1,380
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Effects of Inorganic Nano-Additives on Properties and Performance of Polymeric Membranes in Water Treatment

, , &
Pages 141-167 | Received 16 Jan 2015, Accepted 10 Jun 2015, Published online: 30 Nov 2015

REFERENCES

  • Curcio, E., Profio, G.D., Fontananova, E., and Drioli, E. (2015) Membrane technologies for seawater desalination and brackish water treatment. In Advances in Membrane Technologies for Water Treatment; Basile, A., Rastogi, A.C.K., eds.; Woodhead Publishing, Oxford, United Kingdom, 411–441.
  • Zhou, H. and Smith, D. (2001) Advanced technologies in water and wastewater treatment. Can. J. Civil Eng., 28: 49–66.
  • Wang, Q., Wang, X., Wang, Z., Huang, J., and Wang, Y. (2013) PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J. Membr. Sci., 442: 57–64.
  • Koyuncu, I., Sengur, R., Turken, T., Guclu, S., and Pasaoglu, M.E. (2015) Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. In Advances in Membrane Technologies for Water Treatment; Basile, A., Rastogi, A.C.K., eds.; Woodhead Publishing, Oxford, United Kingdom, 83–128.
  • Sears, K., Dumee, L., Schuetz, J., She, M., Huynh, C., Hawkins, S., Duke, M., and Gray, S. (2010) Recent developments in carbon nanotube membranes for water purification and gas separation. Materials, 3: 127–149.
  • Kim, J. and Van der Bruggen, B. (2010) The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut., 158: 2335–2349.
  • Camacho, L.M., Dumee, L., Zhang, J., Li, J., Duke, M., Gomez, J., and Gray, S. (2013) Advances in membrane distillation for water desalination and purification applications. Water, 5: 94–196.
  • Goh, P.S., Ng, B.C., Lau, W.J., and Ismail, A.F. (2015) Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep. Purif. Rev., 44: 216–249.
  • Madaeni, S.S., Ghaemi, N., and Rajabi, H. (2015) Advances in polymeric membranes for water treatment. In Advances in Membrane Technologies for Water Treatment; Basile, A., Rastogi, A.C.K., eds.; Woodhead Publishing, Oxford, United Kingdom, 3–41.
  • Ji, Y. (2015) Membrane technologies for water treatment and reuse in the gas and petrochemical industries. In Advances in Membrane Technologies for Water Treatment, Basile, A., Rastogi, A.C.K., eds.; Woodhead Publishing, Oxford, United Kingdom; 519–536.
  • Rahimpour, A. and Madaeni, S.S. (2010) Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J. Membr. Sci., 360: 371–379.
  • Ochoa, N., Masuelli, M., and Marchese, J. (2003) Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J. Membr. Sci., 226: 203–211.
  • Yan, L., Li, Y.S., and Xiang, C.B. (2005) Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer, 46: 7701–7706.
  • Celik, E., Park, H., Choi, H., and Choi, H. (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res., 45: 274–282.
  • Kim, Y., Ahn, C.H., and Choi, M.O. (2010) Effect of thermal treatment on the characteristics of electrospun PVDF−silica composite nanofibrous membrane. Eur. Polym. J., 46: 1957–1965.
  • Goh, P.S., Ismail, A.F., and Ng, B.C. (2013) Carbon nanotubes for desalination: Performance evaluation and current hurdles. Desalination, 308: 2–14.
  • Lee, J., Chae, H., Won, Y.J., Lee, K., Lee, C., Lee, H.H., Kim, I., and Lee, J. (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci., 448: 223–230.
  • Luo, M., Tang, W., Zhao, J., and Pu, C. (2006) Hydrophilic modification of poly(ether sulfone) used TiO2 nanoparticles by a sol–gel process. J. Mater. Process Technol., 172: 431–436.
  • Hou, D., Wang, J., Sun, X., Ji, Z., and Luan, Z. (2012) Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation. J. Membr. Sci., 405: 185–200.
  • Jin, L.M., Yu, S.L., Shi, W.X., Yi, X.S., Sun, N., Ge, Y.L., and Ma, C. (2012) Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination. Polymer, 53: 5295–5303.
  • Ahmad, J. and Hagg, M.B. (2013) Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation. J. Membr. Sci., 445: 200–210.
  • Khosravi, A., Sadeghi, M., Banadkohi, H.Z., and Talakesh, M.M. (2014) Polyurethane-silica nanocomposite membranes for separation of propane/methane and ethane/methane. Ind. Eng. Chem. Res., 53: 2011–2021.
  • Lu, H., Zhang, L., Xing, W., Wang, H., and Xu, N. (2005) Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. Mater. Chem. Phys., 94: 322–327.
  • Wu, G., Gan, S., Cui, L., and Xu, Y. (2008) Preparation and characterization of PES/TiO2 composite membranes. Appl. Surf. Sci., 254: 7080–7086.
  • de Lannoy, C., Soyer, E., and Wiesner, M.R. (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J. Membr. Sci., 447: 395–402.
  • Toroghi, M., Raisi, A., and Aroujalian, A. (2014) Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications. Polym. Adv. Technol., 25: 711–722.
  • Peyravi, M., Jahanshahi, M., Rahimpour, A., Javadi, A., and Hajavi, S. (2014) Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem. Eng. J., 241: 155–166.
  • Jeong, B., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., and Jawor, A. (2007) Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci., 294: 1–7.
  • Kim, H.J., Choi, K., Baek, Y., Kim, D., Shim, J., Yoon, J., and Lee, J. (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interf., 6: 2826–2836.
  • Ma, N., Wei, J., Liao, R., and Tang, C.Y. (2012) Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. J. Membr. Sci., 405: 149–157.
  • Liu, X., Qi, S., Li, Y., Yang, L., Cao, B., and Tang, C.Y. (2013) Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Res., 47: 3081–3092.
  • Gethard, K., Sae-Khow, O., and Mitra, S. (2012) Carbon nanotube enhanced membrane distillation for simultaneous generation of pure water and concentrating pharmaceutical waste. Sep. Purif. Technol., 90: 239–245.
  • Abdallah, H., Moustafa, A.F., AlAnezi, A.A., and El-Sayed, H.E.M. (2014) Performance of a newly developed titanium oxide nanotubes/polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination, 346: 30–36.
  • Sairam, M., Patil, M.B., Veerapur, R.S., Patil, S.A., and Aminabhavi, T.M. (2006) Novel dense poly(vinyl alcohol)–TiO2 mixed matrix membranes for pervaporation separation of water–isopropanol mixtures at 30°C. J. Membr. Sci., 281: 95–102.
  • Shen, J., Chu, Y., Ruan, H., Wu, L., Gao, C., and Van der Bruggen, B. (2014) Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes. J. Membr. Sci., 462: 160–169.
  • Bottino, A., Capannelli, G., and Comite, A. (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination, 146: 35–40.
  • Yan, L., Li, Y.S., Xiang, C.B., and Xianda, S. (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J. Membr. Sci., 276: 162–167.
  • Cao, X., Ma, J., Shi, X., and Ren, Z. (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci., 253: 2003–2010.
  • Huang, Z., Chen, K., Li, S., Yin, X., Zhang, Z., and Xu, H. (2008) Effect of ferrosoferric oxide content on the performances of polysulfone-ferrosoferric oxide ultrafiltration membranes. J. Membr. Sci., 315: 164–171.
  • Yu, L., Xu, Z., Shen, H., and Yang, H. (2009) Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J. Membr. Sci., 337: 257–265.
  • Yang, H., Lin, J.C., and Huang, C. (2009) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res., 43: 3777–3786.
  • Wu, H., Tang, B., and Wu, P. (2010) Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J. Membr. Sci., 362: 374–383.
  • Goh, K., Setiawan, L., Wei, L., Si, R., Fane, A.G., Wang, R., and Chen, Y. (2015) Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J. Membr. Sci., 474: 244–253.
  • Xu, C., Xu, Y., and Zhu, J. (2014) Photocatalytic antifouling graphene oxide-mediated hierarchical filtration membranes with potential applications on water purification. Acs Appl. Mater. Interf., 6: 16117–16123.
  • Nanoh2o. http://www.nanoh2o.com (accessed May 2015).
  • Kurth, C.J., Koehler, J.A., Zhou, M., Holmberg, B.A., and Burk, R.L. (2012) Reverse osmosis membranes. U.S. Patent 8,177,978 B2, May 15, 2012.
  • Hofs, B., Schurer, R., Harmsen, D.J.H., Ceccarelli, C., Beerendonk, E.F., and Cornelissen, E.R. (2013) Characterization and performance of a commercial thin film nanocomposite seawater reverse osmosis membrane and comparison with a thin film composite. J. Membr. Sci., 446: 68–78.
  • Ruan, S., Gao, P., Yang, X., and Yu, T. (2003) Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer, 44: 5643–5654.
  • Coleman, J.N., Khan, U., Blau, W.J., and Gun’ko, Y.K. (2006) Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44: 1624–1652.
  • Qu, X., Alvarez, P.J.J., and Li, Q. (2013) Applications of nanotechnology in water and wastewater treatment. Water Res., 47: 3931–3946.
  • Dintcheva, N.T., Arrigo, R., Nasillo, G., Caponetti, E., and La Mantia, F.P. (2013) Effect of the nanotube aspect ratio and surface functionalization on the morphology and properties of multiwalled carbon nanotube polyamide-based fibers. J. Appl. Polym. Sci., 129: 2479–2489.
  • Liu, Y. and Kumar, S. (2014) Polymer/carbon nanotube nano composite fibers-a review. ACS Appl. Mater. Interfaces, 6: 6069–6087.
  • Das, R., Ali, M.E., Abd Hamid, S.B., Ramakrishna, S., and Chowdhury, Z.Z. (2014) Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336: 97–109.
  • Kar, S., Bindal, R.C., and Tewari, P.K. (2012) Carbon nanotube membranes for desalination and water purification: Challenges and opportunities. Nano Today, 7: 385–389.
  • Mauter, M.S. and Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42: 5843–5859.
  • Wang, X., Chen, X., Yoon, K., Fang, D., Hsiao, B., and Chu, B. (2005) High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ. Sci. Technol., 39: 7684–7691.
  • Ahn, C.H., Baek, Y., Lee, C., Kim, S.O., Kim, S., Lee, S., Kim, S., Bae, S.S., Park, J., and Yoon, J. (2012) Carbon nanotube-based membranes: Fabrication and application to desalination. J. Ind. Eng. Chem., 18: 1551–1559.
  • Cho, J.W. and Sul, K.I. (2001) Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride-tetrafluoroethylene) and SiO2. Polymer, 42: 727–736.
  • Ogoshi, T. and Chujo, Y. (2005) Synthesis of poly(vinylidene fluoride) (PVdF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVdF chains. J. Polym. Sci. Polym. Chem., 43: 3543–3550.
  • Baghbanzadeh, M., Rashidi, A., Rashtchian, D., Lotfi, R., and Amrollahi, A. (2012) Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim. Acta, 549: 87–94.
  • Vega-Baudrit, J., Navarro-Banon, V., Vazquez, P., and Martin-Martinez, J.M. (2006) Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. Int. J. Adhes. Adhes., 26: 378–387.
  • Yao, X.F., Zhou, D., and Yeh, H.Y. (2008) Macro/microscopic fracture characterizations of SiO2/epoxy nanocomposites. Aerosp. Sci. Technol., 12: 223–230.
  • Sprenger, S. (2013) Epoxy resin composites with surface-modified silicon dioxide nanoparticles: A review. J. Appl. Polym. Sci., 130:1421–1428.
  • Wang, X., Wang, L., Su, Q., and Zheng, J. (2013) Use of unmodified SiO2 as nanofiller to improve mechanical properties of polymer-based nanocomposites. Compos. Sci. Technol., 89: 52–60.
  • Malay, O., Oguz, O., Kosak, C., Yilgor, E., Yilgor, I., and Menceloglu, Y.Z. (2013) Polyurethaneurea-silica nanocomposites: Preparation and investigation of the structure-property behavior. Polymer, 54: 5310–5320.
  • Yang, J. and Zhao, J. (2014) Preparation and mechanical properties of silica nanoparticles reinforced composite hydrogels. Mater. Lett., 120: 36–38.
  • Liu, Y.L., Hsu, C.Y., Wei, W.L., and Jeng, R.J. (2003) Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer, 44: 5159–5167.
  • Liu, W., Zhu, B., Zhang, J., and Xu, Y. (2007) Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol-gel and blending process. Polym. Adv. Technol., 18: 522–528.
  • Palza, H., Vergara, R., and Zapata, P. (2011) Composites of polypropylene melt blended with synthesized silica nanoparticles. Compos. Sci. Technol., 71: 535–540.
  • Song, H. and Zheng, L. (2013) Nanocomposite films based on cellulose reinforced with nano-SiO2: Microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose, 20: 1737–1746.
  • Bissadi, G., Kruczek, B. (2014) Thermal properties of silica/poly(2,6-dimethyl-1,4-phenylene oxide) films prepared by emulsion polymerization. J. Therm. Anal. Calorim., 117: 73–83.
  • Ab Rahman, I. and Padavettan, V. (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review. J. Nanomater., 2012: 132424.
  • Kickelbick, G. (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci., 28: 83–114.
  • Madaeni, S.S. and Ghaemi, N. (2007) Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci., 303: 221–233.
  • Teow, Y.H., Ahmad, A.L., Lim, J.K., and Ooi, B.S. (2013) Studies on the surface properties of mixed-matrix membrane and its antifouling properties for humic acid removal. J. Appl. Polym. Sci., 128: 3184–3192.
  • Cruz, N.K.O., Semblante, G.U., Senoro, D.B., You, S., and Lu, S. (2014) Dye degradation and antifouling properties of polyvinylidene fluoride/titanium oxide membrane prepared by sol-gel method. J. Taiwan Inst. Chem. Eng., 45: 192–201.
  • Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M.R., Ahani, M., and Barzegari, A. (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Env. Sci. Eng., 8: 471–482.
  • Foster, H.A., Ditta, I.B., Varghese, S., and Steele, A. (2011) Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol., 90: 1847–1868.
  • Lazar, M.A., Varghese, S., and Nair, S.S. (2012) Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts, 2: 572–601.
  • Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., and Alvarez, P.J.J. (2008) Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 42: 4591–4602.
  • Xu, C., Rangaiah, G.P., and Zhao, X.S. (2014) Photocatalytic degradation of methylene blue by titanium dioxide: Experimental and modeling study. Ind. Eng. Chem. Res., 53: 14641–14649.
  • Molinari, R., Argurio, P., and Palmisano, L. (2015) Photocatalytic membrane reactors for water treatment. In Basile, A., Rastogi, A.C.K. eds.; Advances in Membrane Technologies for Water Treatment; Woodhead Publishing, Oxford, United Kingdom, 205–238.
  • Nguyen, A., Zou, L., and Priest, C. (2014) Evaluating the antifouling effects of silver nanoparticles regenerated by TiO2 on forward osmosis membrane. J. Membr. Sci., 454: 264–271.
  • Liu, F., Abed, M.R.M., and Li, K. (2011) Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano gamma-Al2O3. J. Membr. Sci., 366: 97–103.
  • Maximous, N., Nakhla, G., Wan, W., Wong, K. (2009) Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J. Membr. Sci., 341: 67–75.
  • Hou, D., Dai, G., Fan, H., Wang, J., Zhao, C., and Huang, H. (2014) Effects of calcium carbonate nano-particles on the properties of PVDF/nonwoven fabric flat-sheet composite membranes for direct contact membrane distillation. Desalination, 347: 25–33.
  • Sawada, I., Fachrul, R., Ito, T., Ohmukai, Y., Maruyama, T., and Matsuyama, H. (2012) Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J. Membr. Sci., 387: 1–6.
  • Lind, M.L., Ghosh, A.K., Jawor, A., Huang, X., Hou, W., Yang, Y., and Hoek, E.M.V. (2009) Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir, 25: 10139–10145.
  • Fathizadeh, M., Aroujalian, A., and Raisi, A. (2011) Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci., 375:88–95.
  • Jamshidi Gohari, R., Lau, W.J., Matsuura, T., and Ismail, A.F. (2013) Effect of surface pattern formation on membrane fouling and its control in phase inversion process. J. Membr. Sci., 446: 326–331.
  • Singh, R. (2015) Water and membrane treatment. In Membrane Technology and Engineering for Water Purification, 2nd ed.; Singh, R., ed.; Butterworth-Heinemann, Oxford, United Kingdom, 81–178.
  • Lau, W.J., Goh, P.S., Ismail, A.F., and Lai, S.O. (2014) Ultrafiltration as a pretreatment for seawater desalination: A review. Membr. Water Treat., 5: 15–29.
  • Butler, C.S. and Boltz, J.P. (2014) Biofilm processes and control in water and wastewater treatment. In Comprehensive Water Quality and Purification; Ahuja S, ed.; Elsevier: Waltham, Massachusetts, 90–107.
  • Sadr, S.M.K. and Saroj, D.P. (2015) Membrane technologies for municipal wastewater treatment. In Basile, A., Rastogi, A.C.K., eds.; Advances in Membrane Technologies for Water Treatment; Woodhead Publishing: Oxford, United Kingdom, 443–463.
  • Arribas, P., Khayet, M., García-Payo, M.C., and Gil, L. (2015) Novel and emerging membranes for water treatment by hydrostatic pressure and vapor pressure gradient membrane processes. In Basile, A., Rastogi, A.C.K., eds.; Advances in Membrane Technologies for Water Treatment; Woodhead Publishing: Oxford, United Kingdom, 239–285.
  • Ahmad, A.L., Majid, M.A., and Ooi, B.S. (2011) Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination, 268:266–269.
  • Rahimpour, A., Jahanshahi, M., Khalili, S., Mollahosseini, A., Zirepour, A., and Rajaeian, B. (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination, 286: 99–107.
  • Yang, Y., Zhang, H., Wang, P., Zheng, Q., and Li, J. (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSFUF membrane. J. Membr. Sci., 288: 231–238.
  • Rahimpour, A., Jahanshahi, M., Rajaeian, B., and Rahimnejad, M. (2011) TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination, 278: 343–353.
  • Oh, S.J., Kim, N., and Lee, Y.T. (2009) Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J. Membr. Sci., 345: 13–20.
  • Razmjou, A., Mansouri, J., and Chen, V. (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Membr. Sci., 378: 73–84.
  • Li, F., Li, L., Liao, X., and Wang, Y. (2011) Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique. J. Membr. Sci., 385: 1–9.
  • Zhang, J., Xu, Z., Mai, W., Min, C., Zhou, B., Shan, M., Li, Y., Yang, C., Wang, Z., and Qian, X. (2013) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J. Mater. Chem. A, 1: 3101–3111.
  • Li, J., Xu, Z., Yang, H., Yu, L., and Liu, M. (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci., 255: 4725–4732.
  • Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., and Li, Y. (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299: 50–54.
  • Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., Zhou, B., and Qian, X. (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci., 458: 1–13.
  • Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., and Alvarez, P.J.J. (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res., 43: 715–723.
  • Lee, S.Y., Kim, H.J., Patel, R., Im, S.J., Kim, J.H., and Min, B.R. (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym. Adv. Technol., 18: 562–568.
  • Han, P., Yahui, H., Yang, W., and Linlin, L. (2006) Preparation of polysulfone-Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J. Membr. Sci., 284: 9–16.
  • Xiong, X., Li, Q., Zhang, X., Wang, L., Guo, Z., and Yu, J. (2013) Poly(vinylidene fluoride)/silica nanocomposite membranes by electrospinning. J. Appl. Polym. Sci., 129: 1089–1095.
  • Kim, I., Lee, K., and Tak, T. (2001) Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane. J. Membr. Sci., 183: 235–247.
  • Baghbanzadeh, M., Rashidi, A., Soleimanisalim, A.H., and Rashtchian, D. (2014) Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim. Acta, 578: 53–58.
  • Wenzel, R. (1936) Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 28: 988–994.
  • Agboola, O., Maree, J., and Mbaya, R. (2014) Characterization and performance of nanofiltration membranes. Environ. Chem. Lett., 12: 241–255.
  • Shen, J.N., Yu, C.C., Ruan, H.M., Gao, C.J., and Van der Bruggen, B. (2013) Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J. Membr. Sci., 442: 18–26.
  • Kumar, R., Isloor, A.M., Ismail, A.F., Rashid, S.A., and Al Ahmed, A. (2013) Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination, 316: 76–84.
  • Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., and Astinchap, B. (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol., 90: 69–82.
  • Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P., and Min, B.R. (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 219: 48–56.
  • Mo, J., Son, S., Jegal, J., Kim, J., and Lee, Y.H. (2007) Preparation and characterization of polyamide nanofiltration composite membranes with TiO2 layers chemically connected to the membrane surface. J. Appl. Polym. Sci., 105: 1267–1274.
  • Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., and Zangeneh, H. (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci., 453: 292–301.
  • Ganesh, B.M., Isloor, A.M., and Ismail, A.F. (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313: 199–207.
  • Ng, L.Y., Mohammad, A.W., Leo, C.P., and Hilal, N. (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 308: 15–33.
  • Aydiner, C. (2010) A novel approach based on distinction of actual and pseudo resistances in membrane fouling: “Pseudo resistance” concept and its implementation in nanofiltration of single solutions. J. Membr. Sci., 361: 96–112.
  • Rahimpour, A., Madaeni, S.S., Taheri, A.H., and Mansourpanah, Y. (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci., 313: 158–169.
  • Ghaffour, N., Missimer, T.M., and Amy, G.L. (2013) Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination, 309: 197–207.
  • Hassan, A.S. and Fath, H.E.S. (2013) Review and assessment of the newly developed MD for desalination processes. Desalin. Water. Treat., 51: 574–585.
  • Kim, S., Kwak, S., Sohn, B., and Park, T. (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci., 211: 157–165.
  • Ostuni, E., Chapman, R., Holmlin, R., Takayama, S., and Whitesides, G. (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 17: 5605–5620.
  • Vrijenhoek, E., Hong, S., and Elimelech, M. (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci., 188: 115–128.
  • Duke, M., Zhao, D., and Semiat, R., Eds. (2013) Functional Nanostructured Materials and Membranes for Water Treatment; Wiley-VCH, Weinheim, Germany.
  • Yang, H., Lin, J.C., and Huang, C. (2009) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res., 43: 3777–3786.
  • Yin, J., Yang, Y., Hu, Z., and Deng, B. (2013) Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J. Membr. Sci., 441: 73–82.
  • Zhang, L., Shi, G., Qiu, S., Cheng, L., and Chen, H. (2011) Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalin, Water Treat., 34: 19–24.
  • Lind, M.L., Jeong, B., Subramani, A., Huang, X., and Hoek, E.M.V. (2009) Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes. J. Mater. Res., 24: 1624–1631.
  • Shawky, H.A., Chae, S., Lin, S., and Wiesner, M.R. (2011) Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 272: 46–50.
  • Kwak, S., Kim, S., and Kim, S. (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol., 35: 2388–2394.
  • Yin, J., Kim, E., Yang, J., and Deng, B. (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J. Membr. Sci., 423: 238–246.
  • Buonomenna, M.G. (2013) Nano-enhanced reverse osmosis membranes. Desalination, 314: 73–88.
  • Park, K.T., Kim, S.G., Chun, B., Bang, J., and Kim, S.H. (2010) Sulfonated poly(arylene ether sulfone) thin-film composite reverse osmosis membrane containing SiO2 nano-particles. Desalin. Water Treat., 15: 69–75.
  • Ben-Sasson, M., Zodrow, K.R., Qi, G., Kang, Y., Giannelis, E.P., and Elimelech, M. (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol., 48: 384–393.
  • Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., and Astinchap, B. (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci., 375: 284–294.
  • Rahaman, M.S., Therien-Aubin, H., Ben-Sasson, M., Ober, C.K., Nielsen, M., and Elimelech, M. (2014) Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. J. Mater. Chem. B, 2: 1724–1732.
  • Niksefat, N., Jahanshahi, M., and Rahimpour, A. (2014) The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination, 343: 140–146.
  • Lee, J., Qi, S., Liu, X., Li, Y., Huo, F., and Tang, C.Y. (2014) Synthesis and characterization of silica gel-polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly. Sep. Purif. Technol., 124: 207–216.
  • Wang, Y., Ou, R., Ge, Q., Wang, H., and Xu, T. (2013) Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination, 330: 70–78.
  • Amini, M., Jahanshahi, M., and Rahimpour, A. (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Membr. Sci., 435: 233–241.
  • Emadzadeh, D., Lau, W.J., Matsuura, T., Rahbari-Sisakht, M., and Ismail, A.F. (2014) A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chem. Eng. J., 237:70–80.
  • Ma, N., Wei, J., Qi, S., Zhao, Y., Gao, Y., and Tang, C.Y. (2013) Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J. Membr. Sci., 441: 54–62.
  • Emadzadeh, D., Lau, W.J., and Ismail, A.F. (2013) Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection. Desalination, 330: 90–99.
  • Emadzadeh, D., Lau, W.J., Matsuura, T., Ismail, A.F., and Rahbari-Sisakht, M. (2014) Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. J. Membr. Sci., 449: 74–85.
  • Yu, B., Leung, K.M., Guo, Q., Lau, W.M., and Yang, J. (2011) Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application. Nanotechnology, 22: 115603.
  • Pardeshi, P. and Mungray, A.A. (2014) Synthesis, characterization and application of novel high flux FO membrane by layer-by-layer self-assembled polyelectrolyte. J. Membr. Sci., 453: 202–211.
  • Baghbanzadeh, M., Rana, D., Matsuura, T., and Lan, C.Q. (2015) Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes. Desalination, 369:75–84.
  • Gethard, K., Sae-Khow, O., and Mitra, S. (2011) Water desalination using carbon-nanotube-enhanced membrane distillation. Acs Appl. Mater. Interfaces, 3: 110–114.
  • Wang, L., Han, X., Li, J., Zhan, X., and Chen, J. (2011) Hydrophobic nano-silica/polydimethylsiloxane membrane for dimethylcarbonate-methanol separation via pervaporation. Chem. Eng. J., 171: 1035–1044.
  • Peng, F., Pan, F., Sun, H., Lu, L., and Jiang, Z. (2007) Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube. J. Membr. Sci., 300: 13–19.
  • Liu, G., Wei, W., and Jin, W. (2014) Pervaporation Membranes for Biobutanol Production. Acs Sustainable Chem. Eng., 2: 546–560.
  • Fauzi, N.F.I., Hasran, U.A., and Kamarudin, S.K. (2013) Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell. 2nd International Conference on Mechanical Engineering Research (Icmer 2013), Kuantan, Pahang, Malaysia, 1–3 July 2013, 50: 012056.
  • Dumee, L., Sears, K., Schuetz, J., Finn, N., Duke, M., and Gray, S. (2010) Carbon nanotube based composite membranes for water desalination by membrane distillation. Desalin. Water Treat., 17: 72–79.
  • Dumee, L.F., Sears, K., Schuetz, J., Finn, N., Huynh, C., Hawkins, S., Duke, M., and Gray, S. (2010) Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. J. Membr. Sci., 351:36–43.
  • Dumee, L., Germain, V., Sears, K., Schuetz, J., Finn, N., Duke, M., Cerneaux, S., Cornu, D., and Gray, S. (2011) Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J. Membr. Sci., 376: 241–246.
  • Dumee, L., Campbell, J.L., Sears, K., Schuetz, J., Finn, N., Duke, M., and Gray, S. (2011) The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation. Desalination, 283: 64–67.
  • Koo, J., Han, J., Lee, S., Sohn, J., and Choi, J. (2012) Development of Nano-carbon bucky-paper membranes for membrane distillation. Mater. Sci. Forum., 724: 408–411.
  • Dumée, L., Lee, J., Sears, K., Tardy, B., Duke, M., and Gray, S. (2013) Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. J. Membr. Sci., 427: 422–430.
  • Razmjou, A., Arifin, E., Dong, G., Mansouri, J., and Chen, V. (2012) Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci., 415: 850–863.
  • Bhadra, M., Roy, S., and Mitra, S. (2013) Enhanced desalination using carboxylated carbon nanotube immobilized membranes. Sep. Purif. Technol., 120: 373–377.
  • Peng, F., Pan, F., Sun, H., Lu, L., and Jiang, Z. (2007) Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube. J. Membr. Sci., 300: 13–19.
  • Tan, S., Inai, R., Kotaki, M., and Ramakrishna, S. (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 46: 6128–6134.
  • Huang, Z., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S. (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci. Technol., 63: 2223–2253.
  • Choi, S., Lee, Y., Joo, C., Lee, S., Park, J., and Han, K. (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim. Acta, 50: 339–343
  • Kim, Y., Ahn, C.H., and Choi, M.O. (2010) Effect of thermal treatment on the characteristics of electrospun PVDF-silica composite nanofibrous membrane. Eur. Polym. J., 46: 1957–1965.
  • Ma, Z., Hong, Y., Ma, L., and Su, M. (2009) Superhydrophobic membranes with ordered arrays of nanospiked microchannels for water desalination. Langmuir, 25: 5446–5450.
  • Zhang, H., Lamb, R., and Lewis, J. (2005) Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour. Sci. Technol. Adv. Mat., 6: 236–239.
  • Privett, B.J., Youn, J., Hong, S.A., Lee, J., Han, J., Shin, J.H., and Schoenfisch, M.H. (2011) Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir, 27: 9597–9601.
  • Mauter, M.S. and Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42: 5843–5859.
  • Corry, B. (2011) Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energ. Environ. Sci., 4: 751–759.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.