809
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Membrane-Based Point-Of-Use Water Treatment (PoUWT) System in Emergency Situations

, &
Pages 50-67 | Received 14 Oct 2013, Accepted 05 Sep 2014, Published online: 20 Oct 2015

REFERENCES

  • Veer, D.T. (2002) Small community water supplies: Technology, people and partnership. Water Supply in Disasters and Emergencies; IRC: The Netherlands, 534–557.
  • Lantagne, D. and Clasen, T. (2012) Point-of-use water treatment in emergency response. Waterlines, 31: 30–52.
  • Michen, B., Meder, F., Rust, A., Fritsch, J., Aneziris, C., and Graule, T. (2012) Virus removal in ceramic depth filters based on diatomaceous earth. Environ. Sci. Technol., 46: 1170–1177.
  • Vitello, M., Andrew Curtis, E., and Mariesa, C. (2009) A mobile emergency drinking water system powered by renewable energy. World Environmental and Water Resources Congress, 2009: 5488–5497.
  • Lantagne, D. and Clasen, T. (2009) London School of Hygiene and Tropical Medicine. [Online]. www.ehproject.org/PDF/ehkm/lantagne-pou_emergencies2009.pdf. (accessed July 1, 2013)
  • Peter-Varbanets, M., Zurbrugg, C., Swartz, C., and Pronk, W. (2009) Decentralized systems for potable water and potential of membrane technology. Water Res., 43: 245–269.
  • Sobsey, M., Stauber, C., Casanova, L., Brown, J., and Elliott, M. (2008) Point of use household drinking water: A practical, effective solution for providing sustained access to safe drinkign water in the developing world. Environ. Sci. Technol., 42: 4261–4267.
  • Clasen, T., Naranjo, J., Frauchiger, D., and Gerba, C. (2009) Laboratory assessment of a gravity-fed ultrafiltration water treatment device designed for household use in low-income settings. Am. J. Trop. Med. Hyg., 80: 819–823.
  • Frandsen, V. 2008 [Online]. Available: http://www.vestergaard-frandsen.com/lifestraw.htm. [Accessed 1 July 2013].
  • Garsadi, R, Salim, H, Soekarno, I, Doppenberg, A, V.J.Q.J.C. (2009) Operational experience with a micro hydraulic mobile water treatment plant in Indonesia after the “Tsunami of 2004”. Desalination, 248: 91–98.
  • Butler, E, Silva, A, Horton, K, Rom, Z, Chwatko, M, Havasov, A, McCutcheon, J. (2013) Point of use water treatment with forward osmosis for emergency relief. Desalination, 312: 23–30.
  • Lv, Y, Xu, C, Yan, G, Guo, D, Xiao, Q. (2013) A review on CO2 capture using membrane gas absorption technology. Adv. Mater. Res., 616: 1541–1545.
  • Butler, R. (2010) Skyjuice technology impact on the U.N. MDG outcomes for safe affordable potable water. Desalination, 252: 205–211.
  • Elliott, M., Stauber, A., Koksal, C., DiGiano, F., and Sobsey, M. (2008) Reductions of E-coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res., 42: 2662–2670.
  • Oyanedel-Craver, V. and Smith, J. (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ. Sci. Technol., 42: 927–933.
  • Doocy, S, Burnham, G. (2006) Point-of-use water treatment and diarrhoea reduction on the emergency context: an effectiveness trial in Liberia. Tropical Health and International Health, 1542–1552.
  • Peter-Varbanets, M. and Pronk, W. (2006) Point-of-use membrane systems: place in the world of water supply. Techneau.
  • Ray, C., Babbar, A., Yoneyama, B., Sheild, L., and Respicio, B. (2013) Evaluation of low cost water purification systems for humanitarian assistance and disaster relief (HA/DR). Clean Techn Environ Policy, 345–357.
  • Loo, S.L., Fane, A., Krantz, W., and Lim, T.T. (2012) Emergency water supply: A review of potential technologies and selection criteria. Water Res., 46: 3125–3151.
  • Ogunyoku, T., Nover, D., McKenzie, E., Joshi, G., and Fleenor, W. (2011) Point-of-use drinking water treatment in the developing world: Community acceptance, project monitoring and revision. International Journal for Service Learning in Engineering, 6(1): 14–32.
  • Dorea, C. Coagulant-based emergency water treatment. Desalination 248: 83–90.
  • Floret, N., Viel, J., Mauny, F., Hoen, B., and Piarroux, R. (2006) Negligible risk for epidemics after geophysical disasters. Emerging Infect. Dis., 12(4): 543–548.
  • Thuy, N. (2010) Development of a water treatment system for emergency situations. Thesis of the Asian Institute of Technology, Bangkok, Thailand.
  • EM-DAT (2013) The OFDA/CRED International Disaster Database. [Online]. ( Accessed 31 August 2013).
  • Nobuhito, M., Cox, D., Yasuda, T., and Mase, H. (2013) Overview of the 2011 Tohoku earthquake tsunami damage and its relation to coastal protection along the Sanriku Coast. Earthq. Spectra, 29(s1): S127–S143.
  • Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K., Fukutani, Y., Abe, Y., and Imamura, F. (2013) Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Nat. Hazards, 1–23.
  • Suppasri, A., Mas, E., Koshimura, S., Imai, K., Harada, K., and Imamura, F. (2012) Developing tsunami fragility curves from the surveyed data of the 2011 Great East Japan tsunami in Sendai and Ishinomaki plains. Coast. Eng. J., 54(1): 1–16.
  • Brown, L. and Murray, V. (2013) Examining the relationship between infectious diseases and flooding in Europe: A systematic review and summary of possible public health interventions. Disaster Health, 1(2): 0–1.
  • Dasaklis, T., Pappis, C., and Rachaniotis, N. (2012) Epidemics control and logistics operations: A review. International J. Production Economics, 139(2): 393–410.
  • Krausmann, E., Renni, E., Campedel, M., and Cozzani, V. (2011) Industrial accidents triggered by earthquakes, floods and lightning: lesson learned from a database analysis. Nat. Hazards 59(1): 285–300.
  • Violette, S., Boulicot, G., and Gorelick, S. (2009) Tsunami-induced groundwater salinization in Southeastern India. Comptes Rendus Geosciences 341: 339–346.
  • Srivinas, H. and Nakagawa, Y. (2008) Environmental implications for disaster preparedness: lesson learnt from the Indian Ocean Tsunami. J. Environ. Manage., 89: 4–13.
  • Roig, B., Delpla, I., Baures, E., Jung, A., and Thomas, O. (2011) Analytical issues in monitoring drinking water contaminated related to short-term, heaby rainfall events. Trends Anal. Chem., 30: 1243–1251.
  • Mwabi, J., Adeyemo, F., Mahlangu, T., Mamba, B., Brouckaert, B., Swartz, C., Offringa, G., Mpenyana-Monyatsi, L., and Momba, M. (2011) Household water treatment systems: a solution to the production of safe drinking water by the low-income communities in Southern Africa. Phys. Chem. Earth, Pt. A/B/C 36(14): 1120–1128.
  • Sphere Project. (2011) The Sphere Handbook: Humanitarian Charter and Minimum Standards in Humanitarian Response; Practical Action Publishing: Geneva.
  • Lantagne, D. (2009) WASH Evidence Base/Knowledge Base and Data Collection Methodologies. (EB/DCM) Workshop Rapporteur Report: Geneva.
  • Cantrell, B. (2012) An evaluation of a water, sanitation, and hygiene programme in rural communities outside of Port-au-Prince, Haiti. Master dissertation, Georgia State University, Atlanta, GA.
  • Andey, E., Lanjewar, K., Muduli, and Labhasetwar, P. (2011) Performance of portable instant water filter developed for emergency water supply. International Journal of Water Resources and Arid Environments, 1(2): 146–152.
  • Sirajul-Islam, M., Brooks, A., Kabir, M., Jahid, I., Shafiqul Islam, M., Goswami, D., Nair, G., Larson, C., Yukiko, W., and Luby, S. (2007) Faecal contamination of drnking water sources of Dhaka City during the 2004 flood in Bangladesh and use of disinfectant for water treatment. J. Appl. Microbiol., 103(1): 80–87.
  • Bosch, A. (2010) Human enteric viruses in the water environment: a minireview. Int. J. Microbiol., 1(3): 191–196.
  • World Health Organization. (2006) Acute jaundice syndrome. Wkly Morb. Mortal. Rep., 23: 8.
  • Kouadio, I., Aljunid, S., Kamigaki, T., Hammad, K., and Oshitani, H. (2012) Infectious diseases following natural disasters: prevention and control measures. Expert Review Anti Infect. Therapy, 10(1): 95–104.
  • Jafari, N., Shahsanai, A., Memarzadeh, M., and Loghmani, A. (2011) Prevention of communicable diseases after disaster: A review. Journal of Research in Medical Sciences, 16(7): 956–962.
  • Cui, Z., Peng, W., Fan, Y., Xing, W., and Xu, N. (2013) Ceramic membrane filtration as seawater RO pre-treatment: influencing factors on the ceramic membrane flux and quality. Desalin. Water Treat. 51(13–15): 2575–2583.
  • Kochkodan, V., Johnson, D., and Hilal, N. (2013) Polymeric membranes: Surface modification for minimizing (bio) colloidal fouling. Adv. Colloid Interface Sci., 206: 1–25.
  • Romanos, G., Athanasekou, C., Likodimos, V., Aloupogiannis, P., and Falaras, P. (2013) Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment. Ind. Eng. Chem. Res., 52(39): 13938–13947.
  • Brown, J., Sobsey, M., and Loomis, D. (2008) Local drinking water filters reduce diarrheal disease in Cambodia: A randomized, controlled trial of the ceramic water purifier. Am. J. Trop. Med. Hyg., 79(3): 394–400.
  • Stauber, C., Elliott, M., Koksal, F., Ortiz, G., DiGiano, F., and Sobsey, M. (2006) Characterisation of the biosand filter for E. coli reductions from household drinking water under controlled laboratory and field use conditions. Water Sci. Technol., 54(3): 1–7.
  • Clasen, T., Brown, J., Collin, S., Suntura, O., and Cairncross, S. (2004) Reducing diarrhea through the use of household-based ceramic water filters: A randomized, controlled trial in rural Bolivia. Am. J. Trop. Med. Hyg., 70(6): 651.
  • Conroy, R, Elmore-Meegan, M, Joyce, T, McGuigan, K, Barnes, J. (1996) Solar disinfection of drinking water and diarrhoea in Maasai children: A controlled field trial. J.-Lancet, 348(9043): 1695–1697.
  • Powers, E., Hernandez, C., Boutros, S., and Harper, B. (1994) Biocidal efficacy of a flocculating emergency water purification tablet. Appl. Environ. Microbiol., 60(7): 2316–2323.
  • Wegelin, M., Canonica, S., Mechsner, K., Fleischmann, T., Pesaro, F., and Metzler, A. (1994) Solar water disinfection: Scope of the process and analysis of radiation experiments. Aqua, 43(4): 154–169.
  • Hoque, B. and Khanam, S. (2007) Efficiency and effectiveness of point-of-use technologies in emergency drinking water: An evaluation of PuR and Aquatab in rural Bangladesh. Dhaka, Bangladesh.
  • Patterson, C. and Adams, J. (2011) Emergency response planning to reduce the impact of contaminated drinking water during natural disasters. Front. Earth Sci., 5(4): 341–349.
  • Fahiminia, M., Mosaferi, M., Taadi, R., and Pourakbar, M. (2013) Evaluation of point-of-use drinking water systems’ performance and problems. Desalin. Water Treat. (ahead-of-print): 1–10.
  • Schlosser, O., Robert, C., Bourderioux, C., Rey, M., and Roubin, M. (2001) Bacterial removal from inexpensive portable water treatment systems for travellers. J. Travel Med., 8(1): 12–18.
  • Madaeni, S., Khorasani, A., Asgharpour, G.S., and Lotfi, M. (2013) Removal of mixtures of viruses using microfiltration membrane. Desalination, 51: 4313–4322.
  • Al-Amoudi, A. (2010) Factors affecting natural organic matter (NOM) and scaling of NF membranes: A review. Desalination, 259: 1–10.
  • Lee, K., Arnot, T., and Mattia, D. (2011) A review of reverse osmosis membrane materials for desalination–development to date and future potential. J. Membr. Sci., 370(1): 1–22.
  • Alturki, A., Tadkaew, N., McDonald, J., Khan, S., Price, W., and Nghiem, L. (2010) Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J. Membr. Sci., 365(1): 206–215.
  • Rana, D. and Matsuura, T. (2010) Surface modification for antifouling membranes. Chem. Rev. (Washington, DC, U. S.) 110: 2448–2471.
  • Stamm, M. (2008) Polymer Surfaces and Interfaces: Characterization, Modification and Applications, 1st ed., Springer: Berlin, Heidelberg.
  • Hamza, A., Pham, V., Matsuura, T., and Santerre, J. (1997) Development of membranes with low surface energy to reduce fouling in ultrafiltration applications. J. Membr. Sci., 131: 217–227.
  • Zhu, X, Loo, H, Bai, R. (2013) A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci. 436: 47–56.
  • Wu, Q. and Wu, B. (1995) Study of membrane morphology by image analysis of electron micrographs. J. Membr. Sci., 105: 113–120.
  • Kim, K., Fane, A., Ben Aim, R., Liu, M., Jonsson, G., Tessaro, I., Broek, A., and Bargeman, D. (1994) A comparative study of techniques used for porous membrane characterization: pore characterization. J. Membr. Sci., 87(1): 35–46.
  • Elimelech, M., Zhu, X., Childress, A., and Hong, S. (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci., 127(1): 101–109.
  • Wong, P., Kwon, Y., and Criddle, C. (2009) Use of atomic force microscopy and fractal geometry to characterize the roughness of nano-, micro-, and ultrafiltration membranes. J. Membr. Sci., 340: 117–132.
  • Ulbricht, M. (2006) Advanced functional polymer membranes. Polymer, 47(7): 2217–2262.
  • Tarleton, E, Wakeman, R. (1993) Understanding flux decline in crossflow microfiltration: Part 1. Effects of particle/pore size. Transactions of the IChemE, 71(A): 399–410.
  • Altmann, J. and Ripperger, S. (1997) Particle deposition and layer formation at crossflow microfiltration. J. Membr. Sci., 124: 119–128.
  • Wiesner, M. and Aptel, P. (1996) Mass transport and permeate flux and fouling in pressure driven process. AWWA. Water Treatment: Membrane Processes; McGraw-Hill: New York.
  • Palacio, L., Pradanos, P., Calvo, J., and Hernandez, A. (1999) Porosity measurements by a gas penetration method and other techniques applied to membrane characterization. Thin Solid Films, 348: 22–29.
  • Hu, C., Wang, S., Li, C., Chuang, C., and Tung, K. (2006) Ion exchange adsorption and membrane filtration hybrid process for protein mixture separation. J. Chem. Eng. Jpn., 39(12): 1283–1290.
  • Sur, H. and Chui, Z. (2005) Enhancement of MF of yeast suspensions using gas-sparging - effect of feed conditions. Sep. Purif. Technol., 41: 313–319.
  • Persson, A., Jonsson, A., and Zacchi, G. (2003) Transmission of BSA during cross-flow microfiltration: Influence of pH and salt concentration. J. Membr. Sci., 223(1): 11–21.
  • Velasco, C., Ouammou, M., Calvo, J., and Hernandez, A. (2003) Protein fouling in microfiltration: Deposition mechanism as a function of pressure for different pH. J. Colloid Interface Sci., 266(1): 148–152.
  • Jones, K. and O’Melia, C. (2000) Protein and humic acid adsorption onto hydrophilic membrane surfaces: Effects of pH and ionic strength. J. Membr. Sci., 165: 31–46.
  • Dvornic, P.R. (1991) Wholly aromatic polyamide‐hydrazides. V. Preparation and properties of semipermeable membranes from poly [4‐(terephthaloylamino) benzoic acid hydrazide]. J. Appl. Polym. Sci., 42(4): 957–972.
  • Chang, S, Ryan, M, Gupta, R. (1993) The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions. Rheol. Acta, 32(3): 263–269.
  • Cwirko, E. and Carbonell, R. (1989) Transport of electrolytes in charged pores: analysis using method of spatial averaging. J. Colloid Interface Sci., 129(2): 513–531.
  • Wakeman, R. (2007) The influence of particle properties on filtration. Sep. Purif. Technol., 58: 234–241.
  • Zhong, Z., Xing, W., Liu, X., Jin, W., and Xu, N. (2007) Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts. J. Membr. Sci., 301(1): 67–75.
  • Ripperger, S. and Altmann, J. (2002) Crossflow microfiltration-state of art. Sep. Purif. Technol., 26: 19–31.
  • Cheryan, M. (1998) Ultrafiltration and Microfiltration Handbook,: Technomic Publishing Company. Lancaster, PA.
  • Guiziou, G., Wakeman, R., and Daufin, G. (2002) Stability of latex crossflow filtration: cake properties and critical conditions of deposition. J. Chem. Eng., 85: 27–34.
  • Shamel, M. and Chung, O. (2006) Drinking water from desalination of seawater: optimization of reverse osmosis system operating parameters. J. Eng. Sci. Technol., 1(2): 203–211.
  • Lay, W., Liu, Y., and Fane, A. (2010) Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review. Water Res., 44: 21–40.
  • Shirazani, S., Lin, C., and Chen, D. (2010) Inorganic fouling of pressure-driven membrane processes— a critical review. Desalination, 250: 236–248.
  • Garba, Y., Taha, S., Gondrexon, N., and Dorange, G. (1999) Ion transport modelling through nanofiltration membranes. J. Membr. Sci., 160: 187–200.
  • Bohonak, D. and Zydney, A. (2005) Compaction and permeability effects with virus filtration membranes. J. Membr. Sci., 254: 71–79.
  • Stade, S., Kallioinen, M., Mikkola, A., Tuuva, T., and Manttari, M. (2013) Reversible and irreversible compaction of ultrafiltration membranes. Sep. Purif. Technol., 118: 127–134.
  • Kallioinen, M., Pekkarinen, M., Manttari, M., Nuortila-Jokinen, J., and Nystrom, M. (2007) Comparison of the performance of two different regenerated cellulose ultrafiltration membranes at high pressure. J. Membr. Sci., 294: 93–102.
  • Tessaro, I. and Jonsson, G. (1998) Ultrafiltration membranes: The effect of compaction under pressure and the solute dependence. Lat. Am. Appl. Res., 28: 229–233.
  • Persson, K., Gekas, V., and Tragardh, G. (1995) Study of membrane compaction and its influence on ultrafiltration water permeability. J. Membr. Sci., 100: 155–162.
  • Belfort, G., Alexandrowicz, G., and Marx, B. (1976) Artificial particulate fouling of hyperfiltration membranes. Desalination, 19: 127–138.
  • Peterson, R., Greenberg, A., Bond, L., and Krantz, W. (1998) Use of ultrasonic TDR for real-time nonivasive measurement of compressive strain during membrane compaction. Desalination, 116(2): 115–122.
  • Tarnawski, V. and Jelen, P. (1986) Estimation of compaction and fouling effects during membrane processing of cottage cheese whey. J. Food Eng., 5: 75–90.
  • Belfort, G., Davis, R., and Zydney, A. (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J. Membr. Sci., 96(1): 1–58.
  • Ayache, C., Pidou, M., Croué, J., Labanowski, L., Poussade, Y., Tazi-Pain, A., Keller, J, and Gernjak, W. (2013) Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment. Water Res., 47:2633–2642.
  • Tian, J., Ernst, M., Cui, F., and Jekel, M. (2013) Effect of different cations on UF membrane fouling by NOM fractions. Chem. Eng. J., 223:547–555.
  • Fan, L., Harris, J., Roddick, F., and Booker, N. (2001) Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res., 35(18): 4455–4463.
  • Churaev, N., Holdich, R., Prokopovich, P., Starov, V., and Vasin, S. (2005) Reversible adsorption inside pores of ultrafiltration membranes. J. Colloid Interface Sci., 288: 205–212.
  • Kosvintsev, S, Cumming, I, Holdich, R, Lloyd, D, Starov, V. (2003) Sieve mechanism of microfiltration separation. Colloids Surf., A 230(1–3): 167–182.
  • Kosvintsev, S., Holdich, R., Cumming, I., and Starov, V. (2002) Modelling of dead end microfiltration with pore blocking and cake formation. J. Membr. Sci., 208: 181–192.
  • Starov, V., Filippov, A., Lloyd, D., Shakravarti, S., and Glaser, S. (1994) Sieve mechanism of microfiltration. J. Membr. Sci., 89: 199–213.
  • Petsev, D, Starov, V, Ivanov, I. (1993) Concentrated dispersions of charged colloidal particles: Sedimentation, ultrafiltration and diffusion. Colloids Surf., A, 81: 65–81.
  • Howe, K. and Clark, M. (2002) Fouling of microfiltration and ultrafiltration membranes by natural waters. Environ. Sci. Technol., 36(16): 3571–3576.
  • Li, Q. and Elimelech, M. (2006) Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter. J. Membr. Sci., 278(1):72–82.
  • Contreras, A., Kim, A., and Li, Q. (2009) Combined fouling of nanofiltration membranes: mechanisms and effect of organic matter. J. Membr. Sci., 278: 87–95.
  • Israelachvili, J. (1992) Intermolecular and Surface Forces. Academic: London.
  • Gregory, J. (1975) Interaction of unequal double layers at constant charge. J. Colloid Interface Sci., 51(1): 44–51.
  • Rudolf, W. and Balmat, J. (1952) Colloids in sewage. I. Separation of sewage colloids with the aid of the electron microscope. Sewage Ind. Wastes, 24: 247–256.
  • Hermans, P. and Bredee, H. (1936) Principles of the mathematical treatment of constant-pressure filtration. J. Soc. Chem. Ind., T55: 1–4.
  • Gonsalves, V. (1950) A critical investigation on the viscose filtration process. Recl. Trav. Chim. Pays-Bas, 69(7): 873–903.
  • Grace, H. (1956) Structure and performance of filter media. II. Performance of filter media in liquid service. AIChE Journal, 2(3): 316–336.
  • Hermia, J. (1982) Constant pressure blocking filtration law application to power-law non-Newtonian fluid. Transactions of the Institute of Chemical Engineering, 60: 183–187.
  • Abdelrasoul, A., Doan, H., and Lohi, A. (2013) A mechanistic model for ultrafiltration membrane fouling by latex. J. Membr. Sci, 433: 88–89.
  • Hwang, K. and Lin, T. (2002) Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration. J. Membr. Sci., 199(1): 41–52.
  • Bowen, W., Calvo, J., and Hernandez, A. (1995) Steps of membrane blocking in flux decline during protein microfiltration. J. Membr. Sci., 101(1): 153–165.
  • Peter-Varbanets, M., Margot, J., Traber, J., and Pronk, W. (2011) Mechanisms of membrane fouling during ultra-low pressure ultrafiltration. J. Membr. Sci., 377: 42–53.
  • Ho, C, Zydney, A. (2000) A combined pore blockage and cake filtration model for protein fouling during microfiltration. J. Colloid Interface Sci. 232: 389–399.
  • Lee, S., Dilaver, M., Park, P., and Kim, J. (2013) Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J. Membr. Sci., 432: 97–105.
  • Gijiu, C., Dima, R., and Isopescu, R. (2012) Membrane fouling in dead-end microfiltration of yeast suspensions. Rev. Chim., 63(1): 60–63.
  • Sarkar, B, De, S. (2012) A combined complete pore blocking and cake filtration model for steady-state electric field-assisted ultrafiltration. AlChE Journal, 58(5): 1435–1446.
  • Duclos-Orsello, C, Li, W, Ho, C. (2006) A three mechanism model to describe fouling of microfiltration membranes. J. Membr. Sci., 280(1): 856–866.
  • Iritani, E, Mukai, Y, Furuta, M., Kawakami, T., and Katagiri, N. (2005) Blocking resistance of membrane during cake filtration of dilute suspensions. AlChE Journal, 51(9): 2609–2614.
  • Lee, D. (1997) Filter medium clogging during cake filtration. AlChE Journal, 43(1): 273–276.
  • Guo, W., Ngo, H., and Li, J. (2012) A mini-review on membrane fouling. Bioresour. Technol., 122: 27–34.
  • Chong, T., Wong, F., and Fane, A. (2008) Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: Experimental observations. J. Membr. Sci., 314: 101–111.
  • Hoek, E, Elimelech, M. (2003) Cake-enhanced concentration polarization: A new fouling mechanism for salt-rejecting membranes. Environ. Sci. Technol., 37(24): 5581–5588.
  • Song, L. and Elimelech, M. (1995) Theory of concentration polarization. J. Chem. Soc., Faraday Trans., 91(19): 3389–3398.
  • Hwang, K. and Hsueh, C. (2003) Dynamic analysis of cake properties in microfiltration of soft colloids. J. Membr. Sci., 214(2); 259–273.
  • Bacchin, P., Aimar, P., and Field, R. (2006) Critical and sustainable fluxes: Theory, experiments and applications. J. Membr. Sci., 281: 42–69.
  • Song, L. (1998) A new model for the calculation of the limiting flux in ultrafiltration. J. Membr. Sci., 144: 173–185.
  • Espinasse, B., Bacchin, P., and Pierre, A. (2002) On an experimental method to measure critical flux in ultrafiltration. Desalination, 146(1): 91–96.
  • Field, R., Wu, D., Howell, J., and Gupta, B. (1995) Critical flux concept for microfiltration fouling. J. Membr. Sci., 100: 259–272.
  • Field, R. and Pearce, G. (2011) Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci., 164(1): 38–44.
  • Bacchin, P. (2004) A possible link between critical and limiting flux for colloidal systems: Consideration of critical deposit formation along a membrane. J. Membr. Sci. 228(2): 237–241.
  • Mulder, M. (2003) Basic Principles of Membrane Technology; Kluwer Academic Publisher: The Netherlands.
  • Katadyn Products Inc, 2013. [Online]. Available: http://www.katadyn.com/. ( accessed July 2012).
  • Atkinson, S. (2006) Membranes help US military produce clean drinking water. Membr. Technol., 2: 7–8.
  • Wallace, M., Cui, Z., and Hankins, N. (2008) A thermodynamic benchmark for assessing an emergency drinking water device based on forward osmosis. Desalination, 227: 34–45.
  • Filtrix Co. (2007) Filtrix, FilterPen. [Online]. http://www.filterpen.co.nz (accessed 1 July 2014).
  • Ananto, G., Setiawan, A., and Darman, M. (2013) MSWT-01, flood disaster water treatment solution from common ideas. In IOP Conference Series: Materials Science and Engineering 46( 1); IOP Publishing.
  • Arnal, J., Sancho, M., Garcia-Fayos, B., Lora, J., and Verdu, G. (2007) Aquapot: UF real application for water potabilization in developing countries. Problems, location and solutions adopted. Desalination, 204: 316–321.
  • Pryor, M., Jacobs, E., Botes, J., and Pillay, V. (1998) A low pressure ultrafiltration membrane system for potable water supply to developing communities in South Africa. Desalination, 119: 103–111.
  • Frechen, F.B., Exler, H., Romaker, J., and Schier, W. (2011) Long-term behavior of a gravity-driven dead end membrane filtration unit for potable water supply in cases of disaster. Water Sci. Technol.: Water Supply, 11: 39–44.
  • Homespring. (2007) GE Water and Process Technology. [Online]. http://www.homespring.com. ( Accessed 1 July 2014).
  • Peter-Varbanets, M., Hammes, F., Vital, M., and Pronk, W. (2010) Stabilization of flux during dead-end ultra-low pressure ultrafiltration. Water Res., 44: 3607–3616.
  • Abbasi, M. and Mowla, D. (2013) Analysis of membrane pore-blocking models applied to the MF of real oily wastewaters treatment using mullite and mullite-alumina ceramic membranes. Desalin. Water Treat. (ahead-of-print): 1–13.
  • Affandy, A., Keshavarz-Moore, E., and Versteeg, H. (2013) Application of filtration blocking models to describe fouling and transmission of large plasmids DNA in sterile filtration. J. Membr. Sci., 437: 150–159.
  • Cassano, A, Conidi, C, Drioli, E. (2013) A membrane-based process for the valorization of the bergamot juice. Sep. Sci. Technol., 48(4): 537–546.
  • Emani, S., Uppaluri, R., and Purkait, M. (2013) Preparation and characterization of low cost ceramic membranes for mosambi juice clarification. Desalination, 317: 32–40.
  • Hosseinzadeh, M., Mehrnia, M., and Mostoufi, N. (2013) Experimental study and modelling of fouling in immersed membrane bioreactor operating in constant pressure filtration. Math. Probl. Eng., 2013.
  • Kazemi, M., Soltanieh, M., Yazdanshenas, M., and Fillaudeau, L. (2013) Influence of crossflow microfiltration on ceramic membrane fouling and beer quality. Desalin. Water Treat. (ahead-of-print): 1–11.
  • Masoudnia, K., Raisi, A., Aroujalian, A., and Fathizadeh, M. (2013) Treatment of oily wastewaters using the microfiltration process: Effect of operating parameters and membrane fouling study. Sep. Sci. Technol., 48(10): 1544–1555.
  • Mondal, S., Rai, C., and De, S. (2013) Identification of fouling mechanism during ultrafiltration of stevia extract. Food and Bioprocess Technol., 6(4): 1–10.
  • Nourbakhsh, H., Emam-Djomeh, Z., Mirsaeedghazi, H., Omid, M., and Moieni, S. (2013) Study of different fouling mechanisms during membrane clarification of red plum juice. Int. J. Food Sci. Technol., 49(1): 58–64.
  • Blankert, B., Betlem, B., and Roffel, B. (2006) Dynamic optimization of a dead-end filtration trajectory. J. Membr. Sci., 285(1): 90–95.
  • Field, R. (2010) Fundamentals of fouling in Membranes for water treatment: Volume 4, Wiley-Vch Verlag GmbH & Co. KGaA: Weinheim; 1–23.
  • Chen, J., Li, Q., and Elimelech, M. (2004) In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv. Colloid Interface Sci., 107: 83–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.