882
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Biomimetic Approaches for Membrane Technologies

, , , &
Pages 122-140 | Received 22 Nov 2014, Accepted 26 Feb 2015, Published online: 16 Nov 2015

REFERENCES

  • Qu, X., Brame, J., Li, Q., and Alvarez, P.J.J. (2013) Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Accts. Chem. Res., 46(3): 834– 843.
  • Zhao, J., Zhao, X., Jiang, Z., Li, Z., Fan, X., Zhu, J., Wu, H., Su, Y., Yang, D., Pan, F., and Shi, J. (2014) Biomimetic and bioinspired membranes: Preparation and application. Prog. Polym. Sci., DOI:10.1016/j.progpolymsci.2014.06.001.
  • Mulder, M. (1996). Basic Principles of Membrane Technology. 2nd ed. Kluwer Academic Press: Dordrecht, Netherlands.
  • Guofei, S. (2013). Biomimetic membranes for desalination and water reuse. MSc Thesis: National University of Singapore.
  • Tang, C.Y., Zhao, Y., Wang, R., Hélix-Nielsen, C., and Fane, A.G. (2013) Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 308: 34–40.
  • Zhao, Y., Vararattanavech, A., Li, X., Helix-Nielsen, C., Vissing, T., Torres, J., Wang, R., Fane, A.G., and Tang, C.Y. (2013) Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes. Environ. Sci. Technol., 47: 1496−1503.
  • Lee, K.P., Arnot, T.C., and Mattia, D. (2011) A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci., 370: 1–22.
  • Ma, H., Burger, C., Hsiao, B.S., and Chu, B. (2012) Highly permeable polymer membranes containing directed channels for water purification. ACS Macro Lett., 1: 723−726.
  • Glaser, D.E. and Viney, C. (2012) Biomimetic materials. In Biomaterials Science: An Introduction to Materials in Medicine; Ratner, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E., eds.; Academic Press: New York, Chapter I.2.18.
  • Kaufman, Y., Grinberg, S., Linder, C., Heldman, E., Gilron, J., and Freger, V. (2013) Fusion of bolaamphiphile micelles: A method to prepare stable supported biomimetic membranes. Langmuir 29: 1152−1161.
  • Martin, D.K. (2007) Nanobiotechnology of Biomimetic Membranes; Springer: New York.
  • Richter, R.P., Berat, R., and Brisson, A.R. (2006) Formation of solid-supported lipid bilayers: An integrated view. Langmuir 22: 3497–3505.
  • Castellana, E.T. and Cremer, P.S. (2006) Solid supported lipid bilayers: From biophysical studies to sensor design. Surf. Sci. Rep., 61: 429–444.
  • Erokhin, V. and Feigin, L.A. (1991) Deposition and investigation of protein Langmuir-Blodgett-films. Progr. Coll. Polym. Sci., 85: 47–51.
  • Mueller, P., Rudin, D.O., Tien, H.T., and Wescott, W.C. (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, 194: 979–981.
  • Helix-Nielsen, C. (2010) Major intrinsic proteins in biomimetic membranes. In Mips and Their Role in the Exchange of Metalloids; Springer: Heidelberg, Chapter 10, pp. 127–142,
  • Zhang, L.F. and Eisenberg, A. (1995) Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylic acid) block-copolymers. Science, 268: 1728–1731.
  • Discher, D.E. and Eisenberg, A. (2002) Polymer vesicles. Science, 297: 967–973.
  • Graff, A., Winterhalter, M., and Meier, W. (2001) Nanoreactors from polymer-stabilized liposomes. Langmuir, 17: 919–923.
  • Meier, W., Nardin, C., and Winterhalter, M. (2000) Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew. Chem. Int. Edit., 39: 4599.
  • Ho, D., Chu, B., Lee, H., and Montemagno, C.D. (2004) Protein-driven energy transduction across polymeric biomembranes. Nanotechnology, 15: 1084–1094.
  • Kumar, M., Grzelakowski, M., Zilles, J., Clark, M., and Meier, W. (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. U.S.A., 104(52): 20719–20724.
  • Kaufman, Y. and Freger, V. (2011) Supported Biomimetic Membranes for Pressure-Driven Water Purification on Biomimetics; Pramatarova, L., ed. ISBN: 978-953-307-271-5, InTech. http://www.intechopen.com/books/on-biomimetics/supported-biomimetic-membranes-for-pressure-drivenwater-purification ( accessed October 9, 2014).
  • Öberg, F. (2011) Aquaporins Production Optimization and Characterization, Thesis, University of Gothenburg, Sweden.
  • Fisher, R.J. (2000) Biomimetic Systems. The Biomedical Engineering Handbook, 2nd Ed.; Bronzino, J.D., ed.; CRC Press: Boca Raton, Florida.
  • Gonen, T. and Walz, T. (2006) The structure of aquaporins. Q. Rev. Biophys., 39: 361–396.
  • Zhao, C.X., Shao, H.B., and Chu, L.Y. (2008) Aquaporin structure–function relationships: Water flow through plant living cells. Coll. Surf. B, 62: 163–172.
  • Hovijitra, N.T., Wuu, J.J., Peaker, B., and Swartz, J.R. (2009) Cell-free synthesis of functional aquaporin z in synthetic liposomes. Biotechnol. Bioeng., 104(1): 40–49.
  • Hedfalk, K., Tornroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P., and Neutze, R. (2006) Aquaporin gating. Curr. Opin. Struc. Biol., 16: 447–456.
  • Calamita, G. (2000) The Escherichia coli aquaporin-Z water channel. Mol. Microbiol., 37(2): 254–262.
  • Barboiu, M. and Gilles, A. (2013) From natural to bioassisted and biomimetic artificial water channel systems. Accts. Chem. Res., 46 12: 2814–2823.
  • Zhang, Y., Cui, Y., and Chen, L.Y. (2012) Mercury inhibits the L170C mutant of aquaporin Z by making waters clog the water channel. Biophys. Chem., 160: 69–74.
  • Shen, Y.X., Saboe, P.O., Sines, I.T., Erbakan, M., and Kumar, M. (2014) Biomimetic membranes: A review. J. Membr. Sci., 454: 359–381.
  • Hub, J.S. and de Groot, B.L. (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl. Acad. Sci. U.S.A., 105(4): 1198–1203.
  • Engel, A., Fujiyoshi, Y., Gonen, T., and Walz, T. (2008) Junction-forming aquaporins. Curr. Opin. Struc. Biol., 18: 229–235.
  • Shi, L.B., Skach, W.R., Ma, T., and Verkman, A.S. (1995) Distinct biogenesis mechanisms for the water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry-US, 34: 8250–8256.
  • Soupene, E., King, N., Lee, H., and Kustu, S. (2002) Aquaporin Z of Escherichia coli: reassessment of its regulation and physiological role. J. Bacteriol., 184(15): 4304–4307.
  • Kaldenhoff, R., Bertl, A., Otto, B., Moshelion, M., and Uehlein, N. (2007) Characterization of plant aquaporins. Meth. Enzymol., 428: 505–531.
  • Yokoyama, S. (2003) Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol., 7(1): 39–43.
  • Wagner, S., Bader, M.L., Drew, D., and de Gier, J.W. (2006) Rationalizing membrane protein overexpression. Trends Biotechnol., 24 (8): 364–371.
  • Grisshammer, R. (2006) Understanding recombinant expression of membrane proteins. Curr. Opin. Biotechnol., 17(4): 337–340.
  • Yang, B., van Hoek, A.N., and Verkman, A.S. (1997) Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Biochemistry-US, 36: 7625–7632.
  • Altamura, N. and Calamita, G. (2012) Systems for production of proteins for biomimetic membrane devices. In: Biomimetic Membranes for Sensor and Separation Applications; Hélix-Nielsen, C., ed.; Springer: Dordrecht, the Netherlands.
  • Zhang, X., Lian, J., Kai, L., Huang, L., Cen, P., and Xu, Z. (2014) Enhanced functional expression of aquaporin Z via fusion of in situ cleavable leader peptides in Escherichia coli cell-free system. Enzyme Microb. Tech., 55: 26–30.
  • Hayakawa, S., Mori, M., Okuta, A., Kamegawa, A., Fujiyoshi, Y., Yoshiyama, Y., Mitsuoka, K., Ishibashi, K., Sasaki, S., Hattori, T., and Kuwabara, S. (2008) Neuromyelitis optica and anti-aquaporin-4 antibodies measured by an enzyme-linked immunosorbent assay. J. Neuroimmunol., 196(1–2): 181–187.
  • Ashe, M.P. and Bill, R.M. (2011) Mapping the yeast host cell response to recombinant membrane protein production: Relieving the biological bottlenecks. Biotechnol. J., 6(6): 707–714.
  • Kim, R. (2007) Protein expression in Escherichia coli. In Methods Express: Expression Systems; Dyson M.R., Durocher, Y., eds. Scion Publishing Ltd.: Bloxham, UK.
  • LaVallie, E.R., Lu, Z., Diblasio-Smith, E.A., Collins-Racie, L.A., and McCoy, J.M. (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in escherichia coli. Meth. Enzymol., 326: 322–340.
  • Zhan, Y., Song, X., and Zhou, G.W. (2001) Structural analysis of regulatory protein domains using gst- fusion proteins. Gene, 281(1–2): 1–9.
  • Savage, D.F., Egea, P.F., Robles-Colmenares, Y., O’Connell 3rd, J.D., Stroud, R.M. (2003) Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin z. PLoS Biol., 1(3): E72.
  • Lee, J.K., Kozono, D., Remis, J., Kitagawa, Y., Agre, P., Stroud, R.M. (2005) Structural basis for conductance by the archaeal aquaporin aqpm at 1.68 a. Proc. Natl. Acad. Sci. U.S.A., 102(52): 18932–18937.
  • Tate C.G. (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett., 504(3): 94–98.
  • Lian, J., Ding, S., Cai, J., Zhang, D., Xu, Z., and Wang, X. (2009). Improving aquaporin Z expression in Escherichia coli by fusion partners and subsequent condition optimization. Appl. Microbiol. Biotechnol., 82(3), 463–470.
  • Begum, R.R., Newbold, R.J., and Whitford, D. (2000) Purification of the membrane binding domain of cytochrome b5 by immobilised nickel chelate chromatography. J. Chromatogr. B Biomed. Sci. Appl., 737(1–2): 119–130.
  • Zhang, Y., Olsen, D.R., Nguyen, K.B., Olson, P.S., Rhodes, E.T., and Mascarenhas, D. (1998) Expression of eukaryotic proteins in soluble form in Escherichia coli. Prot. Expres. Purif., 12:159–165.
  • Kapust, R.B. and Waugh, D.S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Prot. Sci., 8(8): 1668–1674.
  • Samuelsson, E., Moks, T., Nilsson, B., and Uhlen, M. (1994) Enhanced in vitro refolding of insulin-like growth factor I using a solubilizing fusion partner. Biochemistry, 33: 4207–4211.
  • Power, R.F., Conneely, O.M., McDonnell, D.P., Clark, J.H., Butt, T.R., Schrader, W.T., and O’Malley, B.W. (1990) High level expression of a truncated chicken progesterone receptor in Escherichia coli. J. Biol. Chem., 265(3): 1419–1424.
  • Kozono, D., Ding, X.D., Iwasaki, I., Meng, X.Y., Kamagata, Y., Agre, P., and Kitagawa, Y. (2003) Functional expression and characterization of an Archaeal aquaporin: AqpM from Methanothermobacter marburgensis. J. Biol. Chem., 278(12): 10649–10656,
  • Midgett, C.R. and Madden, D.R. (2007) Breaking the bottleneck: eukaryotic membrane protein expression for high-resolution structural studies. J. Struct. Biol., 160(3): 265–274.
  • Fischer, G., Kosinska-Eriksson, U., Aponte-Santamaría, C., Palmgren, M., Geijer, C., Hedfalk, K., Hohmann, S., de Groot, B.L., Neutze, R., and Lindkvist-Petersson, K. (2009) Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism. PLoS Biol., 7(6): e1000130.
  • Porro, D., Sauer, M., Branduardi, P., and Mattanovich, D. (2005) Recombinant protein production in yeasts. Mol. Biotechnol., 31(3): 245–259.
  • Pettersson, N., Hagström, J., Bill, R.M., and Hohmann, S. (2006). Expression of heterologous aquaporins for functional analysis in Saccharomyces cerevisiae. Curr. Genet., 50(4): 247– 255.
  • Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Moller, I.M., Schjoerring, J.K., and Jahn, T.P. (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem., 282(2): 1183–1192.
  • Werten, P.J., Hasler, L., Koenderink, J.B., Klaassen, C.H., de Grip, W.J., Engel, A., and Deen, P.M. (2001) Large-scale purification of functional recombinant human aquaporin-2. FEBS Lett., 504(3): 200–205.
  • Azad, A.K., Sawa, Y., Ishikawa, T., and Shibata, H. (2009) Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis. Appl. Environ. Microb., 75(9): 2792–2797.
  • Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A., and Fujiyoshi, Y. (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J. Mol. Biol., 355(4): 628–639.
  • Yakata, K., Hiroaki, Y., Ishibashi, K., Sohara, E., Sasaki, S., Mitsuoka, K., and Fujiyoshi, Y. (2007) Aquaporin-11 containing a divergent npa motif has normal water channel activity. Biochim. Biophys. Acta, 1768 (3): 688–693.
  • Klammt, C., Lohr, F., Schafer, B., Haase, W., Dotsch, V., Ruterjans, H., Glaubitz, C., and Bernhard, F. (2004) High level cell-free expression and specifi c labeling of integral membrane proteins. Eur. J. Biochem., 271(3): 568–580.
  • Klammt, C., Schwarz, D., Eifler, N., Engel, A., Piehler, J., Haase, W., Hahn, S., Dotsch, V., and Bernhard, F. (2007) Cell-free production of G protein-coupled receptors for functional and structural studies. J. Struct. Biol., 158 (3): 482–493.
  • Liguori, L., Marques, B., Villegas-Mendez, A., Rothe, R., and Lenormand, J.L. (2007) Production of membrane proteins using cell-free expression systems. Expt. Rev. Proteom., 4(1): 79–90.
  • Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dotsch, V., and Bernhard, F. (2005) Evaluation of detergents for the soluble expression of α-helical and β-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J., 272: 6024–38.
  • Nomura, S.M., Kondoh, S., Asayama, W., Asada, A., Nishikawa, S., and Akiyoshi, K. (2008) Direct preparation of giant proteo-liposomes by in vitro membrane protein synthesis. J Biotechnol. 133:190–5.
  • Xu, Z., Lian, J., and Cai, J. (2010) Efficient expression of aquaporin Z in Escherichia coli cell-free system using different fusion vectors. Prot. Pept. Lett., 17(2): 181–185.
  • Zawada, J.F., Yin, G., Steiner, A.R., Yang, J., Naresh, A., Roy, S.M., and Murray, C.J. (2011) Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol. Bioeng., 108(7): 1570–1578.
  • Schwarz, D., Junge, F., Durst, F., Frolich, N., Schneider, B., Reckel, S., Sobhanifar, S., Dotsch, V., and Bernhard, F. (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc., 2(11): 2945–2957.
  • Kaufman, Y., Berman, A., and Freger, V. (2010) Supported lipid bilayer membranes for water purification by reverse osmosis. Langmuir, 26(10): 7388–7395.
  • Kumar, M., Payne, M.M., Poust, S.K., and Zilles, J.L. (2012) Polymer-based biomimetic membranes for desalination. In Biomimetic Membranes for Sensor and Separation Applications, Biological and Medical Physics, Biomedical Engineering; Hélix-Nielsen, C., ed.; Springer Science + Business Media B.V.: Heidelberg, 43–62.
  • Novel Water Treatment Technology Surfaces at Ingenuity Lab: “Aquaporins.” http://genesisnanotech.com/2014/03/novel-water-treatment-technology-surfaces-ingenuity-lab-aquaporins/#.VjhaNbfhBD8 ( accessed November 14, 2014).
  • Li, X., Wang, R., Tang, C., Vararattanavech, A., Zhao, Y., Torres, J., and Fane, T. (2012) Preparation of supported lipid membranes for aquaporin Z incorporation. Coll. Surf. B., 94: 333–340.
  • Zhong, P.S., Chung, T.S., Jeyaseelan, K., and Armugam, A. (2012) Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci., 407–408:27–33.
  • Sun, G., Chung, T.S., Jeyaseelan, K., and Armugam, A. (2013) Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Coll. Surf. B, 102: 466–471.
  • Wang, H., Chung, T.S., and Tong, Y.W. (2013) Study on water transport through a mechanically robust Aquaporin Z biomimetic membrane. J. Membr. Sci., 445: 47–52.
  • Sun, G., Zhou, H., Li, Y., Jeyaseelan, K., Armugam, A., and Chung, T.S. (2012) A novel method of AquaporinZ incorporation via binary-lipid Langmuir Monolayers, Coll. Surf. B, 89: 283– 288.
  • Zhao, Y., Qiu, C., Li, X., Vararattanavech, A., Shen, W., Torres, J., Helix-Nielsen, C., Wang, R., Hu, X., Fane, A.G., Tang, C.Y. (2012) Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization J. Membr. Sci., 423–424:422–428.
  • Xie, W., He, F., Wang, B., Chung, T.S., Jeyaseelan, K., Armugam, A., and Tong, Y.W. (2013) An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J. Mater. Chem. A, 1: 7592.
  • Duong, P.H.H., Chung, T.S., Jeyaseelan, K., Armugam, A., Chen, Z., Yang, J., Hong, M. (2012) Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci., 409–410:34–43.
  • Kumar, M., Clark, M., Zilles, J.M., Grzelakowski, M., Nehring, R., Meier. (2011) Highly permeable polymeric membranes. U.S. Patent 2011/0046074 A1, February 24, 2011.
  • Freger, V., Berman, A., Kaufman, Y. (2011) Biomimetic membranes, their production and uses thereof in water purification, U.S. Patent US 2011/0084026 A1, April 14, 2011.
  • Jensen, P. (2007) Biomimetic water membrane comprising aquaporins used in the production of salinity power, Patent WO 2007/033675 A1, March 29, 2007.
  • Kiddle, S. and Hansen, J. (2010) Assays relating to biomimetic membranes and their uses. Patent WO 2010/146366 A1, December 23, 2010.
  • Vissing, T., Hansen, J., and Kiddle, S. (2012) A liquid membrane suitable for water extraction, Patent WO 2012/080946 A1, June 21, 2012.
  • Wang, H., Chung, T.S., Tong, Y.W., Hong, M., Chen, Z., Jeyaseelan, K., and Armugam, A. (2012) Pore-spanning biomimetic membranes embedded with aquaporin, Patent WO 2012/161662 A1, November 29, 2012.
  • Tang, C., Qui, C., Zhao, Y., Shen W., Vararattanavech, A., Wang, R., Hu, X., Torres, J., Fane, A.G., and Helix-Nielsen, C. (2013) Aquaporin based thin film composite membranes, Patent WO 2013/043118 A1, March 28, 2013.
  • Xie, W., Tong, Y.W., Wang, H., Wang, B., He, F., Jeyaseelan, K., and Armugam, A. (2013) Method of making a membrane and a membrane for water filtration, Patent WO 2013/180659 A1, May 12, 2013.
  • Biomimetic membranes: From concept to applications. http://www.sdzv-drustvo.si/si/images/vodni_dnevi/2013/referati/02-Helix-Nielsen-ref.pdf, ( accessed October 24, 2014).
  • Pendergast, M.T.M. and Hoek, E.M.V. (2011) A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 4: 1946.
  • Sun, G., Chung, T.-S., Chen, N., Lu, X., and Zhao, Q. (2013) Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach, RSC Advances 3: 9178.
  • Wang, H., Chung, T.S., Tong, Y.W., Meier, W., Chen, Z., Hong, M., Jeyaseelan, K., and Armugam, A. (2011) Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter., 7: 7274.
  • Wang, H.L., Chung, T.S., Tong, Y.W., Jeyaseelan, K., Armugam, A., Duong, H.H.P., Fu, F., Seah, H., Yang, J., and Hong, M. (2013) Mechanically robust and highly permeable AquaporinZ biomimetic membranes. J. Membr. Sci., 434: 130–136.
  • Sun, G., Chung, T.S., Jeyaseelan, K., and Armugam, A. (2013) A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Advan., 3: 473.
  • Li, X., Wang, R., Wicaksana, F., Tang, C., Torres, J., Fane, A.G. (2014) Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. J. Membr. Sci., 450: 181–188.
  • Das, R., Ali, Md. E., Hamid, S.B.A., Ramakrishna, S., and Chowdhury, Z.Z. (2014) Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336: 97–109.
  • Kar, S., Bindal, R.C., and Tewari, P.K. (2012) Carbon nanotube membranes for desalination and water purification: Challenges and opportunities. Nano Today, 7: 385–389.
  • Chan, W.F., Chen, H.Y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E., and Johnson, J.K. (2013) Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7(6): 5308–5319.
  • Verweij, H., Schillo, M.C., and Li, J. (2007) Fast mass transport through carbon nanotube membranes. Small, 3(12): 1996–2004.
  • Mattia, D., Lee, K.P., and Calabro, F. (2014) Water permeation in carbon nanotube membranes. Curr. Opin. Chem. Eng., 4: 32–37.
  • Dai, L., Patil, A., Gong, X., Guo, Z., Liu, L., Liu, Y., and Zhu, D. (2003) Aligned nanotubes. Chemphyschem., 4: 1150–1169.
  • Huczko, A. (2002) Synthesis of aligned carbon nanotubes. Appl. Phys. A, 74: 617–638.
  • Huard, M., Roussel, F., Rouziere, S., Patel, S., Pinault, M., Mayne-L’Hermite, M., and Launois, P. (2014) Vertically aligned carbon nanotube-based composite: elaboration and monitoring of the nanotubes alignment. J. Appl. Polym. Sci., 131(1): 39730.
  • Cho, W., Schulz, M., and Shanov, V. (2014) Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon, 72: 264–273.
  • Majumder, M. and Ajayan, P.M. (2010) Carbon nanotube membranes: A new frontier in membrane science. In Comprehensive Membrane Science and Engineering, vol. 1; Basic aspects of membrane science and engineering; Drioli, E. and Giorno, L., eds.; Elsevier: Amsterdam, Ch. 14.
  • Balcajin, O., Noy, A., Fornasiero, F., Grigoropoulos, C.P., Holt, J.K., In, J.B., Kim, S., and Park, H.G. (2009) Nanofluidic carbon nanotube membranes: Applications for water purification and desalination. In Nanotechnology Application for Clean Water, Savage, N., Diallo, M., Duncan, J., Street, A., and Sustich, R., eds.; Elsevier: Amsterdam, Chapter 6, 77–93.
  • Goh, P.S., Ismail, A.F., and Ng, B.C. (2014) Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Compos. Part A-Appl. S., 56: 103–126.
  • Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., and Bachas, L.G. (2004) Aligned Multiwalled Carbon Nanotube Membranes. Science, 303: 62–65.
  • Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O. (2006) Fast mass transport through Sub–2-nanometer carbon nanotubes. Science, 312: 1034–1037.
  • Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R., and Ajayan, P.M. (2004) Carbon nanotube filters. Nat. Mater., 3: 610–614.
  • Li, S., Liao, G., Liu, Z., Pan, Y., Wu, Q., Weng, Y., Zhang, X., Yang, Z., and Tsui, O.K.C. (2014) Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes. J. Mater. Chem. A, 2: 12171–12176.
  • Baek, Y., Kim, C., Seo, D.K., Kim, T., Lee, J.S., Kim, Y.H., Ahn, K.H., Bae, S.S., Lee, S.C., Lim, J., Lee, K., and Yoon, J. (2014) High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci., 460: 171–177.
  • Park, S.M., Choi, Y.K., Lee, S., Baek, Y., Yoon, J., Seo, D.K., and Kim, Y.H. (2013) Experimental analysis of transport characteristics for vertically aligned carbon nanotube membranes. Desalin. Water Treat., 51 (25–27): 5349–5354.
  • Zhao, H., Zhou, Z., Dong, H., Zhang, L., Chen, H., and Hou, L. (2013) A facile method to align carbon nanotubes on polymeric membrane substrate. Sci. Rep., 3: 3480.
  • Park, S.M., Jung, J., Lee, S., Baek, Y., Yoon, J., Seo, D.K., and Kim, Y.H. (2014) Fouling and rejection behavior of carbon nanotube membranes. Desalination, 343: 180–186.
  • Gómez-Lagunas, F., Pena, A., Lievano, A., and Darszon, A. (1989) Incorporation of ionic channels from yeast plasma membranes into black lipid membranes. Biophys. J., 56(1): 115–119.
  • Kita-Tokarczyk, K., Grumelard, J., Haefele, T., and Meier, W. (2005) Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer, 46(11): 3540–3563.
  • Tornroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., and Kjellbom, P. (2005) Structural mechanism of plant aquaporin gating. Nature, 439: 688–694.
  • Dan, N., Pincus, P., and Safran, S.A. (1993) Membrane-induced interactions between inclusions. Langmuir, 9(11): 2768–2771.
  • Cho, I. and Kim, Y.D. (1998) Formation of stable polymeric vesicles by tocopherol containing amphiphiles. Macromol. Rapid Comm., 19: 27–30.
  • Pata, V. and Dan, N. (2003) The effect of chain length on protein solubilization in polymer-based vesicles (polymersomes). Biophys. J., 85: 2111–2118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.