797
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Use of Sulfate-Reducing and Bioelectrochemical Reactors for Metal Recovery from Mine Water

&
Pages 1-20 | Received 17 Dec 2014, Accepted 02 Feb 2016, Published online: 26 Sep 2016

REFERENCES

  • Nordstrom, D.K. (2011) Mine waters: Acidic to circumneutral. Elements, 7: 393–398.
  • Lottermoser, B. (2010) Mine Wastes—Characterization, Treatment and Environmental Impacts; Springer: Heidelberg, Germany, 119–203.
  • Iakovleva, E. and Sillanpää, M. (2013) The use of low-cost adsorbents for wastewater purification in mining industries. Environ. Sci. Pollut. Res., 20: 7878–7899.
  • Johansson Westholm, L., Repo, E., and Sillanpää, M. (2014) Filter materials for metal removal from mine drainage—a review. Environ. Sci. Pollut. Res., 21: 9109–9128.
  • INAP (International Network for Acid Prevention) (2009) The Global Acid Rock Drainage Guide. http://www.gardguide.com ( accessed Nov. 28, 2015).
  • Lottermoser, B.G. (2011) Recycling, reuse, and rehabilitation of mine wastes. Elements, 7: 405–410.
  • Zinck, J. and Aubé, B. (2010) Overcoming Active Treatment Challenges. In Mine Water & Innovative Thinking; Wolkersdorfer, Ch. and Freund, A. eds.; CBU Press: Sydney, NSW, Australia, 199–203.
  • Smith, K.S., Figueroa, L.A., and Plumlee, G.S. (2013) Can treatment and disposal costs be reduced through metal recovery? In Reliable Mine Water Technology, Vol. I; Brown, A., Figueroa, L., and Wolkersdorfer, Ch., eds.; Publication Printers: Denver, Colorado, 729–735.
  • Mayes, W.M., Potter, H.A.B., and Jarvis, A.P. (2010) Inventory of contaminant flux arising from historic metal mining in England and Wales. Sci. Total Environ., 408: 3576–3583.
  • Mighanetara, K., Braungardt, C.B., Rieuwerts, J.S., and Azizi, F. (2009) Contaminant fluxes from point and diffuse sources from abandoned mines in the River Tamar catchment, UK. J. Geochem. Explor., 100: 116–124.
  • Nieto, J.M., Sarmiento, A.M., Canovas, C.R., Olias, M., and Ayora, C. (2013) Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Environ. Sci. Pollut. Res., 20: 7509–7519.
  • Bowell, R., Rees, B., and Broughton, L. (2005) Assessment of mine waters suitable for metal recovery. In Mine Water 2005—Mine Closure; Loredo, J. and Pendás, F., eds.; Oviedo, Spain; 2005, 559–560.
  • Zinck, J. and Griffith, W. (2013) Review of Mine Drainage Treatment and Sludge Management Operations, MEND Report 3.43.1; Mine Environment Neutral Drainage (MEND) Program: Natural Resources Canada. http://www.ceaa-acee.gc.ca/050/documents_staticpost/63928/90971/5A.pdf ( accessed Nov. 28, 2015).
  • Hedrich, S., Kay, C., Grail, B., and Johnson, B. (2013) Metal recovery from mine waters: Case studies at the Maurliden and Pyhäsalmi mines. ProMine Final Conference with Mineral Marketplace, 23–25 April 2013, Levi, Finland. http://promine.gtk.fi/documents_news/promine_final_conference/16_55_Johnson.pdf ( accessed Nov. 28, 2015).
  • Hedin, R.S. (2003) Recovery of marketable iron oxide from mine drainage in the USA. Land Contam. Reclam., 11: 93–97.
  • Barakat, M.A. (2011) New trends in removing heavy metals from industrial wastewater. Arab. J. Chem., 4: 361–377.
  • Fu, F. and Wang, Q. (2011) Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 92: 407–418.
  • Younger, P.L., Banwart, S.A., and Hedin, R.S. (2002) Mine Water—Hydrology, Pollution, Remediation; Kluwer Academic Publishers, Dordrecht, The Netherlands, 271–396.
  • Johnson, D.B. and Hallberg, K.B. (2005) Acid mine drainage remediation options: a review. Sci. Total Environ., 338: 13–14.
  • Gaikwad, R.W. and Gupta, D.V. (2008) Review on removal of heavy metals from acid mine drainage. Appl. Ecol. Env. Res., 6: 81–98.
  • Singer, P.C. and Stumm, W. (1969) Oxygenation of ferrous iron in mine drainage waters. Am. Chem. Soc., Div. Fuel Chem., Prepr., 13: 80–87.
  • Cao, J., Zhang, G., Mao, Z., Fang, Z., and Yang, C. (2009) Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Miner. Eng., 22: 289–295.
  • Riekkola-Vanhanen, M. (2013) Talvivaara mining company—From a project to a mine. Minerals Eng., 48, 2–9.
  • Tuttle, J.H., Dugan, P.R., and Randles, C.I. (1969) Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl. Microbiol., 17: 297–302.
  • Gusek, J.J. (2013) A periodic table of passive treatment for mining influenced water – Revisited. In Reliable Mine Water Technology, Vol. I; Brown, A., Figueroa, L., and Wolkersdorfer, Ch., eds.; Publication Printers: Denver, Colorado, USA, 575–581.
  • Sheoran, A.S., Sheoran, V., and Choudhary, R.P. (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Miner. Eng., 23: 1073–1100.
  • Gandy, C.J. and Jarvis, A.P. (2012) The influence of engineering scale and environmental conditions on the performance of compost bioreactors for the remediation of zinc in mine water discharges. Mine Water Environ., 31: 82–91.
  • Klein, R., Tischler, J.S., Mühling, M., and Schlömann, M. (2013) Bioremediation of mine water. Adv. Biochem. Eng. Biot., 144: 109–172.
  • Matthies, R., Aplin, A.C., and Jarvis, A.P. (2010) Performance of a passive treatment system for net-acidic coal mine drainage over five years of operation. Sci. Tot. Environ., 408: 4877–4885.
  • Lee, J.Y., Khim, J., Woo, K., and Ji, W.H. (2013) A full-scale successive alkalinity-producing passive system (SAPPS) for the treatment of acid mine drainage. Water Air Soil Pollut., 224: 1656.
  • Wolkersdorfer, C. (2008) Mine water treatment and ground water protection. In Water Management at Abandoned Flooded Underground Mines - Fundamentals, Tracer Tests, Modelling, Water Treatment; Springer: Heidelberg, Germany, 235–278.
  • Lopez, O., Sanguinetti, D., Bratty, M., and Kratochvil, D. (2009) Green Technologies for Sulphate and Metal Removal in Mining and Metallurgical Effluents; Proceedings of the 8th International Conference on Acid Rock Drainage (ICARD): Skellefteå, Sweden, June 22–26, 2009.
  • Olde Weghuis, M. (2013) High rate biotechnology for the metal and mining industry. Environ. Sci. Eng. Mag., 2013: 28–32.
  • Rose, P. (2013) Integrated algal sulphate reducing ponding process for acid metal wastewater treatment (ASPAM). Water SA, 39: 583–592.
  • Hedrich, S. and Johnson, D. B. (2014) Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors. Environ. Sci. Technol., 48: 12206−12212.
  • Kaksonen, A.H. and Puhakka, J.A. (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng. Life Sci., 7: 541–564.
  • Papirio, S., Villa-Gomez, D.K., Esposito, G., Pirozzi, F., and Lens, P.N.L. (2013) Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: A critical review. Crit. Rev. Environ. Sci. Technol., 43: 2545–2580.
  • Sánchez-Andrea, I., Sanz, J.L., Bijmans, M.F.M., and Stams, A.J.M. (2014) Sulfate reduction at low pH to remediate acid mine drainage. J. Hazard. Mater., 269: 98–109.
  • Villa-Gomez, D.K., van Hullebusch, E.D., Maestro, R., Farges, F., Nikitenko. S., Kramer, H.J.M., Gonzales-Gill, G., and Lens, P.N. (2014) Morphology, mineralogy and solid-liquid phase separation characteristics of Cu and Zn precipitates produced with biogenic sulfide. Environ. Sci. Technol., 48: 664–673.
  • Martins, M., Santos, E.S., Pires, C., Barros, R.J., and Costa, M.C. (2010) Production of irrigation water from bioremediation of acid mine drainage: comparing the performance of two representative systems. J. Clean Prod., 18: 248–253.
  • Bratkova, S., Koumanova, B., and Beschkov, V. (2013) Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading. Bioresource Technol., 137: 409–413.
  • Xingyu, L., Zou, G., Wang, X., Zou, L., Wen, J., Ruan, R., and Wang, D. (2013) A novel low pH sulfidogenic bioreactor using activated sludge as carbon source to treat acid mine drainage (AMD) and recovery metal sulfides: Pilot scale study. Minerals Eng., 48: 51–55.
  • Paques B.v. Products. http://en.paques.nl/products (accessed Nov. 28, 2015).
  • Bless, D., Park, B., Nordwick, S., Zaluski, M., Joyce, H., Hiebert, R., and Clavelot, C. (2008) Operational lessons learned during bioreactor demonstrations for acid rock drainage treatment. Mine Water Environ., 27: 241–250.
  • Mokone, T.P., van Hille, R.P., and Lewis, A.E. (2010) Effect of solution chemistry on particle characteristics during metal sulfide precipitation. J. Coll. Interf. Sci., 351: 10–18.
  • Christensen, B., Laake, M., and Lien, T. (1996) Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment. Water Res., 30: 1617–1624.
  • Alvarez, M.T., Crespo, C., and Mattiasson, B. (2007) Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere, 66: 1677–1683.
  • Jiménez-Rodríguez, A.M., Durán-Barrantes, M.M., Borja, R., Sánchez, E., Colmenarejo, M.F., and Raposo, F. (2009) Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH. J. Hazard. Mater., 165: 759–765.
  • Touze, S., Battaglia-Brunet F., and Ignatiadis I. (2008) Technical and economical assessment and extrapolation of a 200-dm3 pilot bioreactor for reduction of sulphate and metals in acid mine waters. Water Air Soil Pollut., 87: 15–29.
  • Ñancucheo, I. and Johnson, D.B. (2012) Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microb. Biotechnol., 5: 34–44.
  • Kumar, R.N., McCullough, C.D., and Lund, M.A. (2013) Upper and lower concentration thresholds for bulk organic substrates in bioremediation of acid mine drainage. Mine Water Environ., 32: 285–292.
  • McCauley, C.A. O’Sullivan, A.D., Milke, M.W., Weber, P.A., and Tru, D.A. (2009) Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Res., 43: 961–970.
  • Cruz Viggi, C., Pagnanelli, F., Cibatia, A., Uccelletti, D., Palleschi, C., and Toro, L. (2010) Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water Res., 44: 151–158.
  • Wu, J., Lu, J., Chen, T. H., He, Z., Su, Y., Jin, X., and Yao, X. (2010) In situ biotreatment of acidic mine drainage using straw as sole substrate. Environ. Earth Sci., 60: 421–429.
  • Lu, J., Wu, J., Chen, T., Wilson, P.C., Qian, J., Hao, X., Liu, C., Su, Y., and Jin, X. (2012) Valuable metal recovery during the bioremediation of acidic mine drainage using sulfate reducing straw bioremediation system. Water Air Soil Pollut., 223: 3049–3055.
  • Cheong, Y. W., Das, B. K., Roy, A., and Bhattacharya, J. (2010) Performance of a SAPS-based chemo-bioreactor treating acid mine drainage using low-DOC spent mushroom compost, and limestone as substrate. Mine Water Environ., 29: 217–224.
  • Tabak., H.H. and Govind, R. (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Biodegradation 14: 437–452.
  • Sahinkaya, E., Dursun, N., Ozkaya, B., and Kaksonen, A.H. (2013) Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage. Miner. Eng., 48: 56–60.
  • Gallegos-Garcia, M., Celis, L., Rangel-Mendéz, R., and Razo-Flores, E. (2008) Precipitation and recovery of metal sulfides from metal containing acidic wastewater in a sulfidogenic down-flow fluidized bed reactor. Biotechnol. Bioeng., 102: 91–99.
  • Zhang, M. and Wang, H. (2013) Simultaneous removal of copper, zinc, and sulfate from coal mine waste in a laboratory SRB bioreactor using lactate or ethanol as carbon sources. Mine Water Environ., 32: 314–320.
  • Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; John Wiley & Sons: New York.
  • Martins, M., Faleiro, L., Barros, R.J., Veríssimo, R., Barreiros, M.A., and Costa, M.C. (2009) Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J. Hazard. Mater., 166: 706–713.
  • Sahinkaya, E., Gungor, M., Bayrakdar, A., Yucesoy, Z., and Uyanik, S. (2009) Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide. J. Hazard. Mater., 171: 901–906.
  • Villa-Gomez, D.K., Ababneh, H., Papirio, S., Rousseau, D.P.L., and Lens, P.N.L. (2011) Effect of sulfide concentration on the location of the metal precipitates in inverse fluidized bed reactors. J. Hazard. Mater., 192: 200–207.
  • Lewis, A. E. (2010) Review of metal sulphide precipitation. Hydrometallurgy, 104: 222–234.
  • Matthies, R. (2010) Biogeochemical Processes in Reducing and Alkalinity Producing Systems, Bowden Close, UK; PhD Thesis; Newcastle University, School of Civil Engineering and Geosciences, UK.
  • Wang, L.P., Ponou, J., Matsuo, S., Okaya, K., Dodbiba, G., Nazuka, T., and Fujita, T. (2013) Integrating sulfidization with neutralization treatment for selective recovery of copper and zinc over iron from acid mine drainage. Minerals Eng., 45: 100–107.
  • Warkentin, D., Chow, N., and Nacu, A. (2010) Expanding sulphide use for metal recovery from mine water. In Mine Water & Innovative Thinking; Wolkersdorfer, Ch. and Freund, A. eds.; CBU Press: Sydney, NS, 195–198.
  • Tabak, H.H., Scharp, R., Burckle, J., Kawahara, F.K., and Govind, R. (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation, 14: 423–436.
  • Bard, A.J. and Faulkner, L.R. (2001) Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, 1–43.
  • Chen, G. (2004) Electrochemical technologies in wastewater treatment. Sep. Purif. Technol., 38: 11–41.
  • Figueroa, L. and Wolkersdorfer, C. (2014) Electrochemical recovery of metals in mining influenced water: State of the art. In Annual International Mine Water Association Conference—An Interdisciplinary Response to Mine Water Challenges; Sui, W., Sun, Y., and Wang, C., eds. China University of Mining and Technology: Xuzhou, China, 627–631.
  • Kanapathy, S. and Mohamed, N. (2013) Recovery of copper using an electro MP-cell operated in an electrogenerative mode. Sep. Purif. Technol., 118: 279–284.
  • James, P.I. (2013) Electrolytic technology targets residual metal values in tailings. Eng. Min. J., 214 (11): 60–63.
  • Gorgievski, M., Božić, D., Stanković, V., and Bogdanović, G. (2013) Copper electrowinning from acid mine drainage: A case study from the closed mine “Cerovo.” J. Hazard. Mater., 170: 716–721.
  • Chartrand, M.M.G. and Bunce, N.J. (2003) Electrochemical remediation of acid mine drainage. J. Appl. Electrochem., 33: 259–264.
  • Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., and Giuliano, V. (2012) Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage. Process Biochem., 47: 1633–1639.
  • Cheng, S., Dempsey, B.A., and Logan, B.E. (2007) Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ. Sci. Technol., 31: 8149–8153.
  • Cheng, S., Jang, J.H., Dempsey, B.A., and Logan, B.E. (2011) Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Res., 45: 303–307.
  • Huang, L., Cheng, S., Hassett, D.J., and Gu, T. (2012) Wastewater treatment with concomitant bioenergy production using microbial fuel cells. In Advances in Water Treatment and Pollution Prevention; Sharma, S.K. and Shanghi, R. eds.; Springer: The Netherlands, 405–452.
  • Varia, J.C. (2012) Bio-Electrochemical Systems for the Remediation of Metal-Ion Effluents, Ph.D. Thesis; School of Chemical Engineering and Advanced Materials, University of Newcastle upon Tyne: UK. http://hdl.handle.net/10443/1695 (accessed Nov. 28, 2015).
  • Ter Heijne, A., Hamelers, H.V., De Wilde, V., Rozendal, R.A., and Buisman, C.J. (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol., 40: 5200–5205.
  • Ter Heijne, A., Hamelers, H.V.M., and Buisman, C.J.N. (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ. Sci. Technol., 41: 4130–4134.
  • Logan, B.E. and Rabaey, K. (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337: 686–690.
  • Zhou, M., Jin, T., Wu, Z., Chi, M., and Gu, T. (2012) Microbial fuel cells for bioenergy and bioproducts. In Sustainable Bioenergy and Bioproducts - Value Added Engineering Applications; Gopalakrishnan, K., van Leeuwen, J.H., and Brown, R.C., eds.; Springer: London, 131–171.
  • Franks, A.E. and Nevin, K.P. (2010) Microbial fuel cells, a current review. Energies, 3: 899–919.
  • Rosenbaum, M.A. and Franks, A.E. (2014) Microbial catalysis in bioelectrochemical technologies: Status quo, challenges and perspectives. Appl. Microbiol. Biotechnol., 98: 509–518.
  • Schröder, U. (2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J. Solid State Electrochem., 15: 1481–1486.
  • Zhang, Y. and Angelidaki, I. (2014) Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges. Water Res., 56: 11–25.
  • Wang, H. and Ren, Z.J. (2014) Bioelectrochemical metal recovery from wastewater: a review. Water Res., 66: 219–232.
  • Qin, B., Luo, H., Liu, G., Zhang, R., Chen, S., Hou, Y., and Luo, Y. (2012) Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour. Technol., 121: 458–461.
  • Luo, H., Qin, B., Liu, G., Zhang, R., Tang, R., and Hou, Y. (2015) Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system. Front. Environ. Sci. Eng., 9, 522–527.
  • Luo, H., Liu, G., Zhang, R., Bai, Y., Fu, S., and Hou, Y. (2014) Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J. Hazard. Mater., 270: 153–159.
  • Ter Heijne, A., Liu, F., van der Weijden, R. Weijma, J., Buisman, C.J.N., and Hamelers, H.V.M. (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ. Sci. Technol., 44: 4376–4381.
  • Jiang, L.J., Huang, L.P., and Sun, Y.L. (2014) Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells. Int. J. Hydrog. Energy, 396: 654–663.
  • Choi, C. and Cui, Y. (2012) Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour. Technol., 107: 522–525.
  • Tao, H.C., Liang, M., Li, W., Zhang, L.J., Ni, J.R., and Wu, W.M. (2011) Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J. Hazard. Mater., 189: 186–192.
  • Tao, H.C., Zhang, L.J., Gao, Z.Y., and Wu, W.M. (2011) Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresour. Technol., 102: 10334–10339.
  • Zhang, L.-J., Tao, H.-C., Wei, X.-Y., Lei, T., Li, J.-B., Wang, A.-J., and Wu, W.-M. (2012) Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere, 89: 1177–1182.
  • Zhang, B., Feng, C., Ni, J., Zhang, J., and Huang, W. (2012) Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J. Power Sources, 204: 34–39.
  • Lefebvre, O., Neculita, C.M., Yue, X., and Ng, H.Y. (2012) Bioelectrochemical treatment of acid mine drainage dominated with iron. J. Hazard. Mater. 241: 411–417.
  • Wang, Z., Lim, B., and Choi, C. (2011) Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technol., 102: 6304–6307.
  • Abourached, C., Catal, T., and Liu, H. (2014) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res., 51: 228–233.
  • Huang, L., Chen, J., Quan, X., and Yang, F. (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioproc. Biosyst. Eng., 33: 937–945.
  • Tao, H.C., Gao, Z.Y., Ding, H., Xu, N., and Wu, W.M. (2012) Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresour. Technol., 111: 92–97.
  • Fradler, K.R., Michie, I., Dinsdale, R.M., Guwy, R.M., and Premier, G.C. (2014) Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery. Water Res., 55: 115–125.
  • Logan, B.E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006) Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40: 5181–5192.
  • Du, Z., Li, H., and Gu, T. (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., 25: 464–482.
  • Modin, O., Wang, K., Wu, X., Rauch, S., and Karlfeldt Fedje, K. (2012) Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J. Hazard. Mater., 235–236:291–297.
  • Wang, Y.-H., Wang, B.-S., Pan, B., Chen, Q.-Y., and Yan, W. (2013) Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl. Energy, 112: 1337–1341.
  • Tao, H.-C., Lei, T., Shi, G., Sun, X.-N., Wei, X.-Y., Zhang, L.-J., and Wu, W.-M. J. (2014) Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J. Hazard. Mater., 264: 1–70.
  • Alebrahim, M. F., Khattab, I. A., and Sharif, A. O. (2015) Electrodeposition of copper from a copper sulfate solution using a packed-bed continuous-recirculation flow reactor at high applied electric current. Egypt. J. Petrol., 24, 325–331.
  • Rodenas Motos, P., ter Heijne, A., van der Weijden, R., Saakes, M., Buisman, C.J.N., and Sleutels, T.H.J.A. (2015) High rate copper and energy recovery in microbial fuel cells. Front. Microbiol., 6: 527.
  • Johnson, D.B. (2013) Development and application of biotechnologies in the metal mining industry. Environ. Sci. Pollut. Res., 20: 7768–7776.
  • Cheng, S., Xing, D.F., and Logan, B.E. (2011) Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens. Bioelectron., 26: 1913–1917.
  • Larrosa-Guerrero, A., Scott, K., Head, I.M., Mateo, F., Ginesta, A., and Godinez, C. (2010) Effect of temperature on the performance of microbial fuel cells. Fuel, 89: 3985–3994.
  • Srinivasan, S. (2006) Fuel Cells: From Fundamentals to Applications; Springer: New York, 126–136.
  • Premier, G.C., Kim, J.R., Michie, I., Popov, A., Boghani, H., Fradler, K., Dinsdale, R.M., and Guwy, A.J. (2012) Issues of Scale in Microbial Fuel Cells and Bioelectrochemical Systems. SOLAR 2012, World Renewable Energy Forum, Denver, Colorado, May 13–17, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.