147
Views
3
CrossRef citations to date
0
Altmetric
Symposium: Chinese Economy under New Globalization: New Mode, New Dynamics and New Trends; Guest Editor: Zhang Bin

Environmental Efficiency Analysis of Urban Agglomerations in China: A Non-Parametric Meta-Frontier Approach

ORCID Icon, , , &

References

  • Aigner, D., C. A. K. Lovell, and P. Schmidt. 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6 (1):21–37. doi:10.1016/0304-4076(77)90052-5.
  • Alem, H., G. Lien, J. B. Hardaker, and A. Guttormsen. 2018. Regional differences in technical efficiency and technological gap of Norwegian dairy farms: A stochastic meta-frontier model. Applied Economics 1–13. doi:10.1080/00036846.2018.1502867.
  • Aravindakshan, S., F. Rossi, T. S. Amjath-Babu, P. C. Veettil, and T. J. Krupnik. 2018. Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia. Journal Products Analysis 49 (2–3):153–71. doi:10.1007/s11123-018-0525-y.
  • Banker, R. D., A. Charnes, and W. W. Cooper. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30 (9):1078–92. doi:10.1287/mnsc.30.9.1078.
  • Broadstock, D. C., J. Li, and D. Zhang. 2016. Efficiency snakes and energy ladders: A (meta-) frontier demand analysis of electricity consumption efficiency in Chinese households. Energy Policy 91:383–96. doi:10.1016/j.enpol.2016.01.009.
  • Charnes, A., W. W. Cooper, and E. Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2 (6):429–44. doi:10.1016/0377-2217(78)90138-8.
  • Chen, N., L. Xu, and Z. Chen. 2017. Environmental efficiency analysis of the yangtze river economic zone using super efficiency data envelopment analysis (sedea) and tobit models. Energy 134 (1):659–671. doi:10.1016/j.energy.2017.06.076.
  • Chen, Z., and S. Song. 2008. Efficiency and technology gap in China’s agriculture: A regional meta-frontier analysis. China Economic Review 19 (2):287–96. doi:10.1016/j.chieco.2007.03.001.
  • Chiu, C.-R., J.-L. Liou, P.-I. Wu, and C.-L. Fang. 2012. Decomposition of the environmental inefficiency of the meta-frontier with undesirable output. Energy Economics 34:1392–99. doi:10.1016/j.eneco.2012.06.003.
  • Clark, M., and D. Tilman. 2017. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters 12 (6):064016. doi:10.1088/1748-9326/aa6cd5.
  • Ding T, Chen Y, Wu H, Wei Y. 2017. Centralized fixed cost and resource allocation considering technology heterogeneity: A DEA approach. Annals Operational Researcher. doi:10.1007/s10479-017-2414-6.
  • Ewertowska, A., A. Galán-Martín, G. Guillén-Gosálbez, J. Gavaldá, and L. Jiménez. 2016. Assessment of the environmental efficiency of the electricity mix of the top European economies via data envelopment analysis. Journal of Cleaner Production 116:13–22. doi:10.1016/j.jclepro.2015.11.100.
  • Fang, C. 2015. Important progress and future direction of studies on China’s UAs. Journal Geographic Sciences 25 (8):1003–24. doi:10.1007/s11442-015-1216-5.
  • Fang, C., X. Guan, S. Lu, M. Zhou, and Y. Deng. 2013. Input-Output Efficiency of urban agglomerations in China: An Application of Data Envelopment Analysis (DEA). Urban Studies 50 (13):2766–90. doi:10.1177/0042098013477707.
  • Ghosh, R., and V. Kathuria. 2016. The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis. Energy Policy 89:11–24. doi:10.1016/j.enpol.2015.11.011.
  • Jia, P., K. Li, and S. Shao. 2018. Choice of technological change for China’s low-carbon development: Evidence from three urban agglomerations. Journal of Environmental Management 206:1308–19. doi:10.1016/j.jenvman.2017.08.052.
  • Kang, Z.-Y., K. Li, and J. Qu. 2018. The path of technological progress for China’s low-carbon development: Evidence from three urban agglomerations. Journal of Cleaner Production 178:644–54. doi:10.1016/j.jclepro.2018.01.027.
  • Kounetas, K. 2015. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries. Energy Policy 83:277–87. doi:10.1016/j.enpol.2015.01.036.
  • Kuo, H., and K. Tsou. 2015. Application of environmental change efficiency to the sustainability of Urban development at the neighborhood level. Sustainability 7 (8):10479–98. doi:10.3390/su70810479.
  • Lin, B., and A. Wang. 2016. Regional energy efficiency of China’s commercial sector: An emerging energy consumer. Emerging Markets Finance and Trade 52 (12):2818–36. doi:10.1080/1540496X.2016.1224176.
  • Lin, B., and H. Zhao. 2016. Technology gap and regional energy efficiency in China’s textile industry: A non-parametric meta-frontier approach. Journal of Cleaner Production 137:21–28. doi:10.1016/j.jclepro.2016.07.055.
  • Lu, J., and X. Cao. 2015. PM2.5 pollution in major cities in China: Pollution status, emission sources and control measures. Fresen Environment Bulletin 24 (4):1338–49.
  • Munisamy, S., and B. Arabi. 2015. Eco-efficiency change in power plants: Using a slacks-based measure for the meta-frontier Malmquist–Luenberger productivity index. Journal of Cleaner Production 105:218–32. doi:10.1016/j.jclepro.2014.12.081.
  • O’Donnell, C. J., D. S. P. Rao, and G. E. Battese. 2008. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Economics 34:231–55. doi:10.1007/s00181-007-0119-4.
  • Park, Y. S., S. H. Lim, G. Egilmez, and J. Szmerekovsky. 2018. Environmental efficiency assessment of US transport sector: A slack-based data envelopment analysis approach. Transportation Research Particle D: Transport and Environment 61:152–64. doi:10.1016/j.trd.2016.09.009.
  • Parvez, I. A., A. Nekrasova, and V. Kossobokov. 2018. Seismic hazard and risk assessment based on Unified Scaling Law for Earthquakes: Thirteen principal urban agglomerations of India. Natural Hazards 92 (3):1509–22. doi:10.1007/s11069-018-3261-8.
  • Portela, M. C. A. S., E. Thanassoulis, A. Horncastle, and T. Maugg. 2011. Productivity change in the water industry in England and Wales: Application of the meta-Malmquist index. Journal of the Operational Research Society 62 (12):2173–88. doi:10.1057/jors.2011.17.
  • Reinharda, S., and G. J. Thijssen. 2000. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. European Journal of Operational Research 121 (2):287–303. doi:10.1016/S0377-2217(99)00218-0.
  • Roshdi, I., M. Hasannasab, D. Margaritis, and P. Rouse. 2018. Generalised weak disposability and efficiency measurement in environmental technologies. European Journal of Operational Research 266 (3):1000–12. doi:10.1016/j.ejor.2017.10.033.
  • Song, M., S. Wang, and Q. Liu. 2013. Environmental efficiency evaluation considering the maximization of desirable outputs and its application. Mathematical and Computer Modelling 58 (5–6):1110–16. doi:10.1016/j.mcm.2011.12.043.
  • Sueyoshi, T., A. Li, and Y. Gao. 2018. Sector sustainability on fossil fuel power plants across Chinese provinces: Methodological comparison among radial, non-radial and intermediate approaches under group heterogeneity. Journal of Cleaner Production 187:819–29. doi:10.1016/j.jclepro.2018.03.216.
  • Tabuchi, T. 1998. Urban agglomeration and Dispersion: A Synthesis of Alonso and Krugman. Journal of Urban Economics 44 (3):333–51. doi:10.1006/juec.1997.2074.
  • Tao, F., H. Zhang, J. Hu, and X. H. Xia. 2016. Dynamics of green productivity growth for major Chinese urban agglomerations. Applied Energy 196:170–79. doi:10.1016/j.apenergy.2016.12.108.
  • Tian, P., and B. Lin. 2018. Regional technology gap in energy utilization in China’s light industry sector: Non-parametric meta-frontier and sequential DEA methods. Journal of Cleaner Production 178:880–89. doi:10.1016/j.jclepro.2018.01.017.
  • Wang, N., J. Chen, S. Yao, and Y.-C. Chang. 2018. A meta-frontier DEA approach to efficiency comparison of carbon reduction technologies on project level. Renewable and Sustainable Energy Reviews 82 (3):2606–12. doi:10.1016/j.rser.2017.09.088.
  • Wang, Q., Y.-H. Chiu, and C.-R. Chiu. 2017. Non-radial metafrontier approach to identify carbon emission performance and intensity. Renewable and Sustainable Energy Reviews 69:664–72. doi:10.1016/j.rser.2016.11.199.
  • Wang, Q., Z. Zhao, P. Zhou, and D. Zhou. 2013. Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Economic Modelling 35:283–89. doi:10.1016/j.econmod.2013.07.017.
  • Wang, S., and B. Chen. 2016. Energy–Water nexus of urban agglomeration based on multiregional input–Output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region. Applied Energy 178:773–83. doi:10.1016/j.apenergy.2016.06.112.
  • Yang, G., T. Sun, J. Wang, and X. Li. 2015. Modeling the nexus between carbon dioxide emissions and economic growth. Energy Policy 86:104–17. doi:10.1016/j.enpol.2015.06.031.
  • Yang, M., Q. An, T. Ding, P. Yin, and L. Liang. 2017. Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle. Annals of Operations Research. doi:10.1007/s10479-017-2682-1.
  • Yao, X., H. Zhou, A. Zhang, and A. Li. 2015. Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis. Energy Policy 84:142–54. doi:10.1016/j.enpol.2015.05.001.
  • Zhang, N., P. Zhou, and Y. Choi. 2013. Energy efficiency, CO2, emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance function analysis. Energy Policy 56 (2):653–62. doi:10.1016/j.enpol.2013.01.033.
  • Zhao, D., Y. Tang, J. Liu, and M. R. Tillotson. 2017. Water footprint of Jing-Jin-Ji urban agglomeration in China. Journal of Cleaner Production 167:919–28. doi:10.1016/j.jclepro.2017.07.012.
  • Zhou, P., B. Ang, and K. Poh. 2008. Measuring environmental performance under different environmental DEA technologies. Energy Economics 30:1–14. doi:10.1016/j.eneco.2006.05.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.