330
Views
19
CrossRef citations to date
0
Altmetric
Theory

Discontinuous Order Parameters in Liquid Crystal Theories

&

References

  • Ambrosio, L., Fusco, N., & Pallara, D. (2000). Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press.
  • Ball, J.M. (1982). Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. Royal Soc. London A, 306, 557–611.
  • Ball, J.M., & Bedford, S.J. Surface discontinuities of the director in liquid crystal theory. In preparation.
  • Ball, J.M., & James, R.D. (1987). Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal., 100, 13–52.
  • Ball, J.M., & James, R.D. (1992). Proposed experimental tests of a theory of fine microstructure, and the two-well problem. Phil. Trans. Roy. Soc. London A, 338, 389–450.
  • Ball, J.M., & Majumdar, A. Equilibrium order parameters of liquid crystals in the Q-tensor framework. In preparation.
  • Ball, J.M., & Majumdar, A. (2010). Nematic liquid crystals : from Maier-Saupe to a continuum theory. Molecular crystals and liquid crystals, 525, 1–11.
  • Ball, J.M., & Mora-Corral, C. (2009). A variational model allowing both smooth and sharp phase boundaries in solids. Communications on Pure and Applied Analysis, 8, 55–81. http://aimsciences.org/journals/cpaa/.
  • Ball, J.M., & Zarnescu, A. (2008). Orientable and non-orientable line field models for uniaxial nematic liquid crystals. Molecular crystals and liquid crystals, 495, 573–585. http://www.tandf.co.uk/journals/titles/1058725x.html.
  • Ball, J.M., & Zarnescu, A. (2011). Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal., 202, 493–535.
  • Barberi, R., Ciuchi, F., Durand, G.E., Iovane, M., Sikharulidze, D., Sonnet, A.M., & Virga, E.G. (2004). Electric field induced order reconstruction in a nematic cell. Eur. Phys. J. E, 13, 61–71.
  • Barbero, G., & Barberi, R. (1983). Critical thickness of a hybrid aligned nematic liquid crystal cell. J. Physique, 44, 609–616.
  • Bedford, S.J. (2014). Function spaces for liquid crystals. arXiv:1411.5297v1.
  • Bedford, S.J. (2015). Calculus of variations and its application to liquid crystals. PhD thesis, Mathematical Institute, University of Oxford.
  • Bhattacharya, K. (2003). Microstructure of Martensite. Oxford University Press.
  • Bisi, F., Gartland, E.C., Rosso, R., & Virga, E.G. (Aug 2003). Order reconstruction in frustrated nematic twist cells. Phys. Rev. E, 68, 021707.
  • Bladon, P., Terentjev, E.M., & Warner, M. (1993). Transitions and instabilities in liquid crystal elastomers. Phys. Rev. E, 47, R3838–3839.
  • Blanc, C., & Kléman, M. (1999). Curvature walls and focal conic domains in a lyotropic lamellar phase. Eur. Phys. J. B, 10, 53–60.
  • Bourdin, B., Francfort, G.A., & Marigo, J.-J. (2008). The variational approach to fracture. Journal of Elasticity, 91, 5–148.
  • Brezis, H., Coron, J.-M., & Lieb, E.H. (1986). Harmonic maps with defects. Comm. Math. Phys., 107(4), 649–705.
  • Calderer, M.-C., & Joo, S. (2008). A continuum theory of chiral smectic C liquid crystals. SIAM J. Appl. Math., 69(3), 787–809.
  • Calderer, M.-C., & Palffy-Muhoray, P. (2000). Ericksen’s bar and modeling of the smectic A–nematic phase transition. SIAM J. Appl. Math., 60(3), 1073–1098.
  • Cantor, G. (1884). De la puissance des ensembles parfaits de points. Acta Math., 4, 381–392. Reprinted in: E. Zermelo (Ed.), Gezammelte Abhandlungen Mathematischen und Philosophischen Inhalts, Springer, New York, 1980.
  • Carbone, G., Lombardo, G., & Barberi, R. (2009). Mechanically induced biaxial transition in a nanoconfined nematic liquid crystal with a topological defect. Phys. Rev. Letters, 103, 167801.
  • Chen, J., & Lubensky, T.C. (1976). Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions. Physical Review A, 14, 1202–1207.
  • Cohen, R., & Taylor, M. (1990). Weak stability of the map x| x| for liquid crystal functionals. Comm. Partial Differential Equations, 15(5), 675–692.
  • Coursault, D., Ibrahim, B.H., Pelliser, L., Zappone, B., de Martino, A., Lacaze, E., & Gallas, B. (2014). Modeling the optical properties of self-organized arrays of liquid crystal defects. Optics Express, 22, 023182.
  • Dacorogna, B. (2008). Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences. Springer, New York, second edition.
  • Davis, T.A., & Gartland, Jr., E.C. (1998). Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal., 35(1), 336–362.
  • de Gennes, P.G. (1972). An analogy between superconductors and smectics A. Solid State Communications, 10, 753–756.
  • de Gennes, P.G., & Prost, J. (1995). The Physics of Liquid Crystals, Second Edition, volume 83 of International Series of Monographs on Physics. Clarendon Press.
  • Designolle, V., Herminghaus, S., Pfohl, T., & Bahr, C. (2006). AFM study of defect-induced depressions of the smectic-A/air interface. Langmuir, 22, 363–368.
  • DeSimone, A., & Dolzmann, G. (2002). Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal., 161(3), 181–204.
  • Dozov, I., & Durand, G. (1994). Quantized grain boundaries in bent smectic-A liquid crystal. Europhys. Lett., 28, 25–30.
  • (1997). Nonlinear continuum theory of smectic-A liquid crystals. Arch. Rational Mech. Anal., 137(2), 159–175.
  • Ericksen, J.L. (1966). Inequalities in liquid crystals theory. Phys. Fluids, 9, 1205–1207.
  • Ericksen, J.L. (1990). Liquid crystals with variable degree of orientation. Arch. Rational Mech. Anal., 113(2), 97–120.
  • Evans, L.C. (2010). Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition.
  • Evans, L.C., & Gariepy, R. (1992). Measure Theory and Fine Properties of Functions. CRC Press.
  • Francfort, G.A., & Marigo, J.-J. (1998). Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46, 1319–1342.
  • Han, J., Luo, Y., Wang, W., Zhang, P., & Zhang, Z. (2014). From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal..
  • Hardt, R., Kinderlehrer, D., & Lin, F.-H. (1986). Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys., 105(4), 547–570.
  • Hardt, R., & Lin, F.-H. (1987). Mappings minimizing the Lp norm of the gradient. Comm. Pure Appl. Math., 40(5), 555–588.
  • Hélein, F. (1987). Minima de la fonctionnelle énergie libre des cristaux liquides. C. R. Acad. Sci. Paris Sér. I Math., 305(12), 565–568.
  • Hong, M.-C. (2004). Partial regularity of weak solutions of the liquid crystal equilibrium system. Indiana Univ. Math. J., 53(5), 1401–1414.
  • Iyer, G., Xu, X., & Zarnescu, A. (2014). Dynamic cubic instability in a 2D Q-tensor model for liquid crystals. arXiv 1406.4571.
  • Katriel, J., Kventsel, G.F., Luckhurst, G.R., & Sluckin, T.J. (1986). Free energies in the Landau and molecular field approaches. Liquid Crystals, 1, 337–55.
  • Kléman, M., & Parodi, O. (1975). Covariant elasticity for smectic-A. J. de Physique, 36, 671–681.
  • Kundler, I., & Finkelmann, H. (1995). Strain-induced director reorientation in nematic liquid single crystal elastomers. Macromol. Rapid Commun., 16, 679–686.
  • Lacaze, E., Michel, J.-P., Alba, M., & Goldmann, M. (2007). Planar anchoring and surface melting in the smectic-A phase. Phys. Rev. E, page 041702.
  • Lamy, X. (2014). Bifurcation analysis in a frustrated nematic cell. J. Nonlinear Sci..
  • Leslie, F.M., Stewart, I.W., & Nakagawa, M. (1991). A continuum theory for smectic C liquid crystals. Mol. Cryst. Liq. Cryst., 198, 443–454.
  • Lombardo, G., Ayeb, H., & Barberi, R. (2008). Dynamical numerical model for nematic order reconstruction. Phy. Rev. E, 77, 05170.
  • Lukyanchuk, I. (1998). Phase transition between the cholesteric and twist grain boundary C phases. Physical Review E, 57, 574–581.
  • Majumdar, A., & Zarnescu, A. (2010). Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal., 196(1), 227–280.
  • McMillan, W.L. (Sep 1971). Simple molecular model for the smectic A phase of liquid crystals. Phys. Rev. A, 4, 1238–1246.
  • Michel, J.-P., Lacaze, E., Alba, M., de Boissieu, M., Gailhanou, M., & Goldmann, M. (2004). Optical gratings formed in thin smectic films frustrated on a single crystalline substrate. Phys. Rev. E, 70, 011709.
  • Michel, J.-P., Lacaze, E., Goldmann, M., Gailhanou, M., de Boissieu, M., & Alba, M. (2006). Structure of smectic defect cores: X-ray study of 8CB liquid crystal ultrathin films. Phys. Rev. Lett., 96, 027803.
  • Mori, H., Gartland, E.C., Kelly, J.R., & Bos, P.J. (1999). Multidimensional director modeling using the Q tensor representation in a liquid crystal cell and its application to the π cell with patterned electrodes. Jap. J. App. Phys., 38, 135–146.
  • Mottram, N., & Newton, C. An introduction to Q-tensor theory. arXiv:1409.3542.
  • Nguyen, L., & Zarnescu, A. (2013). Refined approximation for minimizers of a Landau-de Gennes energy functional. Calc. Var. Partial Differential Equations, 47(1-2), 383–432.
  • Palffy-Muhoray, P., Gartland, E.C., & Kelly, J.R. (1994). A new configurational transition in inhomogeneous nematics. Liq. Cryst., 16, 713–718.
  • Pevnyi, M.Y., Selinger, J.V., & Sluckin, T.J. (2014). Modeling smectic layers in confined geometries: Order parameter and defects. Phys. Rev. E, 90, 032507.
  • Pizzirusso, A., Berardi, R., Muccioli, L., Riccia, M., & Zannoni, C. (2012). Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon. Chem. Sci., 3, 573–579.
  • Santangelo, C.D., & Kamien, R.D. (2005). Curvature and topology in smectic-A liquid crystals. Proc. R. Soc. A, 461(2061).
  • Schoen, R., & Uhlenbeck, K. (1982). A regularity theory for harmonic maps. J. Differential Geom., 17(2), 307–335.
  • Schoen, R., & Uhlenbeck, K. (1983). Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom., 18(2), 253–268.
  • Smalyukh, I.I., Senyuk, B.I., Palffy-Muhoray, P., Lavrentovich, O.D., Huang, H., Gartland, E.C., Bodnar, V.H., Kosa, T., & Taheri, B. (Dec 2005). Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys. Rev. E, 72, 061707.
  • Smith, G.F. (1971). On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Internat. J. Engrg. Sci., 9, 899–916.
  • Stewart, I.W. (2004). The static and dynamic theory of liquid crystals. Taylor and Francis.
  • Šverák, V., & Yan, X. (2000). A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differential Equations, 10, 213–221.
  • Virga, E.G. (1994). Variational theories for liquid crystals, volume 8 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London.
  • Warner, M., & Terentjev, E.M. (2003). Liquid crystal elastomers. International Series of Monographs on Physics. Oxford University Press.
  • Williams, C.E., & Kléman, M. (1975). Dislocations, grain boundaries and focal conics in smectics A. J. de Phys. Colloques, 36, C1–315.
  • Wright, D.C., & Mermin, N.D. (Apr 1989). Crystalline liquids: the blue phases. Rev. Mod. Phys., 61, 385–432.
  • Zappone, B., & Lacaze, E. (2008). Surface-frustrated periodic textures of smectic-A liquid crystals on crystalline surfaces. Phys. Rev. E, 78, 061704.
  • Zappone, B., Lacaze, E., Hayeb, H., Goldmann, M., Boudet, N., Barois, P., & Alba, M. (2011). Self-ordered arrays of linear defects and virtual singularities in thin smectic-A films. Soft Matter, 7, 1161–1167.
  • Zappone, B., Meyer, C., Bruno, L., & Lacaze, E. (2012). Periodic lattices of frustrated focal conic defect domains in smectic liquid crystal films. Soft Matter, 8, 4318–4326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.