024, Published online: 30 Jul 2024

References

  • Aboul-Yazid, A. M., M. A. A. Emam, S. Shaaban, and M. A. El-Nashar. 2015. “Effect of Spokes Structures on Characteristics Performance of Non-Pneumatic Tires.” International Journal of Automotive and Mechanical Engineering 11: 2212–2223. https://doi.org/10.15282/ijame.11.2015.4.0185
  • Aboulyazid, A. M., M. Watany, and M. M. Abd Elhafiz. 2021. Theoretical Investigation of Spokes Geometry of Non-Pneumatic Tires for Off-Road Vehicles.” SAE Technical Paper Series 2021. https://doi.org/10.4271/2021-01-0331
  • Ali, M., M. Maarij, and A. Hussain. 2022. “Design and Structural Analysis of Non-Pneumatic Tyres for Different Structures of Polyurethane Spokes.” Journal of Engineering and Applied Science 69 (1): 38. https://doi.org/10.1186/s44147-022-00093-5
  • Al-Shammary, A. A. G., A. Z. Kouzani, A. KayNak, S. Y. Khoo, M. Norton, and W. Gates. 2018. “Soil Bulk Density Estimation Methods: A Review.” Pedosphere 28 (4): 581–596. https://doi.org/10.1016/S1002-0160(18)60034-7
  • Ansorge, D., and R. J. Godwin. 2007. “The Effect of Tyres and a Rubber Track at High Axle Loads on Soil Compaction, Part 1: Single Axle-Studies.” Biosystems Engineering 98 (1): 115–126. https://doi.org/10.1016/j.biosystemseng.2007.06.005
  • Arakawa, K., M. Iwase, and M. Segawa. 2012. Non-pneumatic tire. US Patent US8113253 B2.
  • Asper, R. 2016. Airless tire construction having multiple layers. US Patent US9440494 B2.
  • Battie Laclau, P. B., and J. P. Laclau. 2009. “Growth of the Whole Root System for a Plant Crop of Sugarcane under Rainfed and Irrigated Environments in Brazil.” Field Crops Research 114 (3): 351–360. https://doi.org/10.1016/j.fcr.2009.09.004
  • Becerra, A. T., G. F. Botta, X. L. Bravo, M. Tourn, F. B. Melcon, J. Vazquez, D. Rivero, P. Linares, and G. Nardon. 2010. “Soil Compaction Distribution under Tractor Traffic in Almond (Prunus amigdalus L.) Orchard in Almeria Espana.” Soil and Tillage Research 107 (1): 49–56. https://doi.org/10.1016/j.still.2010.02.001
  • Bekker, M. G. 1969. Introduction to Terrain-Vehicle Systems. Part I: The Terrain. Part II: The Vehicle. Ann Arbor, MI: University of Michigan.
  • Bernstein, R. 1913. “Probleme Zur Experimentellen Motorpflugmechanik.” Motor Journal 16: 199–206.
  • Bitzer, T. N. 2009. Honeycomb Technology Materials Design Manufacturing Applications and Testing. Dordrecht, Netherlands: Springer.
  • Botta, G. F., A. T. Becerra, and F. B. Tourn. 2009. “Effect of the Number of Tractor Passes in Soil Rut Depth and Compaction Two Tillage Regimes.” Soil and Tillage Research 103 (2): 381–386. https://doi.org/10.1016/j.still.2008.12.002
  • Botta, G. F., D. Jorajuria, and L. M. Draghi. 2002. “Influence of the Axle Load, Tyre Size and Configuration on the Compaction of a Freshly Tilled Clayey Soil.” Journal of Terramechanics 39 (1): 47–54. https://doi.org/10.1016/S0022-4898(02)00003-4
  • Bras, B., and A. Cobert. 2011. “Life-Cycle Environmental Impact of Michelin Tweel ® Tire for Passenger Vehicles.” SAE International Journal of Passenger Cars – Mechanical Systems 4: 32–43. https://doi.org/10.4271/2011-01-0093
  • Choi, S. J., H. J. Kim, M. S. Kim, K. J. Ko, and K. H. Kang. 2016. Non-pneumatic tire for vehicle. US Patent US9290053 B2.
  • Choi, S. J., H. J. Kim, M. S. Kim, K. J. Ko, K. H. Kang, and Y. J. Choi. 2016. Airless tire. US Patent US9387726 B2.
  • Cron, S. M., M. E. Dotson, K. C. Miles, and T. B. Rhyne. 2016. Spoke edge geometry for a non-pneumatic tire. US Patent US9254716 B2.
  • Cron, S. M., and T. B. Rhyne. 2017. Non-pneumatic tire with multi-connection connecting elements. US Patent US/0368869 A1.
  • Czyż, E. A. 2004. “Effects of Traffic on Soil Aeration, Bulk Density and Growth of Spring Barley.” Soil and Tillage Research 79 (2): 153–166. https://doi.org/10.1016/j.still.2004.07.004
  • Deng, Y. J., Y. Q. Zhao, H. Xu, M. M. Zhu, and Z. Xiao. 2019. “Finite Element Modeling of Interaction between Non-Pneumatic Mechanical Elastic Wheel and Soil.” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233 (13): 3293–3304. https://doi.org/10.1177/0954407018821555
  • Esteban, D. A. A., Z. M. de Souza, R. B. da Silva, E. de Souza Lima, L. H. Lovera, and I. N. de Oliveira. 2020. “Impact of Permanent Traffic Lanes on the Soil Physical and Mechanical Properties in Mechanized Sugarcane Fields with the Use of Automatic Steering.” Geoderma 362: 114097. https://doi.org/10.1016/j.geoderma.2019.114097
  • Farhadi, P., A. Golmohammadi, A. S. Sharifi Malvajerdi, and G. Shahgholi. 2019. “Finite Element Modeling of the Interaction of a Treaded Tire with Clay-Loam Soil.” Computers and Electronics in Agriculture 162: 793–806. https://doi.org/10.1016/j.compag.2019.05.031
  • Fu, H., X. Liang, K. Chen, Y. Wang, and Z. Xiao. 2022. “Study on Key Mechanical Properties of the Flexible Spoke Non-Pneumatic Tire considering Thermo-Mechanical Coupling.” Advances in Engineering Software 173: 103281. https://doi.org/10.1016/j.advengsoft.2022.103281
  • Genovese, A., D. Garofano, A. Sakhnevych, F. Timpone, and F. Farroni. 2021. “Static and Dynamic Analysis of Non-Pneumatic Tires Based on Experimental and Numerical Methods.” Applied Sciences 11 (23): 11232. https://doi.org/10.3390/app112311232
  • González Cueto, O., C. E. Iglesias Coronel, E. López Bravo, C. A. Recarey Morfa, and M. Herrera Suárez. 2016. “Modelling in FEM the Soil Pressures Distribution Caused by a Tyre on a Rhodic Ferralsol Soil.” Journal of Terramechanics 63: 61–67. https://doi.org/10.1016/j.jterra.2015.09.003
  • Greene, W. D., and W. Stuart. 1985. “Skidder and Tyre Size Effects on Soil Compaction.” Southern Journal of Applied Forestry 9 (3): 154–157. https://doi.org/10.1093/sjaf/9.3.154
  • Guimarães Júnnyor, W. D. S., E. Diserens, I. C. De Maria, C. F. Araujo-Junior, C. V. V. Farhate, and Z. M. de Souza. 2019. “Prediction of Soil Stresses and Compaction Due to Agricultural Machines in Sugarcane Cultivation Systems with and without Crop Rotation.” The Science of the Total Environment 681: 424–434. https://doi.org/10.1016/j.scitotenv.2019.05.009
  • Hamza, M. A., and W. K. Anderson. 2005. “Soil Compaction in Cropping Systems.” Soil and Tillage Research 82 (2): 121–145. https://doi.org/10.1016/j.still.2004.08.009
  • Hanada, R., H. Seto, Y. Hashimura, J. Matsuda, T. Kitazaki, I. Kuramochi, and K. Endo. 2012. Non-pneumatic tire. US Patent US8276628 B2.
  • He, R., C. Sandu, A. K. Khan, A. G. Guthrie, P. Schalk Els, and H. A. Hamersma. 2019. “Review of Terramechanics Models and Their Applicability to Real-Time Applications.” Journal of Terramechanics 81: 3–22. https://doi.org/10.1016/j.jterra.2018.04.003
  • Iwamura, W., and M. Sugiya. 2017. Airless tire. US Patent US/0113490 A1.
  • Iwamura, W., and M. Sugiya. 2019. Airless tire. US Patent US/0061428 A1.
  • Iwase, M., and M. Segawa. 2010. Non-pneumatic tire. US Patent US/0132865 A1.
  • Jackowski, J., M. Żmuda, M. Wieczorek, and A. Zuska. 2021. “Quasi-Static Research of ATV/UTV Non-Pneumatic Tires.” Energies 14 (20): 6557. https://doi.org/10.3390/en14206557
  • Jin, X., C. Hou, X. Fan, Y. Sun, J. Lv, and C. Lu. 2018. “Investigation on the Static and Dynamic Behaviors of Non-Pneumatic Tires with Honeycomb Spokes.” Composite Structures 187: 27–35. https://doi.org/10.1016/j.compstruct.2017.12.044
  • Jony, J. E., M. S. Fabio, S. C. Eduardo, R. M. Mayara, and G. D. Franco. 2014. “Influence of the Tires Pressure in the Vehicle Fuel Consumption.” In Conference paper of the VIII Congresso Nacional de Engenharia Mecânica. Uberlândia, Brasil.
  • Ju, J., D. M. Kim, and K. Kim. 2012. “Flexible Cellular Solid Spokes of a Non-Pneumatic Tire.” Composite Structures 94 (8): 2285–2295. https://doi.org/10.1016/j.compstruct.2011.12.022
  • Kahaner, J. M., and G. W. Rye. 1980. Tire with supporting and cushioning walls. US Patent 4235270.
  • Kashyap, D., A. A. Reddy, M. Arun, R. S. Vihar, and D. Govardhan. 2021. “Comparative Study on Airless Tyre of Different Spoke Structure on Aircraft.” International Journal of Engineering Research 10: 827–831.
  • Keller, T., and J. Arvidsson. 2004. “Technical Solutions to Reduce the Risk of Subsoil Compaction: Effects of Dual Wheels, Tandem Wheels and Tyre Inflation Pressure on Stress Propagation in Soil.” Soil and Tillage Research 79 (2): 191–205. https://doi.org/10.1016/j.still.2004.07.008
  • Kim, Y. H. 2017. Non-pneumatic tire having improved riding comfort. US Patent US9840113 B2.
  • Kiran, M., D. A. Shishir, and R. P. Babu. 2021. “Impact of Different Road Profiles on Rolling Resistance of Non-Pneumatic Tires with Hexagonal Honeycomb Spokes.” Zeichen 7: 56–72.
  • Koolen, A. J., and H. Kuipers. 1989. “Soil Deformation under Compressive Forces.” Mechanics and Related Processes in Structured Agricultural Soils 172: 37–52.
  • Kozlowski, T. T. 1999. “Soil Compaction and Growth of Woody Plants.” Scandinavian Journal of Forest Research 14 (6): 596–619. https://doi.org/10.1080/02827589908540825
  • Lettieri, J. C., J. A. Benzing II, C. H. Lin, J. A. Incavo, and R. B. Coleman. 2017. Non-pneumatic tire. US Patent US9616713 B2.
  • Liu, B., and X. Xu. 2022. “Mechanical Behavior and Mechanism Investigation on the Optimized and Novel Bio-Inspired Nonpneumatic Composite Tires.” Reviews on Advanced Materials Science 61 (1): 250–264. https://doi.org/10.1515/rams-2022-0002
  • Ma, J., J. Summers, and P. Joseph. 2011. “Dynamic Impact Simulation of Interaction between Non-Pneumatic Tire and Sand with Obstacle.” SAE Technical Paper Series. https://doi.org/10.4271/2011-01-0184
  • Manesh, A., M. Tercha, B. Anderson, B. J. Meliska, and F. Ceranski. 2018. Tension-based non-pneumatic tire. US Patent US10086654 B2.
  • Manesh, A., M. Tercha, O. Ayodeji, B. Anderson, B. J. Meliska, and F. Ceranski. 2015. Tension-based non-pneumatic tire. US Patent US9004127 B2.
  • Manesh, A., M. J. Tercha, B. Meliska, F. Ceranski, G. Howland, L. Stark, K. Hauch, and T. Petersen. 2015. Tension-based non-pneumatic tire. US Patent US8944125 B2.
  • Mukhopadhyay, S., R. E. Masto, R. C. Tripathi, and N. K. Srivastava. 2018. “Chapter 14. Application of Soil Quality Indicators for the Phytorestoration of Mine Spoil Dumps.” In Phytomanagement of Polluted Sites, edited by V. C. Pandey and K. Bauddh, 361–388. Amsterdam, the Netherlands: Elsevier.
  • Nakajima, Y. 2019. “Chapter 12 “Traction Performance of Tires.”” In Advanced Tire Mechanics. Vol. 2, 807–930. Singapore: Springer. http://doi.org/10.1007/978-981-13-5799-2.
  • Oh, J., J. S. Nam, S. Kim, and Y. J. Park. 2019. “Influence of Tire Inflation Pressure on the Estimation of Rating Cone Index Using Wheel Sinkage.” Journal of Terramechanics 84: 13–20. https://doi.org/10.1016/j.jterra.2019.04.002
  • Omar, G. C., Ciro, E. I. C. Carlos, A. R. M. Guillermo, U. S. Luís, H. H. G. Guillermo, U. C. Miguel, and H. S. 2013. “Three Dimensional Finite Element Model of Soil Compaction Caused by Agricultural Tire Traffic.” Computers and Electronics in Agriculture. 99: 146–152. https://doi.org/10.1016/j.compag.2013.08.026
  • Onwualu, A. P., and Watts, K. C. 1989. “Development of Soil Bin Test Facility.” American Society of Agricultural Engineers 1106: 13, 89.
  • Pajtas, S. R. 1990. Honeycomb non-pneumatic tire with a single web on one side. US Patent 4945962.
  • Pajtas, S. R., and L. G. Balderas-Ariza. 1993. Non-pneumatic tire with ride-enhancing insert. US Patent 5265659.
  • Papamichael, S., and C. Vrettos. 2021. “Indentation Tests and Rolling Simulations of a Compliant Wheel on Soil at Different Consistencies.” Journal of Terramechanics 94: 39–48. https://doi.org/10.1016/j.jterra.2020.12.005
  • Patel, S. K., and I. Mani. 2011. “Effect of Multiple Passes of Tractor with Varying Normal Load on Subsoil Compaction.” Journal of Terramechanics 48 (4): 277–284. https://doi.org/10.1016/j.jterra.2011.06.002
  • Phakdee, S., J. Phromjan, R. Rugsaj, and C. Suvanjumrat. 2024. “Experimental Verification of Mathematical Models for Tire-Soil Interaction.” International Journal of Geomate 26 (113): 58–65. https://doi.org/10.21660/2024.113.g13180
  • Phakdee, S., and C. Suvanjumrat. 2023. “Development of a Tire Testing Machine for Evaluating the Performance of Tractor Tires Based on the Soil Compaction.” Journal of Terramechanics 110: 13–25. https://doi.org/10.1016/j.jterra.2023.07.002
  • Phromjan, J., M. Kaliske, and C. Suvanjumrat. 2023. “Mitigating Soil Compaction in Sugarcane Field: Experimental and Simulation Study of Plunger Configurations.” International Journal of Geomate 25 (112): 83–90. https://doi.org/10.21660/2023.112.g13177
  • Phromjan, J., and C. Suvanjumrat. 2018a. “A Suitable Constitutive Model for Solid Tire Analysis under Quasi-Static Loads Using Finite Element Method.” Engineering Journal 22 (2): 141–155. https://doi.org/10.4186/ej.2018.22.2.141
  • Phromjan, J., and C. Suvanjumrat. 2018b. “Vibration Effect of Two Different Tires on Baggage Towing Tractors.” Journal of Mechanical Science and Technology 32 (4): 1539–1548. https://doi.org/10.1007/s12206-018-0307-5
  • Phromjan, J., and C. Suvanjumrat. 2021. “Effects of Load and Velocity on Vibrations of a Solid Tire: Experimental Study.” Songklanakarin Journal of Science and Technology 43: 471–477.
  • Phromjan, J., and C. Suvanjumrat. 2022. “Effects on Spoke Structure of Non-Pneumatic Tires by Finite Element Analysis.” International Journal of Automotive Technology 23 (5): 1437–1450. https://doi.org/10.1007/s12239-022-0126-7
  • Phromjan, J., and C. Suvanjumrat. 2023a. “Belt Layer Effects on Non-Pneumatic Tire Performance by Finite Element Analysis.” In Recent Advances in Manufacturing Engineering and Processes. ICMEP 2021. Lecture Notes in Mechanical Engineering, edited by R. K. Agarwal, 149–157. Singapore: Springer. https://doi.org/10.1007/978-981-19-6841-9_15
  • Phromjan, J., and C. Suvanjumrat. 2023b. “Non-Pneumatic Tire with Curved Isolated Spokes for Agricultural Machinery in Agricultural Fields: Empirical and Numerical Study.” Heliyon 9 (8): e18984. https://doi.org/10.1016/j.heliyon.2023.e18984
  • Premarathna, W. A. A. S., J. A. S. C. Jayasinghe, K. K. Wijesundara, R. R. M. S. K. Ranatunga, and C. D. Senanayake. 2020. “Performance Comparison of Solid Tires and Non-Pneumatic Tires Using Finite Element Method: Application to Military Vehicles.” Paper presented at Conference Paper of the 13th International Research Conference, Rathmalana, Sri Lanka, 15-16 October 2020.
  • Qu, Y., and D. Wang. 2021. “Analyses on the Roller Structure of Equivalent Honeycombs for Forest Harvester under Impact Loading.” Composite Structures 262: 113355. https://doi.org/10.1016/j.compstruct.2020.113355
  • Raguiara, P. S., M. R. Mario, F. G. Igor, M. R. Elvira, E. T. Uilka, and N. Alexandre. 2018. “Numerical Modeling of Soil Compaction in a Sugarcane Crop Using the Finite Element Method.” Soil and Tillage Research 181: 1–10. https://doi.org/10.1016/j.still.2018.03.019
  • Rhyne, T. B., and S. M. Cron. 2006. “Development of a Non-Pneumatic Wheel.” Tire Science and Technology 34 (3): 150–169. https://doi.org/10.2346/1.2345642
  • Rhyne, T. B., R. H. Thompson, S. M. Cron, and K. W. DeMino. 2007. Non-pneumatic tire. US Patent US7201194 B2.
  • Rugsaj, R., and C. Suvanjumrat. 2019. “Proper Radial Spokes of Non-Pneumatic Tire for Vertical Load Supporting by Finite Element Analysis.” International Journal of Automotive Technology 20 (4): 801–812. https://doi.org/10.1007/s12239-019-0075-y
  • Rugsaj, R., and C. Suvanjumrat. 2021. “Dynamic Finite Element Analysis of Rolling Non-Pneumatic Tire.” International Journal of Automotive Technology 22 (4): 1011–1022. https://doi.org/10.1007/s12239-021-0091-6
  • Rugsaj, R., and C. Suvanjumrat. 2023. “Development of a Novel Spoke Structure of Non-Pneumatic Tires for Skid-Steer Loaders Using Finite Element Analysis.” Mechanics Based Design of Structures and Machines 51 (12): 6905–6927. https://doi.org/10.1080/15397734.2022.2076692
  • Rugsaj, R., and C. Suvanjumrat. 2022. “Study of Geometric Effects on Nonpneumatic Tire Spoke Structures Using Finite Element Method.” Mechanics Based Design of Structures and Machines 50 (7): 2379–2399. https://doi.org/10.1080/15397734.2020.1777875
  • Shaheb, M. R., R. Venkatesh, and S. A. Shearer. 2021. “A Review on the Effect of Soil Compaction and Its Management for Sustainable Crop Production.” Journal of Biosystems Engineering 46 (4): 417–439. https://doi.org/10.1007/s42853-021-00117-7
  • Sim, J., J. Hong, I. Cho, and J. Lee. 2021. “Analysis of Vertical Stiffness Characteristics Based on Spoke Shape of Non-Pneumatic Tire.” Applied Sciences 11 (5): 2369. https://doi.org/10.3390/app11052369
  • Sloss, D. 1977. “International Society for Terrain-Vehicle Systems Standards.” Journal of Terramechanics 14 (3): 153–182. https://doi.org/10.1016/0022-4898(77)90013-1
  • Taghavifar, H., and A. Mardani. 2014. “Effect of Velocity, Wheel Load and Multipass on Soil Compaction.” Journal of the Saudi Society of Agricultural Sciences 13 (1): 57–66. https://doi.org/10.1016/j.jssas.2013.01.004
  • ten Damme, L., M. Stettler, F. Pinet, P. Vervaet, T. Keller, L. J. Munkholm, and M. Lamandé. 2020. “Construction of Modern Wide, Low-Inflation Pressure Tyres per se Does Not Affect Soil Stress.” Soil and Tillage Research 204: 104708. https://doi.org/10.1016/j.still.2020.104708
  • Tiwari, V. K., K. P. Pandey, and P. K. Pranav. 2010. “A Review on Traction Prediction Equations.” Journal of Terramechanics 47 (3): 191–199. https://doi.org/10.1016/j.jterra.2009.10.002
  • Veeramurthy, M., J. Ju, L. L. Thompson, and J. D. Summers. 2014. “Optimisation of Geometry and Material Properties of a Non-Pneumatic Tyre for Reducing Rolling Resistance.” International Journal of Vehicle Design 66 (2): 193–216. https://doi.org/10.1504/IJVD.2014.064567
  • Wong, J. Y. 2001. Theory of Ground Vehicles. 3rd ed. Ottawa, Canada: John Wiley & Sons.
  • Wu, T., M. Li, X. Zhu, and X. Lu. 2021. “Research on Non-Pneumatic Tire with Gradient anti-Tetrachiral Structures.” Mechanics of Advanced Materials and Structures 28 (22): 2351–2359. https://doi.org/10.1080/15376494.2020.1734888
  • Zhang, Z., H. Fu, X. Liang, X. Chen, and D. Tan. 2020. “Comparative Analysis of Static and Dynamic Performance of Nonpneumatic Tire with Flexible Spoke Structure.” Strojniški Vestnik – Journal of Mechanical Engineering 66 (7-8): 458–466. https://doi.org/10.5545/sv-jme.2020.6676
  • Zheng, Z., S. Rakheja, and R. Sedaghati. 2021. “A Comparative Study of Static and Dynamic Properties of Honeycomb Non-Pneumatic Wheels and a Pneumatic Wheel.” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235 (14): 3631–3646. https://doi.org/10.1177/09544070211007977
  • Zheng, Z., S. Rakheja, and R. Sedaghati. 2022. “Multi-Axis Stiffness and Road Contact Characteristics of Honeycomb Wheels: A Parametric Analysis Using Taguchi Method.” Composite Structures 279: 114735. https://doi.org/10.1016/j.compstruct.2021.114735
  • Zhou, H., H. Li, Y. Mei, G. Wang, C. Liu, and L. Zhang. 2021. “Research on Vibration Reduction Method of Nonpneumatic Tire Spoke Based on the Mechanical Properties of Domestic Cat’s Paw Pads.” Applied Bionics and Biomechanics 2021: 9976488–9976416. https://doi.org/10.1155/2021/9976488

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.