1,488
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 536-556 | Received 01 Oct 2018, Accepted 10 Oct 2018, Published online: 23 Nov 2018

References

  • Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. Latest update 2018;1–123. goldcopd.org.
  • GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017;5(9):691–706. doi:10.1016/S2213-2600(17)30293-X.
  • Caramori G, Casolari P, Barczyk A, Durham AL, Di Stefano A, Adcock I. COPD immunopathology. Semin Immunopathol. 2016;38(4):497–515. doi:10.1007/s00281-016-0561-5.
  • Kajstura J, Rota M, Hall SR, Hosoda T, D’Amario D, Sanada F, Zheng H, Ogórek B, Rondon-Clavo C, Ferreira-Martins J, et al. Evidence for human lung stem cells. N Engl J Med. 2011;364(19):1795–1806. doi:10.1056/NEJMoa1101324.
  • Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res. 2010;156(3):188–205. doi:10.1016/j.trsl.2010.06.007.
  • Adachi Y, Oyaizu H, Taketani S, Minamino K, Yamaguchi K, Shultz LD, Iwasaki M, Tomita M, Suzuki Y, Nakano K, et al. Treatment and transfer of emphysema by a new bone marrow transplantation method from normal mice to Tsk mice and vice versa. Stem Cells. 2006;24(9):2071–2077. doi:10.1634/stemcells.2005-0575.
  • Ishizawa K, Kubo H, Yamada M, Kobayashi S, Numasaki M, Ueda S, Suzuki T, Sasaki H. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett. 2004;556(1–3):249–252. doi:10.1016/S0014-5793(03)01399-1.
  • Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, Peister A, Wang MY, Prockop DJ. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA. 2003;100(5):2397–402. doi:10.1073/pnas.0437997100.
  • Yuhgetsu H, OhnoY, Funaguchi N, Asai T, Sawada M, Takemura G, Minatoguchi S, Fujiwara H, Fujiwara T. Beneficial effects of autologous bone marrow mononuclear cell transplantation against elastase-induced emphysema in rabbits. Exp Lung Res. 2006;32(9):413–426. doi:10.1080/01902140601047633.
  • Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z. Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci. 2008;13:3415–3422. doi:10.2741/2936.
  • Bittmann I, Dose T, Baretton GB, Müller C, Schwaiblmair M, Kur F, Löhrs U. Cellular chimerism of the lung after transplantation. An interphase cytogenetic study. Am J Clin Pathol. 2001;115(4):525–533. doi:10.1309/GAFN-5MPA-LY8E-DTPQ.
  • Kleeberger W, Versmold A, Rothamel T, Glockner S, Bredt M, Haverich A, Lehmann U, Kreipe H. Increased chimerism of bronchial and alveolar epithelium in human lung allografts undergoing chronic injury. Am J Pathol. 2003;162(5):1487–1494. doi:10.1016/S0002-9440(10)64281-2.
  • Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS, Williams MC, Fine A. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development. 2001;128(24):5181–5188. https://www.ncbi.nlm.nih.gov/pubmed/11748153
  • Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol. 2005;33(4):328–334. doi:10.1165/rcmb.2005-0175RC.
  • Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–377. doi:10.1016/S0092-8674(01)00328-2.
  • Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, Wang Z, Liao H, Toews GB, Krebsbach PH, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117(4):989–996. doi:10.1172/JCI29713.
  • Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. Stem cell transplantation: the lung barrier. Transplant Proc. 2007;39(2):573–576. doi:10.1016/j.transproceed.2006.12.019.
  • Suratt BT, Cool CD, Serls AE, Chen L, Varella-Garcia M, Shpall EJ, Brown KK, Worthen GS. Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2003;168(3):318–322. doi:10.1164/rccm.200301-145OC.
  • Yamada M, Kubo H, Kobayashi S, Ishizawa K, Numasaki M, Ueda S, Suzuki T, Sasaki H. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol. 2004;172(2):1266–1272. https://www.ncbi.nlm.nih.gov/pubmed/14707105
  • Weiss DJ, Kolls JK, Ortiz LA, Panoskaltsis-Mortari A, Prockop DJ. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc. 2008;5(5):637–667. doi:10.1513/pats.200804-037DW.
  • Van de Laar E, Clifford M, Hasenoeder S, Kim BR, Wang D, Lee S, Paterson J, Vu NM, Waddell TK, Keshavjee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160. doi:10.1186/s12931-014-0160-8.
  • Ghosh M, Ahmad S, Jian A, Li B, Smith RW, Helm KM, Seibold MA, Groshong SD, White CW, Reynolds SD. Human tracheobronchial basal cells. Normal versus remodeling/repairing phenotypes in vivo and in vitro. Am J Respir Cell Mol Biol. 2013;49(6):1127–1134. doi:10.1165/rcmb.2013-0049OC.
  • Hegab AE, Ha VL, Darmawan DO, Gilbert JL, Ooi AT, Attiga YS, Bisht B, Nickerson DW, Gomperts BN. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med. 2012;1(10):719–724. doi:10.5966/sctm.2012-0056.
  • Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BLM. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA. 2009;106(31):12771–12775. doi:10.1073/pnas.0906850106.
  • Shaykhiev R, Zuo WL, Chao IW, Fukui T, Witover B, Brekman A, Crystal RG. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc Natl Acad Sci USA. 2013;110(29):12102–12107. doi:10.1073/pnas.1303058110.
  • Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG. Cellular and molecular characteristics of basal cells in airway epithelium. Exp Lung Res. 2001;27(5):401–415. doi:10.1080/01902140120740.
  • Nakajima M, Kawanami O, Jin E, Ghazizadeh M, Honda M, Asano G, Horiba K, Ferrans VJ. Immunohistochemical and ultrastructural studies of basal cells, clara cells and bronchiolar cuboidal cells in normal human airways. Pathol Int. 1998;48(12):944–953. doi:10.1111/j.1440-1827.1998.tb03865.x.
  • Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH, Oren M, Jetten AM. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol 2004;287(1):C171–181. doi:10.1152/ajpcell.00226.2003.
  • Gonfloni S, Caputo V, Iannizzotto V. p63 in health and cancer. Int J Dev Biol. 2015;59(1–3):87–93. doi:10.1387/ijdb.150045sg.
  • Chilosi M, Doglioni C. Constitutive p63 expression in airway basal cells. A molecular target in diffuse lung diseases. Sarcoidosis Vasc Diffuse Lung Dis. 2001;18(1):23–26. https://www.ncbi.nlm.nih.gov/pubmed/?term=Constitutive+p63+expression+in+airway+basal+cells.+A+molecular+target+in+diffuse+lung+diseases
  • Arason AJ, Jonsdottir HR, Halldorsson S, Benediktsdottir BE, Bergthorsson JT, Ingthorsson S, Baldursson O, Sinha S, Gudjonsson T, Magnusson MK. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium. PLoS One. 2014;9(2):e88683. doi:10.1371/journal.pone.0088683.
  • Ghosh M, Ahmad S, White CW, Reynolds SD. Transplantation of airway epithelial stem/progenitor cells: a future for cell-based therapy. Am J Respir Cell Mol Biol. 2017;56(1):1–10. doi:10.1165/rcmb.2016-0181MA.
  • Zuo WL, Yang J, Gomi K, Chao I, Crystal RG, Shaykhiev R. EGF-amphiregulin interplay in airway stem/progenitor cells links the pathogenesis of smoking-induced lesions in the human airway epithelium. Stem Cells. 2017;35(3):824–837. doi:10.1002/stem.2512.
  • Liu Q, Li H, Wang Q, Zhang Y, Wang W, Dou S, Xiao W. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease. Respir Res. 2016;17(1):159–173. doi:10.1186/s12931-016-0463-z.
  • Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer. 2015;6(3–4):84–105. doi:10.18632/genesandcancer.40.
  • Yang J, Zuo WL, Fukui T, Chao I, Gomi K, Lee B, Staudt MR, Kaner RJ, Strulovici-Barel Y, Salit J, et al. Smoking-dependent distal-to-proximal repatterning of the adult human small airway epithelium. Am J Respir Crit Care Med. 2017;196(3):340–352. doi:10.1164/rccm.201608-1672OC.
  • Ghosh M, Miller YE, Nakachi I, Kwon JB, Barón AE, Brantley AE, Merrick DT, Franklin WA, Keith RL, Vandivier RW. Exhaustion of airway basal progenitor cells in early and established chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;197(7):885–896. doi:10.1164/rccm.201704-0667OC.
  • Staudt MR, Buro-Auriemma LJ, Walters MS, Salit J, Vincent T, Shaykhiev R, Mezey JG, Tilley AE, Kaner RJ, Ho MW, Crystal RG. Airway basal stem/progenitor cells have diminished capacity to regenerate airway epithelium in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190(8):955–958. doi:10.1164/rccm.201406-1167LE.
  • Ryan DM, Vincent TL, Salit J, Walters MS, Agosto-Perez F, Shaykhiev R, Strulovici-Barel Y, Downey RJ, Buro-Auriemma LJ, Staudt MR, et al. Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PLoS One. 2014;9(2):e88051. doi:10.1371/journal.pone.0088051.
  • Wansleeben C, Barkauskas CE, Rock JR, Hogan BL. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip Rev Dev Biol. 2013;2(1):131–148. doi:10.1002/wdev.58.
  • Engelhardt JF, Schlossberg H, Yankaskas JR, Dudus L. Progenitor cells of the adult human airway involved in submucosal gland development. Development. 1995;121(7):2031–2046. https://www.ncbi.nlm.nih.gov/pubmed/?term=Progenitor+cells+of+the+adult+human+airway+involved+in+submucosal+gland+development.
  • Swatek AM, Lynch TJ, Crooke AK, Anderson PJ, Tyler SR, Brooks L, Ivanovic M, Klesney-Tait JA, Eberlein M, Pena T, et al. Depletion of airway submucosal glands and TP63 + KRT5+ basal cells in obliterative bronchiolitis. Am J Respir Crit Care Med. 2018;197(8):1045–1057. doi:10.1164/rccm.201707-1368OC.
  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121(6):823–835. doi:10.1016/j.cell.2005.03.032.
  • Driscoll B, Kikuchi A, Lau AN, Lee J, Reddy R, Jesudason E, Kim CF, Warburton D. Isolation and characterization of distal lung progenitor cells. Methods Mol Biol. 2012;879:109–122. doi:10.1007/978-1-61779-815-3_7.
  • Kim CF. Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1092–1098. doi:10.1152/ajplung.00015.2007.
  • Kato T, Oka K, Nakamura T, Ito A. Bronchioalveolar morphogenesis of human bronchial epithelial cells depending upon hepatocyte growth factor. J Cell Mol Med. 2015;19(12):2818–2826. doi:10.1111/jcmm.12672.
  • Suzuki T, Suzuki S, Fujino N, Ota C, Yamada M, Suzuki T, Yamaya M, Kondo T, Kubo H. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am J Physiol Lung Cell Mol Physiol. 2014;306(9):L855–865. doi:10.1152/ajplung.00211.2013.
  • Lòpez-Giraldo A, Cruz T, Molins L, Guirao A, Cuerpo S, Ramirez J, Agusti A, Faner R. Characterization, localization and comparison of c-kit + lung cells in never smokers and smokers with and without COPD. BMC Pulm Med. 2018;18(1):123. doi:10.1186/s12890-018-0688-3.
  • Foronjy RF, Majka SM. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues. Cells. 2012;1(4):874. doi:10.3390/cells1040874.
  • Hogan B. Stemming lung disease? N Engl J Med. 2018;378(25):2439–2440. doi:10.1056/NEJMcibr1803540.
  • Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359(6380):1118–1123. doi:10.1126/science.aam6603.
  • Zacharias WJ, Frank DB, Zepp JA, Morley MP1, Alkhaleel FA, Kong J, Zhou S, Cantu E, Morrisey EE. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555(7695):251–255. doi:10.1038/nature25786.
  • Chen R, Zhang K, Chen H, Zhao X, Wang J, Li L, Cong Y, Ju Z, Xu D, Williams BR, et al. Telomerase deficiency causes alveolar stem cell senescence-associated low-grade inflammation in lungs. J Biol Chem. 2015;290(52):30813–30829. doi:10.1074/jbc.M115.681619.
  • Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, Suzuki S, Suzuki T, Yamada M, Kondo T, et al. Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest. 2011;91(3):363–378. doi:10.1038/labinvest.2010.187.
  • Horiguchi M, Kojima H, Sakai H, Kubo H, Yamashita C. Pulmonary administration of integrin-nanoparticles regenerates collapsed alveoli. J Control Release. 2014;187:167–174. doi:10.1016/j.jconrel.2014.05.050.
  • Sakai H, Horiguchi M, Ozawa C, Akita T, Hirota K, Shudo K, Terada H, Makino K, Kubo H, Yamashita C. Pulmonary administration of Am80 regenerates collapsed alveoli. J Control Release. 2014;196:154–160. doi:10.1016/j.jconrel.2014.10.004.
  • Horiguchi M, Oiso Y, Sakai H, Motomura T, Yamashita C. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration. J Control Release. 2015;213:112–119. doi:10.1016/j.jconrel.2015.07.004.
  • Fadini GP, Schiavon M, Cantini M, Baesso I, Facco M, Miorin M, Tassinato M, de Kreutzenberg S, Avogaro A, Agostini C. Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells. 2006;24(7):1806–1813. doi:10.1634/stemcells.2005-0440.
  • Huertas A, Testa U, Riccioni R, Petrucci E, Riti V, Savi D, Serra P, Bonsignore MR, Palange P. Bone marrow-derived progenitors are greatly reduced in patients with severe COPD and low-BMI. Respir Physiol Neurobiol. 2010;170(1):23–31. doi:10.1016/j.resp.2009.10.003.
  • Palange P, Testa U, Huertas A, Calabrò L, Antonucci R, Petrucci E, Pelosi E, Pasquini L, Satta A, Morici G, et al. Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. Eur Respir J. 2006;27(3):529–541. doi:10.1183/09031936.06.00120604.
  • Liu Y, Liu X, Lin G, Sun L, Li H, Xie C. Decreased CD34+ cell number is correlated with cardiac dysfunction in patients with acute exacerbation of COPD. Heart Lung Circ. 2014;23(9):875–882. doi:10.1016/j.hlc.2014.03.008.
  • Pizarro S, García-Lucio J, Peinado VI, Tura-Ceide O, Díez M, Blanco I, Sitges M, Petriz J, Torralba Y, Marín P, et al. Circulating progenitor cells and vascular dysfunction in chronic obstructive pulmonary disease. PLoS One. 2014;9(8):e106163. doi:10.1371/journal.pone.0106163.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–317. doi:10.1080/14653240600855905.
  • Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–478. doi:10.1146/annurev-pathol-011110-130230.
  • Beier JP, Bitto FF, Lange C, Klumpp D, Arkudas A, Bleiziffer O, Boos AM, Horch RE, Kneser U. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int. 2011;35(4):397–406. doi:10.1042/CBI20100417.
  • Ricciardi M, Malpeli G, Bifari F, Bassi G, Pacelli L, Nwabo Kamdje AH, Chilosi M, Krampera M. Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow. PLoS One 2012;7(5):e35639. doi:10.1371/journal.pone.0035639.
  • Sinclair KA, Yerkovich ST, Chen T, McQualter JL, Hopkins PM, Wells CA, Chambers DC. Mesenchymal stromal cells are readily recoverable from lung tissue, but not the alveolar space, in healthy humans. Stem Cells. 2016;34(10):2548–2558. doi:10.1002/stem.2419.
  • Walker N, Badri L, Wettlaufer S, Flint A, Sajjan U, Krebsbach PH, Keshamouni VG, Peters-Golden M, Lama VN. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am J Pathol. 2011;178(6):2461–2469. doi:10.1016/j.ajpath.2011.01.058.
  • Badri L, Murray S, Liu LX, Walker NM, Flint A, Wadhwa A, Chan KM, Toews GB, Pinsky DJ, Martinez FJ, et al. Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2011;183(8):1062–1070. doi:10.1164/rccm.201005-0742OC.
  • Nejad-Moghaddam A, Panahi Y, Abdollahpour Alitappeh M, Borna H, Shokrgozar MA, Ghanei M. Therapeutic potential of mesenchymal stem cells for the treatment of airway remodeling in pulmonary diseases. Iran J Allergy Asthma Immunol. 2015;14(6):552–568. https://www.ncbi.nlm.nih.gov/pubmed/26725553
  • Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle). 2015;4(11):623–630. doi:10.1089/wound.2014.0579.
  • Kruk DMLW, Heijink IH, Slebos DJ, Timens W, Ten Hacken NH. Mesenchymal stromal cells to regenerate emphysema: on the horizon? Respiration. 2018: 96(2):148–158. doi:10.1159/000488149.
  • Guan XJ, Song L, Han FF, Cui ZL, Chen X, Guo XJ, Xu WG. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem. 2013;114(2):323–335. doi:10.1002/jcb.24377.
  • Skurikhin EG, Pakhomova AV, Krupin VA, Pershina OV, Pan ES, Ermolaeva LA, Vaizova OE, Rybalkina OY, Dygai AM. Response of inflammatory mediators, extracellular matrix proteins and stem and progenitor cells to emphysema. Bull Exp Biol Med. 2016;161(4):566–570. doi:10.1007/s10517-016-3462-7.
  • Cappetta D, De Angelis A, Spaziano G, Tartaglione G, Piegari E, Esposito G, Ciuffreda LP, Liparulo A, Sgambato M, Russo TP, et al. Lung mesenchymal stem cells ameliorate elastase-induced damage in an animal model of emphysema. Stem Cells Int. 2018;2018:9492038. doi:10.1155/2018/9492038.
  • Katsha AM1, Ohkouchi S, Xin H, Kanehira M, Sun R, Nukiwa T, Saijo Y. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther. 2011;19(1):196–203. doi:10.1038/mt.2010.192.
  • Liu X, Fang Q, Kim H. Preclinical studies of mesenchymal stem cell (MSC) administration in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. PLoS One. 2016;11(6):e0157099. doi:10.1371/journal.pone.0157099.
  • Jin Z, Pan X, Zhou K, Bi H, Wang L, Yu L, Wang Q. Biological effects and mechanisms of action of mesenchymal stem cell therapy in chronic obstructive pulmonary disease. J Int Med Res. 2015;43(3):303–310. doi:10.1177/0300060514568733.
  • Gu W, Song L, Li XM, Wang D, Guo XJ, Xu WG. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 2015;5:8733. doi:10.1038/srep08733.
  • Karagiannis K, Proklou A, Tsitoura E, Lasithiotaki I, Kalpadaki C, Moraitaki D, Sperelakis I, Kontakis G, Antoniou KM, Tzanakis N. Impaired mRNA expression of the migration related chemokine receptor CXCR4 in mesenchymal stem cells of COPD Patients. Int J Inflam. 2017;2017:6089425. doi:10.1155/2017/6089425.
  • Broekman W, Roelofs H, Zarcone MC, Taube C, Stolk J, Hiemstra PS. Functional characterisation of bone marrow-derived mesenchymal stromal cells from COPD patients. ERJ Open Res. 2016;2(2): pii: 00045–2015. doi:10.1183/23120541.00045-2015.
  • Figeac F, Dagouassat M, Mahrouf-Yorgov M, Le Gouvello S, Trébeau C, Sayed A, Stern JB, Validire P, Dubois-Randé JL, Boczkowski J, et al. Lung fibroblasts share mesenchymal stem cell features which are altered in chronic obstructive pulmonary disease via the overactivation of the Hedgehog signaling pathway. PLoS One. 2015;10(3):e0121579. doi:10.1371/journal.pone.0121579.
  • Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85–89. doi:10.1038/8792.
  • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994;8(10):1224–1234. doi:10.1101/gad.8.10.1224.
  • Watanabe H, Tsuchiya T, Shimoyama K, Shimizu A, Akita S, Yukawa H, Baba Y, Nagayasu T. Adipose-derived mesenchymal stem cells attenuate rejection in a rat lung transplantation model. J Surg Res. 2018;227:17–27. doi:10.1016/j.jss.2018.01.016.
  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi:10.1089/107632701300062859.
  • Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, Kim YJ, Jo JY, Yoon EJ, Choi HJ, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20(8):1297–308. doi:10.1089/scd.2010.0466.
  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301. doi:10.1634/stemcells.2005-0342.
  • Fotia C, Massa A, Boriani F, Baldini N, Granchi D. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology. 2015;67(6):1073–1084. doi:10.1007/s10616-014-9731-2.
  • Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2(6):455–463. doi:10.5966/sctm.2012-0184.
  • Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–2752. doi:10.1089/scd.2011.0722.
  • Cho RJ, Kim YS, Kim JY, Oh YM. Human adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema. BMB Rep. 2017;50(2):79–84. doi:10.5483/BMBRep.2017.50.2.101.
  • Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM. Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema. Tuberc Respir Dis. 2014;77(3):116–123. doi:10.4046/trd.2014.77.3.116.
  • Shigemura N, Okumura M, Mizuno S, Imanishi Y, Nakamura T, Sawa Y. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant. 2006;6(11):2592–2600. doi:10.1111/j.1600-6143.2006.01522.x.
  • Hong Y, Kim YS, Hong SH, Oh YM. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model. Exp Mol Med. 2016;48(10):e266. doi:10.1038/emm.2016.93.
  • Schweitzer KS, Johnstone BH, Garrison J, Rush NI, Cooper S, Traktuev DO, Feng D, Adamowicz JJ, Van Demark M, Fisher AJ, et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 2011;183(2):215–225. doi:10.1164/rccm.201001-0126OC.
  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–967. doi:10.1126/science.275.5302.964.
  • Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23(7):1185–1189. doi:10.1161/01.ATV.0000073832.49290.B5.
  • Khakoo AY, Finkel T. Endothelial progenitor cells. Annu Rev Med. 2005;56:79–101. doi:10.1146/annurev.med.56.090203.104149.
  • Mund JA, Case J. The ontogeny of endothelial progenitor cells through flow cytometry. Curr Opin Hematol. 2011;18(3):166–170. doi:10.1097/MOH.0b013e328345a16a.
  • Mund JA, Estes ML, Yoder MC, Ingram DA Jr, Case J. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol. 2012;32(4):1045–1053. doi:10.1161/ATVBAHA.111.244210.
  • Estes ML, Mund JA, Ingram DA, Case J. Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr Protoc Cytom. 2010;9:1–11. doi:10.1002/0471142956.cy0933s52.
  • Schmidt-Lucke C, Fichtlscherer S, Aicher A, Tschöpe C, Schultheiss HP, Zeiher AM, Dimmeler S. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One. 2010;5(11):e13790. doi:10.1371/journal.pone.0013790.
  • Yang Y, Gan Y, Cao J, Chen Y, He ZH, Luo H, Cai S, Xiang XD, Zhou R, Chen P. Decreased and dysfunctional circulating endothelial progenitor cells in patients with chronic obstructive pulmonary disease. Chin Med J. 2013;126(17):3222–3227.
  • Paschalaki KE, Starke RD, Hu Y, Mercado N, Margariti A, Gorgoulis VG, Randi AM, Barnes PJ. Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence. Stem Cells. 2013;31(12):2813–2826. doi:10.1002/stem.1488.
  • Tilling L, Chowienczyk P, Clapp B. Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells. Br J Clin Pharmacol. 2009;68(4): 484–492. doi:10.1111/j.1365-2125.2009.03486.x.
  • Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999–1007. doi:10.1056/NEJMoa043814.
  • Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600. doi:10.1056/NEJMoa022287.
  • Samman TA, Hammadah M1, Sandesara PB, Hayek SS, Kalogeropoulos AP, Alkhoder A, Mohamed Kelli H, Topel M, Ghasemzadeh N, Chivukula K, et al. Progenitor cells and clinical outcomes in patients with heart failure. Circ Heart Fail. 2017;10(8). pii: e004106. doi:10.1161/CIRCHEARTFAILURE.117.004106.
  • Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rütten H, Fichtlscherer S, Martin H, Zeiher AM. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest. 2001;108(3):391–397. doi:10.1172/JCI13152.
  • Chen C, Yang S, Feng Y, Wu X, Chen D, Yu Q, Wang X, Li J, Chen J. Impairment of two types of circulating endothelial progenitor cells in patients with glucocorticoid-induced avascular osteonecrosis of the femoral head. Joint Bone Spine. 2013;80(1):70–76. doi:10.1016/j.jbspin.2012.02.015.
  • Peplow PV. Growth factor- and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization. Neural Regen Res. 2014;9(15):1425–1429. doi:10.4103/1673-5374.139457.
  • Maltais S, Perrault LP, Ly HQ. The bone marrow-cardiac axis: role of endothelial progenitor cells in heart failure. Eur J Cardiothorac Surg. 2011;39(3):368–374. doi:10.1016/j.ejcts.2010.04.022.
  • Kasahara Y, Tuder RM, Taraserviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberg J, Voelkel NF. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest. 2000;106(11):1311–1319. doi:10.1172/JCI10259.
  • Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 2001;163(3 Pt 1):737–744. doi:10.1164/ajrccm.163.3.2002117.
  • Caramori G, Casolari P, Giuffrè S, Barczyk A, Adcock I, Papi A. COPD pathology in the small airways. Panminerva Med. 2011;53(1):51–70. https://www.ncbi.nlm.nih.gov/pubmed/?term=Caramori+G%2C+Casolari+P%2C+Giuffr%C3%A8+S%2C+Barczyk+A%2C+Adcock+I%2C+Papi+A.+COPD+pathology+in+the+small+airways
  • Sala E, Villena C, Balaguer C, Ríos A, Fernández-Palomeque C, Cosío BG, García J, Noguera A, Agustí A. Abnormal levels of circulating endothelial progenitor cells during exacerbations of COPD. Lung. 2010;188(4):331–338. doi:10.1007/s00408-009-9225-8.
  • Liu P, Zhang H, Liu J, Sheng C, Zhang L, Zeng Y. Changes of number and function of late endothelial progenitor cells in peripheral blood of COPD patients combined with pulmonary hypertension. Thorac Cardiovasc Surg. 2016;64(4):323–329. doi:10.1055/s-0034-1389261.
  • Caramori G, Rigolin GM, Mazzoni F, Leprotti S, Campioni P, Papi A. Circulating endothelial stem cells are not decreased in pulmonary emphysema or COPD. Thorax. 2010;65(6):554–555. doi:10.1136/thx.2009.121640.
  • Peinado VI, Ramìrez J, Roca J, Rodriguez-Roisin R, Barberà JA. Identification of vascular progenitor cells in pulmonary arteries of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2006;34(3): 257–263. doi:10.1165/rcmb.2005-0255OC.
  • Brittan M, Hoogenboom MM, Padfield GJ, Tura O, Fujisawa T, Maclay JD, Macnee W, Mills NL. Endothelial progenitor cells in patients with chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2013;305(12):964–969. doi:10.1152/ajplung.00183.2013.
  • Janssen WJ, Yunt ZX, Muldrow A, Kearns MT, Kloepfer A, Barthel L, Bratton DL, Bowler RP, Henson PM. Circulating hematopoietic progenitor cells are decreased in COPD. COPD. 2014;11(3):277–289. doi:10.3109/15412555.2013.841668.
  • Doyle MF, Tracy RP, Parikh MA, Hoffman EA, Shimbo D, Austin JH, Smith BM, Hueper K, Vogel-Claussen J, Lima J, et al. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema. PLoS One. 2017;12(3):e0173446. doi:10.1371/journal.pone.0173446.
  • Takahashi T, Suzuki S, Kubo H, Yamaya M, Kurosawa S, Kato M. Impaired endothelial progenitor cell mobilization and colony-forming capacity in chronic obstructive pulmonary disease. Respirology. 2011;16(4):680–687. doi:10.1111/j.1440-1843.2011.01959.x.
  • Liu X, Xie C. Human endothelial progenitor cells isolated from COPD patients are dysfunctional. Mol Cell Biochem. 2012;363(1–2):53–63. doi:10.1007/s11010-011-1157-y.
  • Salter BM, Manzoor F, Beaudin S, Kjarsgaard M, Nair P, Gauvreau GM, Sehmi R. Dysregulation of vascular endothelial progenitor cells lung-homing in subjects with COPD. Can Respir J. 2016;2016:1472823. doi:10.1155/2016/1472823.
  • Kim EK, Lee JH, Jeong HC, Oh D, Hwang SG, Cho YW, Lee SJ, Oh YM, Lee SD. Impaired colony-forming capacity of circulating endothelial progenitor cells in patients with emphysema. Tohoku J Exp Med. 2012;227(4):321–331. doi:10.1620/tjem.227.321.
  • Herzog EL, Bucala R. Fibrocytes in health and disease. Exp Hematol. 2010;38(7):548–556. doi:10.1016/j.exphem.2010.03.004.
  • Dupin I, Allard B, Ozier A, Maurat E, Ousova O, Delbrel E, Trian T, Bui HN, Dromer C, Guisset O, et al. Blood fibrocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4-dependent pathway. J Allergy Clin Immunol. 2016;137(4):1036–1042. doi:10.1016/j.jaci.2015.08.043.
  • Keeley EC, Mehrad B, and Strieter RM. Fibrocytes: bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol. 2010;42(4):535–542. doi:10.1016/j.biocel.2009.10.014.
  • Bucala R. Fibrocytes at 20 years. Mol Med. 2015;21:3–5. doi:10.2119/molmed.2015.00043.
  • Peng H, Herzog E. Fibrocytes: emerging effector cells in chronic inflammation. Curr Opin Pharmacol. 2012;12(4):491–496. doi:10.1016/j.coph.2012.03.002.
  • Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. Regeneration (Oxf). 2018;5(1):3–25. doi:10.1002/reg2.97.
  • Bucala R. Review series-Inflammation & fibrosis. Fibrocytes and fibrosis. QJM. 2012;105(6):505–508. doi:10.1093/qjmed/hcs068.
  • Wright AK, Newby C, Hartley RA, Mistry V, Gupta S, Berair R, Roach KM, Saunders R, Thornton T, Shelley M, et al. Myeloid-derived suppressor cell-like fibrocytes are increased and associated with preserved lung function in chronic obstructive pulmonary disease. Allergy. 2017;72(4):645–655. doi:10.1111/all.13061.
  • Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67. doi:10.1152/physrev.00043.2011.
  • Lindström M, Thornell LE. New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol. 2009;132(2):141–157. doi:10.1007/s00418-009-0606-0.
  • Thériault ME, Paré MÈ, Lemire BB, Maltais F, Debigaré R. Regenerative defect in vastus lateralis muscle of patients with chronic obstructive pulmonary disease. Respir Res. 2014;15:35. doi:10.1186/1465-9921-15-35.
  • Menon MK, Houchen L, Singh SJ, Morgan MD, Bradding P, Steiner MC. Inflammatory and satellite cells in the quadriceps of patients with COPD and response to resistance training. Chest. 2012;142(5):1134–1142. doi:10.1378/chest.11-2144.
  • Thériault ME, Paré MÈ, Maltais F, Debigaré R. Satellite cells senescence in limb muscle of severe patients with COPD. PLoS One. 2012;7(6):e39124. doi:10.1371/journal.pone.0039124.
  • Pomiès P, Rodriguez J, Blaquière M, Sedraoui S, Gouzi F, Carnac G, Laoudj-Chenivesse D, Mercier J, Préfaut C, Hayot M. Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med. 2015;19(1):175–186. doi:10.1111/jcmm.12390.
  • Gouzi F, Blaquière M, Catteau M, Bughin F, Maury J, Passerieux E, Ayoub B, Mercier J, Hayot M, Pomiès P. Oxidative stress regulates autophagy in cultured muscle cells of patients with chronic obstructive pulmonary disease. J Cell Physiol. 2018; 233(12):9629–9639. doi:10.1002/jcp.26868.
  • Sovalat H, Scrofani M, Eidenschenk A, Pasquet S, Rimelen V, Hénon P. Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/ Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Exp Hematol. 2011;39(4):495–505. doi:10.1016/j.exphem.2011.01.003.
  • Havens AM, Sun H, Shiozawa Y, Jung Y, Wang J, Mishra A, Jiang Y, O’Neill DW, Krebsbach PH, Rodgerson DO, et al. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev. 2014;23(7):689–701. doi:10.1089/scd.2013.0362.
  • Guerin CL, Blandinières A, Planquette B, Silvestre JS, Israel-Biet D, Sanchez O, Smadja DM. Very small embryonic-like stem cells are mobilized in human peripheral blood during hypoxemic COPD exacerbations and pulmonary hypertension. Stem Cell Rev. 2017;13(4):561–566. doi:10.1007/s12015-017-9732-6.
  • Caramori G, Casolari P, Cavallesco GN, Giuffrè S, Adcock I, Papi A. Mechanisms involved in lung cancer development in COPD. Int J Biochem Cell Biol. 2011;43:1030–1044. doi:10.1016/j.biocel.2010.08.022.
  • Teisanu RM, Lagasse E, Whitesides JF, Stripp BR. Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics. Stem Cells. 2009;27(3):612–622. doi:10.1634/stemcells.2008-0838.
  • Regala RP, Davis RK, Kunz A, Khoor A, Leitges M, Fields AP. Atypical protein kinase C{iota} is required for bronchioalveolar stem cell expansion and lung tumorigenesis. Cancer Res. 2009;69(19):7603–7611. doi:10.1158/0008-5472.CAN-09-2066.
  • Butler JP, Loring SH, Patz S, Tsuda A, Yablonskiy DA, Mentzer SJ. Evidence for adult lung growth in humans. N Engl J Med. 2012;367(3):244–247. doi:10.1056/NEJMoa1203983.
  • Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–2286. doi:10.1016/j.jacc.2009.06.055.
  • Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–1598. doi:10.1378/chest.12-2094.
  • Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, Oostendorp J, Bajema I, Versteegh MI, Taube C, et al. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–336. doi:10.1093/qjmed/hcw001.
  • Jin H, Aiyer A, Su J, Borgstrom P, Stupack D, Friedlander M, and Varner J. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest. 2006;116(3):652–662. doi:10.1172/JCI24751.
  • Johnsen HE, Jensen L, Gaarsdal E, Hansen PB, Ersbøll J, Hansen NE. Priming with recombinant human hematopoietic cytokines before bone marrow harvest expands in vivo and enhances ex vivo recovery of myeloid progenitors in short-term liquid cultures. Exp Hematol. 1994;22(1):80–86. https://www.ncbi.nlm.nih.gov/pubmed/?term=Priming+with+recombinant+human+hematopoietic+cytokines+before+bone+marrow+harvest+expands+in+vivo+and+enhances+ex+vivo+recovery+of+myeloid+progenitors+in+short-term+liquid+cultures
  • Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. J Pathol. 2008;214(1):3–9. doi:10.1002/path.2283.
  • Slowman S, Danielson C, Graves V, Kotylo P, Broun R, McCarthy L. Administration of GM-/G-CSF prior to bone marrow harvest increases collection of CD34+ cells. Prog Clin Biol Res. 1994;389:363–369. https://www.ncbi.nlm.nih.gov/pubmed/?term=Administration+of+GM-%2FG-CSF+prior+to+bone+marrow+harvest+increases+collection+of+CD34%2B+cells
  • Ribeiro-Paes JT, Bilaqui A, Greco OT, Ruiz MA, Marcelino MY, Stessuk T, de Faria CA, Lago MR. Unicentric study of cell therapy in chronic obstructive pulmonary disease/pulmonary emphysema. Int J Chron Obstruct Pulmon Dis. 2011;6:63–71. doi:10.2147/COPD.S15292.
  • Stessuk T, Ruiz MA, Greco OT, Bilaqui A, Ribeiro-Paes MJ, Ribeiro-Paes JT. Phase I clinical trial of cell therapy in patients with advanced chronic obstructive pulmonary disease: follow-up of up to 3 years. Rev Bras Hematol Hemoter. 2013;35(5):352–357. doi:10.5581/1516-8484.20130113.
  • De Oliveira HG, Cruz FF, Antunes MA, de Macedo Neto AV, Oliveira GA, Svartman FM, Borgonovo T, Rebelatto CL, Weiss DJ, Brofman PR et al. Combined bone marrow-derived mesenchymal stromal cell therapy and one-way endobronchial valve placement in patients with pulmonary emphysema: a phase I clinical trial. Stem Cells Transl Med. 2017;6:962–969. doi:10.1002/sctm.16-0315.
  • Comella K, Blas JAP, Ichim T, Lopez J, Limon J, Moreno RC. Autologous stromal vascular fraction in the intravenous treatment of end-stage chronic obstructive pulmonary disease: a phase I trial of safety and tolerability. J Clin Med Res. 2017;9(8):701–708. doi:10.14740/jocmr3072w.
  • Nejad-Moghaddam A, Ajdari S, Tahmasbpour E, Goodarzi H, Panahi Y, Ghanei M. Adipose-derived mesenchymal stem cells for treatment of airway injuries in a patient after long-term exposure to sulfur mustard. Cell J. 2017;19(1):117–126. doi:10.22074/cellj.2016.4864.
  • Cheng SL, Lin CH, Yao CL. Mesenchymal stem cell administration in patients with chronic obstructive pulmonary disease: state of the science. Stem Cells Int. 2017;2017:8916570. doi:10.1155/2017/8916570.
  • Bateman ME, Strong AL, Gimble JM, Bunnell BA. Concise review: Using fat to fight disease: a systematic review of non-homologous adipose-derived stromal/stem cell therapies. Stem Cells. 2018;36(9):1311–1328. doi:10.1002/stem.2847
  • Lin F, Josephs SF, Alexandrescu DT, Ramos F, Bogin V, Gammill V, Dasanu CA, De Necochea-Campion R, Patel AN, Carrier E, et al. Lasers, stem cells, and COPD. J Transl Med. 2010;8:16. doi:10.1186/1479-5876-8-16.
  • Zhao R, Su Z, Wu J, Ji HL. Serious adverse events of cell therapy for respiratory diseases: a systematic review and meta-analysis. Oncotarget. 2017;8(18):30511–30523. doi:10.18632/oncotarget.15426.
  • Mummery C. Induced pluripotent stem cells-a cautionary note. N Engl J Med. 2011;364(22):2160–2162. doi:10.1056/NEJMcibr1103052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.