844
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Field-based Measurement of Sleep: Agreement between Six Commercial Activity Monitors and a Validated Accelerometer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ancoli-Israel, S., Martin, J. L., Blackwell, T., Buenaver, L., Liu, L., Meltzer, L. J., … Taylor, D. J. (2015). The SBSM guide to actigraphy monitoring: Clinical and research applications. Behavioral Sleep Medicine, 13(Suppl 1), S4–S38. doi:10.1080/15402002.2015.1046356
  • Bai, Y., Welk, G. J., Nam, Y. H., Lee, J. A., Lee, J.-M., Kim, Y., … Dixon, P. M. (2016). Comparison of consumer and research monitors under semistructured settings. Medicine & Science in Sports & Exercise, 48(1), 151–158. doi:10.1249/MSS.0000000000000727
  • Baroni, A., Bruzzese, J. M., Di Bartolo, C. A., & Shatkin, J. P. (2016). Fitbit flex: An unreliable device for longitudinal sleep measures in a non-clinical population. Sleep and Breathing, 20(2), 853–854. doi:10.1007/s11325-015-1271-2
  • Bastien, C. H., Vallieres, A., & Morin, C. M. (2001). Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Medicine, 2(4), 297–307. doi:10.11016/S1389-9457(00)00065-4
  • Beattie, Z., Oyang, Y., Statan, A., Ghoreyshi, A., Pantelopoulos, A., Russell, A., & Heneghan, C. J. P. M. (2017). Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals. Physiological Measurement, 38(11), 1968. doi:10.1088/1361-6579/aa9047
  • Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327(8476), 307–310. doi:10.1016/S0140-6736(86)90837-8
  • Buysse, D. J. (2014). Sleep health: Can we define it? Does it matter? Sleep, 37(1), 9–17. doi:10.5665/sleep.3298
  • Buysse, D. J., Reynolds, C. F., III, Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213. doi:10.1016/0165-1781(89)90047-4
  • Castner, J., Mammen, M. J., Jungquist, C. R., Licata, O., Pender, J. J., Wilding, G. E., & Sethi, S. (2019). Validation of fitness tracker for sleep measures in women with asthma. Journal Of Asthma, 56(7), 719–730.1–12. doi:10.1080/02770903.2018.1490753
  • Cellini, N., McDevitt, E. A., Mednick, S. C., & Buman, M. P. (2016). Free-living cross-comparison of two wearable monitors for sleep and physical activity in healthy young adults. Physiology & Behavior, 157, 79–86. doi:10.1016/j.physbeh.2016.01.034
  • Cook, J. D., Prairie, M. L., & Plante, D. T. (2017). Utility of the fitbit flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy. Journal of Affective Disorders, 217, 299–305. doi:10.1016/j.jad.2017.04.030
  • Cook, J. D., Prairie, M. L., & Plante, D. T. (2018). Ability of the multisensory jawbone UP3 to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: A comparison against polysomnography and actigraphy. Journal of Clinical Sleep Medicine, 14(5), 841–848. doi:10.5664/jcsm.7120
  • de Zambotti, M., Baker, F. C., & Colrain, I. M. (2015). Validation of sleep-tracking technology compared with polysomnography in adolescents. Sleep, 38(9), 1461–1468. doi:10.5665/sleep.4990
  • de Zambotti, M, Cellini, N, Goldstone, A, Colrain, I. M, & Baker, F. C. (2019). Wearable sleep technology in clinical and research settings. Medicine & Science in Sports & Exercise, 51(7), 1538-1557. doi: 10.1249/mss.0000000000001947
  • de Zambotti, M., Claudatos, S., Inkelis, S., Colrain, I. M., & Baker, F. C. (2015). Evaluation of a consumer fitness-tracking device to assess sleep in adults. Chronobiology International, 32(7), 1024–1028. doi:10.3109/07420528.2015.1054395
  • de Zambotti, M., Goldstone, A., Claudatos, S., Colrain, I. M., & Baker, F. C. (2018). A validation study of Fitbit Charge 2 compared with polysomnography in adults. Chronobiology International, 35(4), 465–476. doi:10.1080/07420528.2017.1413578
  • Dickinson, D. L., Cazier, J., & Cech, T. (2016). A practical validation study of a commercial accelerometer using good and poor sleepers. Health Psychology Open, 3(2), 2055102916679012. doi:10.1177/2055102916679012
  • Driller, M., McQuillan, J., & O’Donnell, S. (2016). Inter-device reliability of an automatic-scoring actigraph for measuring sleep in healthy adults. Sleep Science, 9(3), 198–201. doi:10.1016/j.slsci.2016.08.003
  • Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. Internatonal Journal of Behavioral Nutrition and Physical Activity, 12, 159. doi:10.1186/s12966-015-0314-1
  • Ferguson, T., Rowlands, A. V., Olds, T., & Maher, C. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. Internatonal Journal of Behavioral Nutrition and Physical Activity, 12(1), 42. doi:10.1186/s12966-015-0201-9
  • Goldstone, A., Baker, F. C., & de Zambotti, M. (2018). Actigraphy in the digital health revolution: Still asleep? Sleep, 41(9), zsy120. doi:10.1093/sleep/zsy024
  • Inderkum, A. P., & Tarokh, L. (2018). High heritability of adolescent sleep–wake behavior on free, but not school days: A long-term twin study. Sleep, 41(3), zsy004. doi:10.1093/sleep/zsy004
  • Johns, M. W. (1991). A new method for measuring daytime sleepiness: The epworth sleepiness scale. Sleep, 14(6), 540–545. doi:10.1093/sleep/14.6.540
  • Kang, S. G., Kang, J. M., Ko, K. P., Park, S. C., Mariani, S., & Weng, J. (2017). Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers. Journal of Psychosomatic Research, 97, 38–44. doi:10.1016/j.jpsychores.2017.03.009
  • Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–163. doi:10.1016/j.jcm.2016.02.012
  • Kooiman, T. J., Dontje, M. L., Sprenger, S. R., Krijnen, W. P., van der Schans, C. P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC Sports Science Medicine and Rehabilitation, 7(1), 24. doi:10.1186/s13102-015-0018-5
  • Kushida, C. A., Chang, A., Gadkary, C., Guilleminault, C., Carrillo, O., & Dement, W. C. (2001). Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Medicine, 2(5), 389–396. doi:10/1016/S1389-9457(00)00098-8
  • Lee, H.-A., Lee, H.-J., Moon, J.-H., Lee, T., Kim, M.-G., In, H., … Kim, L. (2017). Comparison of wearable activity tracker with actigraphy for sleep evaluation and circadian rest-activity rhythm measurement in healthy young adults. Psychiatry Investigation, 14(2), 179–185. doi:10.4306/pi.2017.14.2.179
  • Lillehei, A. S., Halcón, L. L., Savik, K., & Reis, R. J. (2015). Effect of inhaled lavender and sleep hygiene on self-reported sleep issues: A randomized controlled trial. The Journal of Alternative Complementary Medicine, 21(7), 430–438. doi:10.1089/acm.2014.0327
  • Mantua, J., Gravel, N., & Spencer, R. M. (2016). Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors, 16(5), E646. doi:10.3390/s16050646
  • Marino, M., Li, Y., Rueschman, M. N., Winkelman, J. W., Ellenbogen, J., Solet, J. M., … Buxton, O. M. (2013). Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep, 36(11), 1747–1755. doi:10.5665/sleep.3142
  • Meltzer, L. J., Hiruma, L. S., Avis, K., Montgomery-Downs, H., & Valentin, J. (2015). Comparison of a commercial accelerometer with polysomnography and actigraphy in children and adolescents. Sleep, 38(8), 1323–1330. doi:10.5665/sleep.4918
  • Monk, T. H., Reynolds, C. F., 3rd, Kupfer, D. J., Buysse, D. J., Coble, P. A., Hayes, A. J., … Ritenour, A. M. (1994). The Pittsburgh sleep diary. Journal of Sleep Research, 3, 111–120. doi:10.1111/j.1365-2869.1994.tb00114.x
  • Montgomery-Downs, H. E., Insana, S. P., & Bond, J. A. (2012). Movement toward a novel activity monitoring device. Sleep and Breathing, 16(3), 913–917. doi:10.1007/s11325-011-0585-y
  • O’Driscoll, R., Turicchi, J., Beaulieu, K., Scott, S., Matu, J., Deighton, K., … Stubbs, J. (in press). How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine. doi:10.1136/bjsports-2018-099643
  • Ohayon, M., Wickwire, E. M., Hirshkowitz, M., Albert, S. M., Avidan, A., Daly, F. J., … Gozal, D. (2017). National sleep foundation’s sleep quality recommendations: First report. Sleep Health, 3(1), 6–19. doi:10.1016/j.sleh.2016.11.006
  • Patel, S. R., Weng, J., Rueschman, M., Dudley, K. A., Loredo, J. S., Mossavar-Rahmani, Y., … Seiger, A. N. (2015). Reproducibility of a standardized actigraphy scoring algorithm for sleep in a US Hispanic/Latino population. Sleep, 38(9), 1497–1503. doi:10.5665/sleep.4998
  • Pesonen, A. K., & Kuula, L. (2018). The validity of a new consumer-targeted wrist device in sleep measurement: An overnight comparison against polysomnography in children and adolescents. Journal of Clinical Sleep Medicine, 14(4), 585–591. doi:10.5664/jcsm.7050
  • Quante, M., Kaplan, E. R., Cailler, M., Rueschman, M., Wang, R., Weng, J., … Redline, S. (2018). Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nature and Science of Sleep, 10, 13–20. doi:10.2147/NSS.S151085
  • Scott, J., Grierson, A., Gehue, L., Kallestad, H., MacMillan, I., & Hickie, I. J. S. (2019). Can consumer grade activity devices replace research grade actiwatches in youth mental health settings? Sleep and Biological Rhythms, 17(2), 223–232. doi:10.1007/s41105-018-00204-x
  • Toon, E., Davey, M. J., Hollis, S. L., Nixon, G. M., Horne, R. S., & Biggs, S. N. (2016). Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. Journal of Clinical Sleep Medicine, 12(3), 343–350. doi:10.5664/jcsm.5580
  • Visovsky, C., Kip, K., Rice, J., Hardwick, M., & Hall, P. (2013). Choosing instruments for research: An evaluation of two activity monitors in healthy women. Journal of Novel Physiotherapies, 3, 171. doi:10.4172/2165-7025.1000171
  • Weaver, R. G., Beets, M. W., Perry, M., Hunt, E., Brazendale, K., Decker, L., … Maydeu-Olivares, A. (2019). Changes in children’s sleep and physical activity during a 1-week versus a 3-week break from school: A natural experiment. Sleep, 42(1), zsy205. doi:10.1093/sleep/zsy205
  • Xu, X., Conomos, M., Manor, O., Rohwer, J., Magis, A., & Lovejoy, J. (2018). Habitual sleep duration and sleep duration variation are independently associated with body mass index. International Journal of Obesity, 42(4), 794-800. doi:10.1038/s41366-018-0152-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.