2,725
Views
123
CrossRef citations to date
0
Altmetric
Reviews

Mixed Matrix Membranes for Water Purification Applications

, &
Pages 62-80 | Received 03 Dec 2014, Accepted 15 May 2016, Published online: 03 Oct 2016

REFERENCES

  • World Health Organization (WHO) (2011) Guidelines for Drinking-Water Quality; World Health Organization: New York.
  • Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M. (2008) Science and technology for water purification in the coming decades. Nature, 452: 301–310.
  • Hinrichsen, D. and Tacio, H. (2002) The coming freshwater crisis is already here. Finding the Source: The Linkages Between Population and Water, ESCP Publication, Spring; Woodrow Wilson International Center for Scholars: Washington, DC,
  • Bodzek, M., Konieczny, K., and Kwiecińska, A. (2011) Application of membrane processes in drinking water treatment–state of art. Desalin. Water Treat., 35: 164–184.
  • Sharaai, A.H., Mahmood, N.Z., and Sulaiman, A.H. (2010) Life Cycle Impact Assessment (LCIA) of potable water production in Malaysia: A comparison among different technology used in water treatment plant. Environ. Asia, 3: 95–102.
  • Tansel, B. (2008) New technologies for water and wastewater treatment: A survey of recent patents. Recent Patents Chem. Eng., 1: 17–26.
  • Zhou, H. and Smith, D.W. (2002) Advanced technologies in water and wastewater treatment. J. Environ. Eng. Sci., 1: 247–264.
  • Li, N.N., Fane, A.G., Ho, W.W., and Matsuura, T. (2011) Advanced Membrane Technology and Applications; John Wiley & Sons, New York.
  • Baker, R.W. (2012) Membrane Technology and Applications, 3rd ed.; Wiley: Chichester, UK, 325–378.
  • Hillis, P. (2000) Membrane Technology in Water and Wastewater Treatment; Royal Society of Chemistry: London, UK.
  • Van Der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., and Leysen, R. (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog., 22: 46–56.
  • Nie, C., Ma, L., Xia, Y., He, C., Deng, J., Wang, L., Cheng, C., Sun, S., and Zhao, C. (2015) Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. J. Membr. Sci., 475: 455–468.
  • Tijink, M., Kooman, J., Wester, M., Sun, J., Saiful, S., Joles, J., Borneman, Z., Wessling, M., and Stamatialis, D. (2014) Mixed matrix membranes: a new asset for blood purification therapies. Blood Purif., 37: 1–3.
  • Tijink, M.S.L., Wester, M., Glorieux, G., Gerritsen, K.G.F., Sun, J., Swart, P.C., Borneman, Z., Wessling, M., Vanholder, R., Joles, J.A., and Stamatialis, D. (2013) Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials, 34: 7819–7828.
  • Gang, M., He, G., Li, Z., Cao, K., Li, Z., Yin, Y., Wu, H., and Jiang, Z. (2016) Graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J. Membr. Sci., 507: 1–11.
  • Bet-moushoul, E., Mansourpanah, Y., Farhadi, K., and Tabatabaei, M. (2016) TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J., 283: 29–46.
  • Cai, N., Li, C., Han, C., Luo, X., Shen, L., Xue, Y., and Yu, F. (2016) Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl. Surf. Sci., 369: 492–500.
  • Peng, N., Widjojo, N., Sukitpaneenit, P., Teoh, M.M., Lipscomb, G.G., Chung, T.-S., and Lai, J.-Y. (2012) Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog. Polym. Sci., 37: 1401–1424.
  • Yin, J., Zhu, G., and Deng, B. (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J. Membr. Sci., 437: 237–248.
  • Gunawan, P., Guan, C., Song, X., Zhang, Q., Leong, S.S.J., Tang, C., Chen, Y., Chan-Park, M.B., Chang, M.W., Wang, K., and Xu, R. (2011) Hollow fiber membrane decorated with Ag/MWNTs: Toward effective water disinfection and biofouling control. ACS Nano, 5: 10033–10040.
  • Goh, K., Setiawan, L., Wei, L., Si, R., Fane, A.G., Wang, R., and Chen, Y. (2015) Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J. Membrane Sci., 474: 244–253.
  • Bonyadi, S. and Chung, T.S. (2007) Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes. J. Membr. Sci., 306: 134–146.
  • Rahman, M.A., Ghazali, M.A., Aziz, W.M.S.W.A., Othman, M.H.D., Jaafar, J., and Ismail, A.F. (2015) Preparation of titanium dioxide hollow fiber membrane using phase inversion and sintering technique for gas separation and water purification. Sains Malaysiana, 44: 1195–1201.
  • Pendergast, M.M. and Hoek, E.M. (2011) A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 4: 1946–1971.
  • Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M.M., Ismail, A.F., and Matsuura, T. (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci., 39: 817–861.
  • Seoane, B., Coronas, J., Gascon, I., Benavides, M.E., Karvan, O., Caro, J., Kapteijn, F., and Gascon, J. (2015) Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev., 44: 2421–2454.
  • Lalia, B.S., Kochkodan, V., Hashaikeh, R., and Hilal, N. (2013) A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 326: 77–95.
  • Ulbricht, M. (2006) Advanced functional polymer membranes. Polymer, 47: 2217–2262.
  • Goh, P.S., Ismail, A.F., and Hilal, N. (2016) Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination? Desalination, 380: 100–104.
  • Miller, S.J., Koros, W.J., and Vu, D.Q. (2007) Mixed matrix membrane technology: enhancing gas separations with polymer/molecular sieve composites. Stud. Surf. Sci. Catal., 170: 1590–1596.
  • Aroon, M.A., Ismail, A.F., Matsuura, T., and Montazer-Rahmati, M.M. (2010) Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol., 75: 229–242.
  • Mahajan, R., Koros, W., and Thundyil, M. (1999) Mixed matrix membranes: Important and challenging! Membrane Technol., 19: 6–8.
  • Ahn, J., Chung, W.-J., Pinnau, I., and Guiver, M.D. (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci., 314: 123–133.
  • Celik, E., Park, H., Choi, H., and Choi, H. (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res., 45: 274–282.
  • Peng, F., Hu, C., and Jiang, Z. (2007) Novel ploy (vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures. J. Membr. Sci., 297: 236–242.
  • Peng, F., Pan, F., Sun, H., Lu, L., and Jiang, Z. (2007) Novel nanocomposite pervaporation membranes composed of poly (vinyl alcohol) and chitosan-wrapped carbon nanotube. J. Membr. Sci., 300: 13–19.
  • Kim, J. and Van der Bruggen, B. (2010) The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut., 158: 2335–2349.
  • Siddique, H., Rundquist, E., Bhole, Y., Peeva, L.G., and Livingston, A.G. (2014) Mixed matrix membranes for organic solvent nanofiltration. J. Membr. Sci., 452: 354–366.
  • Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S., and Derakhshan, A.A. (2012) Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J. Membr. Sci., 401–402:132–143.
  • Lee, K.P., Arnot, T.C., and Mattia, D. (2011) A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci., 370: 1–22.
  • Xu, Z.-L., Yu, L.-Y., and Han, L.-F. (2009) Polymer-nanoinorganic particles composite membranes: a brief overview. Front. Chem. Eng. China, 3: 318–329.
  • Husain, S. and Koros, W.J. (2009) Macrovoids in hybrid organic/inorganic hollow fiber membranes. Ind. Eng. Chem. Res., 48: 2372–2379.
  • Luo, M.-L., Zhao, J.-Q., Tang, W., and Pu, C.-S. (2005) Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci., 249: –84.
  • Bae, T.-H., Kim, I.-C., and Tak, T.-M. (2006) Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J. Membr. Sci., 275: 1–5.
  • Li, J.-F., Xu, Z.-L., Yang, H., Yu, L.-Y., and Liu, M. (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci., 255: 4725–4732.
  • Yang, Y., Zhang, H., Wang, P., Zheng, Q., and Li, J. (2007) The influence of nano-sized TiO 2 fillers on the morphologies and properties of PSF UF membrane. J. Membrane Sci., 288: 231–238.
  • Ahmed, I., Yusof, Z.A.M., and Beg, M. (2010) Fabrication of polymer based mix matrix membrane-A short review. Int. J. Basic Appl. Sci, 10: 17–27.
  • Kim, W.-G. and Nair, S. (2013) Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci., 104: 908–924.
  • Balta, S., Sotto, A., Luis, P., Benea, L., Van der Bruggen, B., and Kim, J. (2012) A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J. Membr. Sci., 389: 155–161.
  • Nasir, R., Mukhtar, H., Man, Z., and Mohshim, D.F. (2013) Material advancements in fabrication of mixed-matrix membranes. Chem. Eng. Technol., 36: 717–727.
  • Alpatova, A., Meshref, M., McPhedran, K.N., and Gamal El-Din, M. (2015) Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J. Membrane Sci., 490: 227–235.
  • Mahajan, R., Burns, R., Schaeffer, M., and Koros, W.J. (2002) Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci., 86: 881–890.
  • Chung, T.-S., Jiang, L.Y., Li, Y., and Kulprathipanja, S. (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci., 32: 483–507.
  • Zhu, J., Zhang, Y., Tian, M., and Liu, J. (2015) Fabrication of a mixed matrix membrane with in situ synthesized quaternized polyethylenimine nanoparticles for dye purification and reuse. ACS Sustain. Chem. Eng., 3: 690–701.
  • Ghanbari, M., Emadzadeh, D., Lau, W.J., Lai, S.O., Matsuura, T., and Ismail, A.F. (2015) Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination, 358: 33–41.
  • Moore, T.T. and Koros, W.J. (2005) Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct., 739: 87–98.
  • Srivastava, N., Joshi, K.V., Thakur, A.K., Menon, S.K., and Shahi, V.K. (2014) BaCO3 nanoparticles embedded retentive and cation selective membrane for separation/recovery of Mg2+ from natural water sources. Desalination, 352: 142–149.
  • Ahmad, A.L., Abdulkarim, A.A., Ismail, S., and Seng, O.B. (2016) Optimization of PES/ZnO mixed matrix membrane preparation using response surface methodology for humic acid removal. Kor. J. Chem. Eng., 33: 997–1007.
  • Ghaemi, N., Madaeni, S.S., Daraei, P., Rajabi, H., Shojaeimehr, T., Rahimpour, F., and Shirvani, B. (2015) PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: fabrication and performance optimization in dye removal by RSM. J. Hazard. Mater. 298: 111–121.
  • Sianipar, M., Kim, S.H., Min, C., Tijing, L.D., and Shon, H.K. (2016) Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J. Ind. Engin. Chem., 34: 364–373.
  • Brame, J., Li, Q., and Alvarez, P.J. (2011) Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci. Technol., 22: 618–624.
  • Crock, C.A., Rogensues, A.R., Shan, W., and Tarabara, V.V. (2013) Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res., 47: 3984–3996.
  • Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., and Zangeneh, H. (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci., 453: 292–301.
  • Mollahosseini, A. and Rahimpour, A. (2013) A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties. Biofouling, 29: 537–548.
  • Li, T., Yu, P., and Luo, Y. (2014) Deoxygenation performance of polydimethylsiloxane mixed‐matrix membranes for dissolved oxygen removal from water. J. Appl. Polym. Sci., 132: 1–9.
  • Zhao, Q., Liu, C., Liu, J., and Zhang, Y. (2015) Development of a novel polyethersulfone ultrafiltration membrane with antibacterial activity and high flux containing halloysite nanotubes loaded with lysozyme. RSC Advan., 5: 38646–38653.
  • Duan, L., Zhao, Q., Liu, J., and Zhang, Y. (2015) Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water purification. Environmental Sci.: Water Res. Technol., 1: 874–881.
  • Duan, L., Huang, W., and Zhang, Y. (2015) High-flux, antibacterial ultrafiltration membranes by facile blending with N-halamine grafted halloysite nanotubes. RSC Advan., 5: 6666–6674.
  • Lee, J.-W., Jung, J., Cho, Y.H., Yadav, S.K., Baek, K.-Y., Park, H.B., Hong, S.M., and Koo, C.M. (2014) Fouling-tolerant nanofibrous polymer membranes for water treatment. ACS Appl. Mater. Interf., 6: 14600–14607.
  • Zhao, Q., Hou, J., Shen, J., Liu, J., and Zhang, Y. (2015) Long-lasting antibacterial behavior of a novel mixed matrix water purification membrane. J. Mat. Chem. A, 3: 18696–18705.
  • Wang, Z., Wang, H., Liu, J., and Zhang, Y. (2014) Preparation and antifouling property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with MPC via RATRP method. Desalination, 344: 313–320.
  • Zhu, J., Guo, N., Zhang, Y., Yu, L., and Liu, J. (2014) Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP. J. Membr. Sci., 465: 91–99.
  • Giwa, A., Akther, N., Dufour, V., and Hasan, S.W. (2015) A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis process. RSC Advan., 10: 8134–8163.
  • Sen, D., Ghosh, A., Mazumder, S., Bindal, R., and Tewari, P. (2014) Novel polysulfone–spray-dried silica composite membrane for water purification: Preparation, characterization and performance evaluation. Sep. Purif. Tech., 123: 79–86.
  • El Badawi, N., Ramadan, A.R., Esawi, A.M., and El-Morsi, M. (2014) Novel carbon nanotube–cellulose acetate nanocomposite membranes for water filtration applications. Desalination, 344: 79–85.
  • Silva, T.L.S., Morales-Torres, S., Figueiredo, J.L., and Silva, A.M.T. (2015) Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation. Desalination, 357: 233–245.
  • Yu, L., Zhang, Y., Wang, Y., Zhang, H., and Liu, J. (2015) High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres. J. Hazard. Mater., 287: 373–383.
  • Jo, Y.J., Choi, E.Y., Kim, S.W., and Kim, C.K. (2016) Fabrication and characterization of a novel polyethersulfone/aminated polyethersulfone ultrafiltration membrane assembled with zinc oxide nanoparticles. Polymer, 87: 290–299.
  • Mehwish, N., Kausar, A., and Siddiq, M. (2015) High-performance polyvinylidene fluoride/poly(styrene–butadiene–styrene)/functionalized MWCNTs-SCN-Ag nanocomposite membranes. Iran. Polym. J., 24: 549–559.
  • Zhang, J., Wang, Z., Zhang, X., Zheng, X., and Wu, Z. (2015) Enhanced antifouling behaviors of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture. Appl. Surf. Sci., 345: 418–427.
  • Wu, G., Gan, S., Cui, L., and Xu, Y. (2008) Preparation and characterization of PES/TiO2 composite membranes. Appl. Surf. Sci., 254: 7080–7086.
  • Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L., and Tarabara, V.V. (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J. Membr. Sci., 325: 58–68.
  • Kim, S.H., Kwak, S.-Y., Sohn, B.-H., and Park, T.H. (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci., 211: 157–165.
  • Li, J.-H., Xu, Y.-Y., Zhu, L.-P., Wang, J.-H., and Du, C.-H. (2009) Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci., 326: 659–666.
  • Li, J.B., Zhu, J.W., and Zheng, M.S. (2007) Morphologies and properties of poly (phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles. J. Appl. Polym. Sci., 103: 3623–3629.
  • Kim, E.-S., Hwang, G., El-Din, M.G., and Liu, Y. (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci., 394: 37–48.
  • Jadav, G.L. and Singh, P.S. (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J. Membr. Sci., 328: 257–267.
  • Damm, C., Münstedt, H., and Rösch, A. (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J. Mater. Sci., 42: 6067–6073.
  • Jeong, B.-H., Hoek, E.M., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., and Jawor, A. (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci., 294: 1–7.
  • Lind, M.L., Ghosh, A.K., Jawor, A., Huang, X., Hou, W., Yang, Y., and Hoek, E.M. (2009) Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir, 25: 10139–10145.
  • Ma, N., Wei, J., Liao, R., and Tang, C.Y. (2012) Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. J. Membr. Sci., 405: 149–157.
  • Rahimpour, A., Jahanshahi, M., Mollahosseini, A., and Rajaeian, B. (2012) Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes. Desalination, 285: 31–38.
  • Shah, P. and Murthy, C. (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Membr. Sci., 437: 90–98.
  • Li, Y.-H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., and Wei, B. (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41: 2787–2792.
  • Goh, P.S., Ismail, A.F., and Ng, B.C. (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination, 308: 2–14.
  • Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H., and Gao, C. (2009) Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J. Membr. Sci., 342: 165–172.
  • Zhang, L., Shi, G.-Z., Qiu, S., Cheng, L.-H., and Chen, H.-L. (2011) Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desal. Water Treat., 34: 19–24.
  • Zhao, H., Qiu, S., Wu, L., Zhang, L., Chen, H., and Gao, C. (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membrane Sci., 450: 249–256.
  • Kim, H.J., Choi, K., Baek, Y., Kim, D.-G., Shim, J., Yoon, J., and Lee, J.-C. (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mat. Interf., 6: 2819–2829.
  • Zhang, M., Zhang, K., De Gusseme, B., and Verstraete, W. (2012) Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes. Water Res., 46: 2077–2087.
  • Koseoglu-Imer, D.Y., Kose, B., Altinbas, M., and Koyuncu, I. (2013) The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Membr. Sci., 428: 620–628.
  • Savage, N. and Diallo, M.S. (2005) Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanopart. Res., 7: 331–342.
  • Mauter, M.S. and Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42: 5843–5859.
  • Vu, D.Q., Koros, W.J., and Miller, S.J. (2001) High Pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind. Eng. Chem. Res., 41: 367–380.
  • Liao, Z.-L., Chen, H., Zhu, B.-R., and Li, H.-Z. (2015) Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water. Chemosphere, 134: 127–132.
  • Skouteris, G., Saroj, D., Melidis, P., Hai, F.I., and Ouki, S. (2015) The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation — A critical review. Bioresour. Technol., 185: 399–410.
  • Zornoza, B., Tellez, C., Coronas, J., Gascon, J., and Kapteijn, F. (2013) Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Micropor. Mesopor. Mater., 166: 67–78.
  • Khan, N.A., Jung, B.K., Hasan, Z., and Jhung, S.H. (2015) Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. J. Hazard. Mater., 282: 194–200.
  • Ng, L.Y., Mohammad, A.W., Leo, C.P., and Hilal, N. (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination, 308: 15–33.
  • Misdan, N., Lau, W.J., Ismail, A.F., and Matsuura, T. (2013) Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics. Desalination, 329: 9–18.
  • Tarabara, V.V. (2009) Multifunctional nanomaterial-enabled membranes for water treatment. Nanotech. Appl. Clean Water, 5: 59–75.
  • Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., and Alvarez, P.J. (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res., 42: 4591–4602.
  • Pradeep, T. (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films, 517: 6441–6478.
  • Qu, X., Alvarez, P.J., and Li, Q. (2013) Applications of nanotechnology in water and wastewater treatment. Water Res., 47: 3931–3946.
  • Majdalawieh, A., Kanan, M.C., El-Kadri, O., and Kanan, S.M. (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J. Nanosci. Nanotech., 14: 4757–4780.
  • Zhong,L.S., Hu, J.S., Liang, H.P., Cao, A.M., Song, W.G., and Wan, L.J. (2006) Self‐assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 18: 2426–2431.
  • Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D., and Biswas, P. (2006) Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol., 40: 4336–4345.
  • Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., and Xie, G.X. (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ., 424: 1–10.
  • Adams, F.V., Nxumalo, E.N., Krause, R.W., Hoek, E.M., and Mamba, B.B. (2012) Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes. J. Membrane Sci., 405: 291–299.
  • Adams, F., Nxumalo, E., Krause, R., Hoek, E., and Mamba, B. (2014) Application of polysulfone/cyclodextrin mixed-matrix membranes in the removal of natural organic matter from water. Phys. Chem. Earth, Pts. A/B/C, 67: 71–78.
  • Fan, Z., Wang, Z., Duan, M., Wang, J., and Wang, S. (2008) Preparation and characterization of polyaniline/polysulfone nanocomposite ultrafiltration membrane. J. Membr. Sci., 310: 402–408.
  • Fan, Z., Wang, Z., Sun, N., Wang, J., and Wang, S. (2008) Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers. J. Membr. Sci., 320: 363–371.
  • Tetala, K.K. and Stamatialis, D.F. (2013) Mixed matrix membranes for efficient adsorption of copper ions from aqueous solutions. Sep. Purif. Tech., 104: 214–220.
  • Wang, M., Wu, L.-G., Mo, J.-X., and Gao, C.-J. (2006) The preparation and characterization of novel charged polyacrylonitrile/PES-C blend membranes used for ultrafiltration. J. Membr. Sci., 274: 200–208.
  • Zhao, W., Huang, J., Fang, B., Nie, S., Yi, N., Su, B., Li, H., and Zhao, C. (2011) Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. J. Membr. Sci., 369: 258–266.
  • Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., and Matsuura, T. (2006) Electrospun nanofibrous filtration membrane. J. Membr. Sci., 281: 581–586.
  • Anderson, M.R., Mattes, B.R., Reiss, H., and Kaner, R.B. (1991) Conjugated polymer films for gas separations. J. Membr. Sci., 252: 1412–1415.
  • Zhao, S., Wang, Z., Wang, J., Yang, S., and Wang, S. (2011) PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J. Membr. Sci., 376: 83–95.
  • Zhao, S., Wang, Z., Wei, X., Tian, X., Wang, J., Yang, S., and Wang, S. (2011) Comparison study of the effect of PVP and PANI nanofibers additives on membrane formation mechanism, structure and performance. J. Membr. Sci., 385: 110–122.
  • Kotte, M.R., Hwang, T., Han, J.-I., and Diallo, M.S. (2015) A one-pot method for the preparation of mixed matrix polyvinylidene fluoride membranes with in situ synthesized and PEGylated polyethyleneimine particles. J. Membr. Sci., 474: 277–287.
  • Mukherjee, R., Sharma, R., Saini, P., and De, S. (2015) Nanostructured polyaniline incorporated ultrafiltration membrane for desalination of brackish water. Environ. Sci.: Water Res. Technol., 1: 893–904.
  • Liao, Y., Farrell, T.P., Guillen, G.R., Li, M., Temple, J.A.T., Li, X.-G., Hoek, E.M.V., and Kaner, R.B. (2014) Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes. Mater. Horizons, 1: 58–64.
  • Zhu, J., Tian, M., Zhang, Y., Zhang, H., and Liu, J. (2015) Fabrication of a novel “loose” nanofiltration membrane by facile blending with Chitosan–Montmorillonite nanosheets for dyes purification. Chem. Eng. J., 265: 184–193.
  • Kumar, M., Grzelakowski, M., Zilles, J., Clark, M., and Meier, W. (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. USA, 104: 20719–20724.
  • Manjarrez Nevárez, L., Ballinas Casarrubias, L., Canto, O.S., Celzard, A., Fierro, V., Ibarra Gómez, R., and González Sánchez, G. (2011) Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification. Carbohydr. Polym., 86: 732–741.
  • Duong, P.H.H., Chung, T.-S., Jeyaseelan, K., Armugam, A., Chen, Z., Yang, J., and Hong, M. (2012) Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci., 409–410:34–43.
  • Li, X., Wang, R., Wicaksana, F., Tang, C., Torres, J., and Fane, A.G. (2014) Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. J. Membr. Sci., 450: 181–188.
  • Wang, H., Chung, T.-S., and Tong, Y.W. (2013) Study on water transport through a mechanically robust Aquaporin Z biomimetic membrane. J. Membr. Sci., 445: 47–52.
  • Lin, C.-H., Gung, C.-H., Sun, J.-J., and Suen, S.-Y. (2014) Preparation of polyethersulfone/plant-waste-particles mixed matrix membranes for adsorptive removal of cationic dyes from water. J. Membr. Sci., 471: 285–298.
  • Zhao, J., Zhao, X., Jiang, Z., Li, Z., Fan, X., Zhu, J., Wu, H., Su, Y., Yang, D., Pan, F., and Shi, J. (2014) Biomimetic and bioinspired membranes: Preparation and application. Progr. Polym. Sci., 39: 1668–1720.
  • Shen, Y.-x., Saboe, P.O., Sines, I.T., Erbakan, M., and Kumar, M. (2014) Biomimetic membranes: A review. J. Membr. Sci., 454: 359–381.
  • Tang, C.Y., Zhao, Y., Wang, R., Hélix-Nielsen, C., and Fane, A.G. (2013) Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 308: 34–40.
  • Tang, C., Wang, Z., Petrinić, I., Fane, A.G., and Hélix-Nielsen, C. (2015) Biomimetic aquaporin membranes coming of age. Desalination, 368: 89–105.
  • Wang, H., Chung, T.-S., Tong, Y.W., Jeyaseelan, K., Armugam, A., Chen, Z., Hong, M., and Meier, W. (2012) Highly permeable and selective pore-spanning biomimetic membrane embedded with Aquaporin Z. Small, 8: 1185–1190.
  • Zhao, Y., Qiu, C., Li, X., Vararattanavech, A., Shen, W., Torres, J., Hélix-Nielsen, C., Wang, R., Hu, X., Fane, A.G., and Tang, C.Y. (2012) Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci., 423–424:422–428.
  • Zhong, P.S., Chung, T.-S., Jeyaseelan, K., and Armugam, A. (2012) Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci., 407–408:27–33.
  • Li, X., Wang, R., Tang, C., Vararattanavech, A., Zhao, Y., Torres, J., and Fane, T. (2012) Preparation of supported lipid membranes for aquaporin Z incorporation. Coll. Surf. B: Biointerf., 94: 333–340.
  • Wang, M., Wang, Z., Wang, X., Wang, S., Ding, W., and Gao, C. (2015) Layer-by-layer assembly of Aquaporin Z-incorporated biomimetic membranes for water purification. Environ. Sci. Technol., 49: 3761–3768.
  • Wang, S., Cai, J., Ding, W., Xu, Z., and Wang, Z. (2015) Bio-inspired aquaporinz containing double-skinned forward osmosis membrane synthesized through layer-by-layer assembly. Membranes, 5: 369–384.
  • Ding, W., Cai, J., Yu, Z., Wang, Q., Xu, Z., Wang, Z., and Gao, C. (2015) Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support. J. Mater. Chem. A, 3: 20118–20126.
  • Ji, Y.-L., An, Q.-F., Guo, Y.-S., Hung, W.-S., Lee, K.-R., and Gao, C.-J. (2016) Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles. J. Mat. Chem. A., 4: 4224–4231.
  • Wagh, P., Parungao, G., Viola, R.E., and Escobar, I.C. (2015) A new technique to fabricate high-performance biologically inspired membranes for water treatment. Sep. Purif. Technol., 156, Pt. 2: 754–765.
  • Daraei, P., Madaeni, S.S., Ghaemi, N., Salehi, E., Khadivi, M.A., Moradian, R., and Astinchap, B. (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Membr. Sci., 415–416:250–259.
  • Saf, A.O., Akin, I., Zor, E., and Bingol, H. (2015) Preparation of a novel PSf membrane containing rGO/PTh and its physical properties and membrane performance. RSC Advan., 5: 42422–42429.
  • Teli, S.B., Molina, S., Calvo, E.G., Lozano, A.E., and de Abajo, J. (2012) Preparation, characterization and antifouling property of polyethersulfone–PANI/PMA ultrafiltration membranes. Desalination, 299: 113–122.
  • Mahmoudi, E., Ng, L.Y., Ba-Abbad, M.M., and Mohammad, A.W. (2015) Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J., 277: 1–10.
  • Wang, R., Jiang, X., He, A., Xiang, T., and Zhao, C. (2015) An in situ crosslinking approach towards chitosan-based semi-IPN hybrid particles for versatile adsorptions of toxins. RSC Advan., 5: 51631–51641.
  • Gohari, R.J., Halakoo, E., Nazri, N., Lau, W.J., Matsuura, T., and Ismail, A.F. (2014) Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination, 335: 87–95.
  • Nair, A.K., Isloor, A.M., Kumar, R., and Ismail, A.F. (2013) Antifouling and performance enhancement of polysulfone ultrafiltration membranes using CaCO3 nanoparticles. Desalination, 322: 69–75.
  • Rahimpour, A. and Madaeni, S.S. (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. J. Membr. Sci., 305: 299–312.
  • Daraei, P., Madaeni, S.S., Ghaemi, N., Ahmadi Monfared, H., and Khadivi, M.A. (2013) Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: Comparison of MWCNT and PAA modified MWCNT. Sep. Purif. Technol., 104: 32–44.
  • Rahimpour, A. and Madaeni, S.S. (2010) Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J. Membr. Sci., 360: 371–379.
  • Reddy, A.V.R., Mohan, D.J., Bhattacharya, A., Shah, V.J., and Ghosh, P.K. (2003) Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer: I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties. J. Membr. Sci., 214: 211–221.
  • Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., and Astinchap, B. (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol., 90: 69–82.
  • Zhou, Y., Yu, S., Gao, C., and Feng, X. (2009) Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance. Sep. Purif. Technol., 66: 287–294.
  • Alzahrani, S. and Mohammad, A.W. (2014) Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Proc. Eng., 4: 107–133.
  • Buonomenna, M.G. (2013) Membrane processes for a sustainable industrial growth. RSC Advan., 3: 5694–5740.
  • Van der Bruggen, B., Mänttäri, M., and Nyström, M. (2008) Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol., 63: 251–263.
  • Kang, G.-D. and Cao, Y.-M. (2012) Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res., 46: 584–600.
  • Tesh, S.J. and Scott, T.B. (2014) Nano-composites for water remediation: A review. Adv. Mat., 26: 6056–6068.
  • Theron, J., Walker, J.A., and Cloete, T.E. (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit. Rev. Microbiol., 34: 43–69.
  • Kickelbick, G. (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci., 28: 83–114.
  • Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., and Ramakrishna, S. (2012) A review on nanomaterials for environmental remediation. Energy Environ. Sci., 5: 8075–8109.
  • Goh, P.S. and Ismail, A.F. (2014) Review: Is interplay between nanomaterial and membrane technology the way forward for desalination? J. Chem. Technol. Biotechnol., 90: 971–980.
  • Mannan, H.A., Mukhtar, H., Murugesan, T., Nasir, R., Mohshim, D.F., and Mushtaq, A. (2013) Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol., 36: 1838–1846.
  • Goh, P.S., Ismail, A.F., and Ng, B.C. (2013) Carbon nanotubes for desalination – an innovative material with enormous potential. Membr. Technol., 2013: 7–10.
  • Jamshidi Gohari, R., Lau, W.J., Matsuura, T., and Ismail, A.F. (2013) Fabrication and characterization of novel PES/Fe–Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution. Sep. Purif. Technol., 118: 64–72.
  • Macedonio, F., Drioli, E., Gusev, A.A., Bardow, A., Semiat, R., and Kurihara, M. (2012) Efficient technologies for worldwide clean water supply. Chem. Eng. Proc.: Proc. Intensif., 51: 2–17.
  • Singh, T., Kang, D.-Y., and Nair, S. (2013) Rigorous calculations of permeation in mixed-matrix membranes: Evaluation of interfacial equilibrium effects and permeability-based models. J. Membr. Sci., 448: 160–169.
  • Hilal, N., Al-Zoubi, H., Darwish, N.A., Mohamma, A.W., and Abu Arabi, M. (2004) A comprehensive review of nanofiltration membranes: Treatment,pretreatment, modelling, and atomic force microscopy. Desalination, 170: 281–308.
  • Drioli, E., Giorno, L. (2010) Comprehensive Membrane Science and Engineering; Elsevier, Amsterdam, Netherland.
  • Lu, M., Duke, M., Zhao, D., and Semiat, R. (2013) Functional Nanostructured Materials and Membranes for Water Treatment; John Wiley & Sons, London, UK.
  • Geise, G.M., Paul, D.R., and Freeman, B.D. (2014) Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci., 39: 1–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.