4,946
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Microbiome Links Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease and Dietary Fiber via the Gut-Lung Axis: A Narrative Review

ORCID Icon, , , , , & show all
Pages 10-17 | Received 15 Oct 2021, Accepted 08 Dec 2021, Published online: 29 Dec 2021

References

  • Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27(2):397–412. DOI:10.1183/09031936.06.00025805
  • Barnes PJ, Burney PG, Silverman EK, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015;1:15076. 10.1038/nrdp.2015.76.
  • Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet (London, England). 2017;389(10082):1931–1940. DOI:10.1016/S0140-6736(17)31222-9
  • López-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14–23. DOI:10.1111/resp.12660
  • Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012;5(1):7–18. DOI:10.1038/mi.2011.55
  • Gill SK, Rossi M, Bajka B, et al. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–116. DOI:10.1038/s41575-020-00375-4
  • Kaluza J, Larsson SC, Orsini N, et al. Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men. Thorax. 2017;72(6):500–509. DOI:10.1136/thoraxjnl-2015-207851
  • Szmidt MK, Kaluza J, Harris HR, et al. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of women. Eur J Nutr. 2020;59(5):1869–1879. DOI:10.1007/s00394-019-02038-w
  • Kan H, Stevens J, Heiss G, et al. Dietary fiber, lung function, and chronic obstructive pulmonary disease in the atherosclerosis risk in communities study. Am J Epidemiol. 2007;167(5):570–578. DOI:10.1093/aje/kwm343
  • Brigham EP, Steffen LM, London SJ, et al. Diet pattern and respiratory morbidity in the atherosclerosis risk in communities study. Ann Am Thorac Soc. 2018;15(6):675–682. DOI:10.1513/AnnalsATS.201707-571OC
  • Hanson C, Lyden E, Rennard S, et al. The relationship between dietary fiber intake and lung function in the national health and nutrition examination surveys. Ann Am Thorac Soc. 2016;13(5):643–650. DOI:10.1513/AnnalsATS.201509-609OC
  • Jang YO, Kim OH, Kim SJ, et al. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism. Sci Rep. 2021;11(1):7008. 10.1038/s41598-021-86404-x.
  • Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev. 2021;66:101235. DOI:10.1016/j.arr.2020.101235
  • Sze MA, Hogg JC, Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:229–238. DOI:10.2147/COPD.S38932
  • Lai HC, Lin TL, Chen TW, et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut. 2021. DOI:10.1136/gutjnl-2020-322599
  • Donovan C, Liu G, Shen S, et al. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol. 2020;108(3):925–935. DOI:10.1002/JLB.3MR0720-472RR
  • Young RP, Hopkins RJ. The mevalonate pathway and innate immune hyper-responsiveness in the pathogenesis of COPD and lung cancer: potential for chemoprevention. Curr Mol Pharmacol. 2017;10(1):46–59. DOI:10.2174/1874467209666160112130016
  • Vaughan A, Frazer ZA, Hansbro PM, et al. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173–S2180. DOI:10.21037/jtd.2019.10.40
  • Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011;6(2):e16384. DOI:10.1371/journal.pone.0016384
  • Wang L, Hao K, Yang T, et al. Role of the lung microbiome in the pathogenesis of chronic obstructive pulmonary disease. Chin Med J (Engl). 2017;130(17):2107–2111. DOI:10.4103/0366-6999.211452
  • Gollwitzer ES, Marsland BJ. Microbiota abnormalities in inflammatory airway diseases - potential for therapy. Pharmacol Ther. 2014;141(1):32–39. DOI:10.1016/j.pharmthera.2013.08.002
  • Madan JC, Koestler DC, Stanton BA, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio. 2012;3(4):e00251-12. DOI:10.1128/mBio.00251-12
  • Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–857. DOI:10.1126/science.aad8588
  • Shaw JG, Vaughan A, Dent AG, et al. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis. 2014;6(11):1532–1547. 10.3978/j.issn.2072-1439.2014.11.33.
  • Jones B, Donovan C, Liu G, et al. Animal models of COPD: what do they tell us? Respirology. 2017;22(1):21–32. DOI:10.1111/resp.12908
  • Shukla SD, Budden KF, Neal R, et al. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunol. 2017;6(3):e133. DOI:10.1038/cti.2017.6
  • Lee SH, Yun Y, Kim SJ, et al. Association between cigarette smoking status and composition of gut microbiota: population-based cross-sectional study. JCM. 2018;7(9):282. DOI:10.3390/jcm7090282
  • Biedermann L, Zeitz J, Mwinyi J, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3):e59260. DOI:10.1371/journal.pone.0059260
  • Simpson HL, Campbell BJ. Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther. 2015;42(2):158–179. DOI:10.1111/apt.13248
  • Nolan-Kenney R, Wu F, Hu J, et al. The association between smoking and gut microbiome in Bangladesh. Nicotine Tob Res. 2020;22(8):1339–1346. DOI:10.1093/ntr/ntz220
  • Wang H, Zhao JX, Hu N, et al. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins. World J Gastroenterol. 2012;18(18):2180–2187. DOI:10.3748/wjg.v18.i18.2180
  • Zheng DW, Li RQ, An JX, et al. Prebiotics-encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Adv Mater. 2020;32(45):e2004529. DOI:10.1002/adma.202004529
  • Sorbara MT, Littmann ER, Fontana E, et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe. 2020;28(1):134–146.e4. DOI:10.1016/j.chom.2020.05.005
  • Allais L, Kerckhof FM, Verschuere S, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol. 2016;18(5):1352–1363. DOI:10.1111/1462-2920.12934
  • Biedermann L, Brülisauer K, Zeitz J, et al. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis. 2014;20(9):1496–1501. DOI:10.1097/MIB.0000000000000129
  • Chen T, Long W, Zhang C, et al. Fiber-utilizing capacity varies in prevotella- versus bacteroides-dominated gut microbiota. Sci Rep. 2017;7(1):2594. 10.1038/s41598-017-02995-4.
  • Tam A, Filho F, Ra SW, et al. Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome. PLoS One. 2020;15(4):e0230932. DOI:10.1371/journal.pone.0230932
  • Jang YO, Lee SH, Choi JJ, et al. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis. Exp Mol Med. 2020;52(7):1128–1139. DOI:10.1038/s12276-020-0469-y
  • Tomoda K, Kubo K, Asahara T, et al. Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats. J Toxicol Sci. 2011;36(3):261–266. DOI:10.2131/jts.36.261
  • Verheijden KAT, van Bergenhenegouwen J, Garssen J, et al. Treatment with specific prebiotics or probiotics prevents the development of lung emphysema in a mouse model of COPD. Eur J Pharmacol. 2011;668:e12–e13. DOI:10.1016/j.ejphar.2011.09.220
  • Baughman RP, Thorpe JE, Staneck J, et al. Use of the protected specimen brush in patients with endotracheal or tracheostomy tubes. Chest. 1987;91(2):233–236. DOI:10.1378/chest.91.2.233
  • Thorpe JE, Baughman RP, Frame PT, et al. Bronchoalveolar lavage for diagnosing acute bacterial pneumonia. J Infect Dis. 1987;155(5):855–861. DOI:10.1093/infdis/155.5.855
  • Beauruelle C, Guilloux CA, Lamoureux C, et al. The human microbiome, an emerging key-player in the sex gap in respiratory diseases. Front Med (Lausanne). 2021;8:600879. DOI:10.3389/fmed.2021.600879
  • Han MK, Huang YJ, Lipuma JJ, et al. Significance of the microbiome in obstructive lung disease. Thorax. 2012;67(5):456–463. DOI:10.1136/thoraxjnl-2011-201183
  • Garmendia J, Morey P, Bengoechea JA. Impact of cigarette smoke exposure on host-bacterial pathogen interactions. Eur Respir J. 2012;39(2):467–477. DOI:10.1183/09031936.00061911
  • Mammen MJ, Sethi S. COPD and the microbiome. Respirology. 2016;21(4):590–599. DOI:10.1111/resp.12732
  • Sun Z, Zhu QL, Shen Y, et al. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations. Kaohsiung J Med Sci. 2020;36(2):107–113. DOI:10.1002/kjm2.12147
  • Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642–647. DOI:10.1038/nm.3568
  • Zhang R, Chen L, Cao L, et al. Effects of smoking on the lower respiratory tract microbiome in mice. Respir Res. 2018;19(1):253. DOI:10.1186/s12931-018-0959-9
  • Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578. DOI:10.1371/journal.pone.0008578
  • Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1073–1080. DOI:10.1164/rccm.201111-2075OC
  • Huang YJ, Kim E, Cox MJ, et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS. 2010;14(1):9–59. DOI:10.1089/omi.2009.0100
  • Chunxi L, Haiyue L, Yanxia L, et al. The gut microbiota and respiratory diseases: new evidence. J Immunol Res. 2020;2020:2340670. DOI:10.1155/2020/2340670
  • Raftery AL, Tsantikos E, Harris NL, et al. Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Front Immunol. 2020;11:2144. DOI:10.3389/fimmu.2020.02144
  • Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc. 2015;12(Suppl 2):S150–S156. 10.1513/AnnalsATS.201503-133AW.
  • Ubags N, Marsland BJ. Mechanistic insight into the function of the microbiome in lung diseases. Eur Respir J. 2017;50(3):1602467. DOI:10.1183/13993003.02467-2016
  • Kim RY, Pinkerton JW, Gibson PG, et al. Inflammasomes in COPD and neutrophilic asthma. Thorax. 2015;70(12):1199–1201. DOI:10.1136/thoraxjnl-2014-206736
  • Pinkerton JW, Kim RY, Robertson A, et al. Inflammasomes in the lung. Mol Immunol. 2017;86:44–55. DOI:10.1016/j.molimm.2017.01.014
  • Nakamura T. Growth factor and growth inhibitor for hepatocyte proliferation. Gan to Kagaku Ryoho. 1989;16(3 Pt 2):481–488.
  • Hopkins RJ, Young RP. Mevalonate signaling, COPD and cancer: the statins and beyond. Journal of investigative medicine: the official publication of the american federation for. J Investig Med. 2019;67(4):711–714. DOI:10.1136/jim-2018-000829
  • Yang W, Ni H, Wang H, et al. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. Int J Clin Exp Path. 2015;8(10):13209–13216.
  • Steinemann N, Grize L, Pons M, et al. Associations between dietary patterns and post-bronchodilation lung function in the SAPALDIA cohort. Respir Int Rev Thoracic Dis. 2018;95(6):454–463. DOI:10.1159/000488148
  • Ardestani ME, Onvani S, Esmailzadeh A, et al. Adherence to dietary approaches to stop hypertension (DASH) dietary pattern in relation to chronic obstructive pulmonary disease (COPD): a case-control study. J Am Coll Nutr. 2017;36(7):549–555. DOI:10.1080/07315724.2017.1326858
  • Varraso R, Willett WC, Camargo CAJr. Prospective study of dietary fiber and risk of chronic obstructive pulmonary disease among US women and men. Am J Epidemiol. 2010;171(7):776–784. DOI:10.1093/aje/kwp455
  • Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–1227. DOI:10.1136/gut.28.10.1221
  • Young RP, Hopkins RJ, Marsland B. The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2016;54(2):161–169. DOI:10.1165/rcmb.2015-0250PS
  • Wang B, Yao M, Lv L, et al. The human microbiota in health and disease. Engineering. 2017;3(1):71–82. DOI:10.1016/J.ENG.2017.01.008
  • Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716–1724.e242. DOI:10.1053/j.gastro.2009.08.042
  • Daniel S, Phillippi D, Schneider LJ, et al. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet. Part Fibre Toxicol. 2021;18(1):3. 10.1186/s12989-020-00393-9.