820
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Microfluidic Screening of Circulating Tumor Biomarkers toward Liquid Biopsy

&
Pages 19-48 | Received 14 Oct 2016, Accepted 02 Apr 2017, Published online: 22 May 2017

REFERENCES

  • Wan, L., Pantel, K., and Kang, Y. (2013) Tumor metastasis: moving new biological insights into the clinic. Nat. Med., 19: 1450–1464.
  • Chi, K.R. (2016) The tumour trail left in blood. Nature, 532: 269–271.
  • Hyun, K.A., Kim, J., Gwak, H., and Jung, H.I. (2016) Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst. 141: 382–92.
  • Kailasa, S.K. and Kang, S.H. (2009) Microchip-based capillary electrophoresis for dna analysis in modern biotechnology: a review. Sep. Purif. Rev., 38: 242–288.
  • Warburg, O. (1956) On the origin of cancer cells. Science,123: 309–314.
  • Hynes, R.O. (2011) Metastatic cells will take any help they can get. Cancer Cell, 20: 689–690.
  • Myung, J.H. and Hong, S. (2015) Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip, 15:4500–4511.
  • Im, H., Shao, H., Park, Y.I., Peterson, V.M., Castro, C.M., Weissleder, R., and Lee, H. (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol., 32: 490–495.
  • Kowal, J., Tkach, M., and Théry, C. (2014) Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol., 29: 116–125.
  • Ren, J., He, W., Zheng, L., and Duan, H. (2016) From structures to functions: insights into exosomes as promising drug delivery vehicles. Biomater. Sci., 4: 910–921.
  • Mandel, P. and Metais, P. (1948) Les acides nucléiques du plasma sanguin chez l’homme. C. R. Seances Soc. Biol. Ses Fil., 142: 241–243.
  • Stroun, M., Anker, P., Maurice, P., Lyautey, J., Lederrey, C., and Beljanski, M. (1989) Neoplastic characteristics of the dna found in the plasma of cancer patients. Oncology, 46: 318–322.
  • Han, K-H., Han, A., and Frazier, A.B. (2006) Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosens. Bioelectron., 21: 1907–1914.
  • Bettegowda, C., Sausen, M., Leary, R.J., Kinde, I., Wang, Y., Agrawal, N., Bartlett, B.R., Wang, H., Luber, B., Alani, R.M., Antonarakis, E.S., Azad, N.S., Bardelli, A., Brem, H., Cameron, J.L., Lee, C.C., Fecher, L.A., Gallia, G.L., Gibbs, P., Le, D., Giuntoli, R.L., Goggins, M., Hogarty, M.D., Holdhoff, M., Hong, S.-M., Jiao, Y., Juhl, H.H., Kim, J.J., Siravegna, G., Laheru, D.A., Lauricella, C., Lim, M., Lipson, E.J., Marie, S.K.N., Netto, G.J., Oliner, K.S., Olivi, A., Olsson, L., Riggins, G.J., Sartore-Bianchi, A., Schmidt, K., Shih, L.-M., Oba-Shinjo, S.M., Siena, S., Theodorescu, D., Tie, J., Harkins, T.T., Veronese, S., Wang, T.-L., Weingart, J.D., Wolfgang, C.L., Wood, L.D., Xing, D., Hruban, R.H., Wu, J., Allen, P.J., Schmidt, C.M., Choti, M.A., Velculescu, V.E., Kinzler, K.W., Vogelstein, B., Papadopoulos, N., and Diaz, L.A. (2014) Detection of circulating tumor dna in early- and late-stage human malignancies. Sci. Transl. Med., 6: 224ra24.
  • Siravegna, G. and Bardelli, A. (2016) Blood circulating tumor dna for non-invasive genotyping of colon cancer patients. Mol. Oncol., 10: 475–480.
  • Bellassai, N. and Spoto, G. (2016) Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal. Bioanal. Chem., 408: 7255–7264.
  • Nahavandi, S., Baratchi, S., Soffe, R., Tang, S-Y., Nahavandi, S., Mitchell, A., and Khoshmanesh, K. (2014) Microfluidic platforms for biomarker analysis. Lab Chip, 14: 1496–1514.
  • Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993) The c. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell, 75: 843–854.
  • Allegra, A., Alonci, A., Campo, S., Penna, G., Petrungaro, A., Gerace, D., and Musolino, C. (2012) Circulating micrornas: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int. J. Oncol., 41: 1897–1912.
  • Liu, K.J., Brock, M.V., Shih, I., and Wang, T. (2010) Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy. J. Am. Chem. Soc., 132: 5793–5798.
  • Friedrich, S.M., Zec, H.C., and Wang, T-H. (2016) Analysis of single nucleic acid molecules in micro- and nano-fluidics. Lab Chip, 16: 790–811.
  • Haeberle, S. and Zengerle, R. (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip, 7: 1094–1110.
  • Livak-Dahl, E., Sinn, I., and Burns, M. (2011) Microfluidic chemical analysis systems. Annu. Rev. Chem. Biomol. Eng., 2: 325–353.
  • Lisowski, P. and Zarzycki, P.K. (2013) Microfluidic paper-based analytical devices (μpads) and micro total analysis systems (μtas): development, applications and future trends. Chromatographia, 76: 1201–1214.
  • Faustino, V., Catarino, S.O., Lima, R., and Minas, G. (2015) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J. Biomech., 49: 2280–2292.
  • Alix-Panabières, C. and Pantel, K. (2014) Challenges in circulating tumour cell research. Nat. Rev. Cancer, 14: 623–631.
  • Cima, I., Wen Yee, C., Iliescu, F.S., Min Phyo, W., Hon Lim, K., Iliescu, C., and Han Tan, M. (2013) Label-free isolation of circulating tumor cells in microfluidic devices: current research and perspectives. Biomicrofluidics, 7: 011810.
  • Hosokawa, M., Hayata, T., Fukuda, Y., Arakaki, A., Yoshino, T., Tanaka, T., and Matsunaga, T. (2010) Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal. Chem., 82: 6629–6635.
  • Zheng, S., Lin, H., Liu, J-Q., Balic, M., Datar, R., Cote, R. J., and Tai, Y.-C. (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J. Chromatogr. A, 1162: 154–161.
  • Hosokawa, M., Yoshikawa, T., Negishi, R., Yoshino, T., Koh, Y., Kenmotsu, H., Naito, T., Takahashi, T., Yamamoto, N., Kikuhara, Y., Kanbara, H., Tanaka, T., Yamaguchi, K., and Matsunaga, T. (2013) Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Anal. Chem., 85: 5692–5698.
  • Loutherback, K., D’Silva, J., Liu, L., Wu, A., Austin, R.H., and Sturm, J.C. (2012) Deterministic separation of cancer cells from blood at 10 ml/min. AIP Adv., 2: 42107.
  • Liu, Z., Huang, F., Du, J., Shu, W., Feng, H., Xu, X., and Chen, Y. (2013) Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure. Biomicrofluidics, 7: 011801.
  • Mohamed, H., Murray, M., Turner, J.N., and Caggana, M. (2009) Isolation of tumor cells using size and deformation. J. Chromatogr. A, 1216: 8289–8295.
  • Tan, S.J., Yobas, L., Lee, G.Y.H., Ong, C.N., and Lim, C.T. (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices, 11: 883–892.
  • Tan, S.J., Lakshmi, R.L., Chen, P., Lim, W-T., Yobas, L., and Lim, C.T. (2010) Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosens. Bioelectron., 26: 1701–1705.
  • Lv, P., Tang, Z., Liang, X., Guo, M., and Han, R.P.S. (2013) Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients. Biomicrofluidics, 7: 034109.
  • Di Carlo, D. (2009) Inertial microfluidics. Lab Chip, 9: 3038–3046.
  • Gossett, D.R., Weaver, W.M., Mach, A.J., Hur, S.C., Tse, H.T.K., Lee, W., Amini, H., and Di Carlo, D. (2010) Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem., 397: 3249–3267.
  • Bhagat, A.A.S., Hou, H.W., Li, L.D., Lim, C.T., and Han, J. (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip, 11: 1870–1878.
  • Hur, S.C., Mach, A.J., and Di Carlo, D. (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics, 5: 022206.
  • Mach, A.J., Kim, J.H., Arshi, A., Hur, S.C., and Di Carlo, D. (2011) Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip, 11: 2827–2834.
  • Moon, H-S., Kwon, K., Hyun, K-A., Sim, T.S., Park, J.C., Lee, J.G., and Jung, H.I. (2013) Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation. Biomicrofluidics, 7: 014105.
  • Sun, J., Li, M., Liu, C., Zhang, Y., Liu, D., Liu, W., Hu, G., and Jiang, X. (2012) Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip, 12: 3952.
  • Sun, J., Liu, C., Li, M., Wang, J., Xianyu, Y, Hu, G., and Jiang, X. (2013) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics, 7: 011802.
  • Warkiani, M.E., Guan, G., Luan, K.B., Lee, W.C., Bhagat, A.A.S., Kant Chaudhuri, P., Tan, D.S.-W., Lim, W.T., Lee, S.C., Chen, P.C.Y., Lim, C.T., and Han, J. (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip, 14: 128–137.
  • Hou, H.W., Warkiani, M.E., Khoo, B.L., Li, Z.R., Soo, R.A., Tan, D.S.-W., Lim, W.-T., Han, J., Bhagat, A.A.S., and Lim, C.T. (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep., 3: 1259.
  • Zborowski, M. and Chamers, J.J. (2011) Rare cell separation and analysis by magnetic sorting. Anal. Chem., 83: 8050–8056.
  • Augustsson, P., Magnusson, C., Nordin, M., Lilja, H., and Laurell, T. (2012) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem., 84: 7954–7962.
  • Ding, X., Peng, Z., Lin, S.C.S., Geri, M., Li, S., Li, P., Chen, Y., Dao, M., Suresh, S., and Huang, T.J. (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. U.S.A., 111: 12992–12997.
  • Li, P., Mao, Z., Peng, Z., Zhou, L., Chen, Y., Huang, P.-H., Truica, C.I., Drabick, J.J., El-Deiry, W.S., Dao, M., Suresh, S., and Huang, T.J. (2015) Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U.S.A., 112: 4970–4975.
  • Kim, M.S., Sim, T.S., Kim, Y.J., Kim, S.S., Jeong, H., Park, J.-M., Moon, H.-S., Kim, S.I., Gurel, O., Lee, S.S., Lee, J.-G., and Park, J.C. (2012) Ssa-moa: a novel ctc isolation platform using selective size amplification (ssa) and a multi-obstacle architecture (moa) filter. Lab Chip, 12: 2874–2880.
  • Pethig, R. (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics, 4: 022811.
  • Huang, Y., Yang, J., Wang, X-B., Becker, F.F., and Gascoyne, P.R.C. (1999) The removal of human breast cancer cells from hematopoietic cd34 + stem cells by dielectrophoretic field-flow-fractionation. J. Hematother. Stem Cell Res., 8: 481–490.
  • Yang, J., Huang, Y., Wang, X.B., Becker, F.F., and Gascoyne, P.R. (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal. Chem., 71: 911–918.
  • Wang, X-B., Yang, J., Huang, Y., Vykoukal, J., Becker, F.F., and Gascoyne, P.R.C. (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem., 72: 832–839.
  • Gascoyne, P.R.C., Noshari, J., Anderson, T.J., and Becker, F.F. (2009) Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis, 30: 1388–1398.
  • Sabuncu, A.C., Liu, J.A., Beebe, S.J., and Beskok, A. (2010) Dielectrophoretic separation of mouse melanoma clones. Biomicrofluidics, 4: 021101.
  • Cheng, J., Sheldon, E.L., Wu, L., Heller, M.J., and O’Connell, J.P. (1998) Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal. Chem., 70: 2321–2326.
  • Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B., and Xu, X. (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal. Chem., 74: 3362–3371.
  • Altomare, L., Borgatti, M., Medoro, G., Manaresi, N., Tartagni, M., Guerrieri, R., and Gambari, R. (2003) Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol. Bioeng., 82: 474–479.
  • Park, J., Kim, B., Choi, S.K., Hong, S., Lee, S.H., and Lee, K-I. (2005) An efficient cell separation system using 3d-asymmetric microelectrodes. Lab Chip, 5: 1264–1270.
  • An, J., Lee, J., Lee, S.H., Park, J., and Kim, B. (2009) Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (dacs). Anal. Bioanal. Chem., 394: 801–809.
  • Yang, F., Yang, X., Jiang, H., Bulkhaults, P., Wood, P., Hrushesky, W., and Wang, G. (2010) Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics, 4: 013204.
  • Huang, Y., Wang, X.B., Becker, F.F., and Gascoyne, P.R. (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys. J., 73: 1118–1129.
  • Moon, H-S., Kwon, K., Kim, S-I., Han, H., Sohn. J., Lee, S., and Jung, H.-I. (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (moff) and dielectrophoresis (dep). Lab Chip, 11: 1118–1125.
  • Shafiee, H., Caldwell, J.L., Sano, M.B., and Davalos, R.V. (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed. Microdevices, 11: 997–1006.
  • Henslee, E.A., Sano, M.B., Rojas, A.D., Schmelz, E.M., and Davalos, R.V. (2011) Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis, 32: 2523–2529.
  • Gupta, V., Jafferji, I., Garza, M., Melnikova, V.O., Hasegawa, D.K., Pethig, R., and Davis, D.W. (2012) ApostreamTM, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 6: 024133.
  • Hughes, A.D., Mattison, J., Western, L.T., Powderly, J.D., Greene, B.T., and King, M.R. (2012) Microtube device for selectin-mediated capture of viable circulating tumor cells from blood. Clin. Chem., 58: 846–853.
  • Wang, S., Liu, K., Liu, J., Yu, Z.T.F., Xu, X., Zhao, L., Lee, T., Lee, E.K., Reiss, J., Lee, Y.K., Chung, L.W.K., Huang, J., Rettig, M., Seligson, D., Duraiswamy, K.N., Shen, C.K.F., and Tseng, H.R. (2011) Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed., 50: 3084–3088.
  • Dharmasiri, U., Njoroge, S.K., Witek, M.A., Adebiyi, M.G., Kamande, J.W., Hupert, M.L., Barany, F., and Soper, S.A. (2011) High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal. Chem., 83: 2301–2309.
  • Adams, A.A., Okagbare, P.I., Feng, J., Hupert, M.L., Patterson, D., Gottert, J., McCarley, R. L., Nikitopoulos, D., Murphy, M.C., and Soper, S.A. (2008) Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc., 130: 8633–8641.
  • Stott, S.L., Hsu, C-H., Tsukrov, D.I., Yu, M., Miyamoto, D.T., Waltman, B.A., Rothenberg, S.M., Shah, A.M., Smas, M.E., Korir, G.K., Floyd, F.P., Gilman, A.J., Lord, J.B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L.V., Lee, R.J., Isselbacher, K.J., Maheswaran, S., Haber, D.A., and Toner, M. (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U.S.A., 107: 18392–18397.
  • Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U.J., Tompkins, R.G., Haber, D.A., and Toner, M. (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450: 1235–1239.
  • Liu, Z., Zhang, W., Huang, F., Feng, H., Shu, W., Xu, X., and Chen, Y. (2013) High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens. Bioelectron., 47:113–119.
  • Wang, S., Wang, H., Jiao, J., Chen, K.J., Owens, G.E., Kamei, K.I., Sun, J., Sherman, D.J., Behrenbruch, C.P., Wu, H., and Tseng, H.R. (2009) Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew. Chem. Int. Ed., 48: 8970–8973.
  • Kang, J.H., Krause, S., Tobin, H., Mammoto, A., Kanapathipillai, M., and Ingber, D.E. (2012) A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip, 12: 2175–2181.
  • Sivagnanam, V., Song, B., Vandevyver, C., Bünzli, J.C.G., and Gijs, M.A.M. (2010) Selective breast cancer cell capture, culture, and immunocytochemical analysis using self-assembled magnetic bead patterns in a microfluidic chip. Langmuir, 26: 6091–6096.
  • Fais, S., O’Driscoll, L., Borras, F.E., Buzas, E., Camussi, G., Cappello, F., Carvalho, J., Cordeiro da Silva, A., Del Portillo, H., El Andaloussi, S., Ficko Trček, T., Furlan, R., Hendrix, A., Gursel, I., Kralj-Iglic, V., Kaeffer, B., Kosanovic, M., Lekka, M.E., Lipps, G., Logozzi, M., Marcilla, A., Sammar, M., Llorente, A., Nazarenko, I., Oliveira, C., Pocsfalvi, G., Rajendran, L., Raposo, G., Rohde, E., Siljander, P., van Niel, G., Vasconcelos, M.H., Yáñez-Mó, M., Yliperttula, M.L., Zarovni, N., Zavec, A.B., and Giebel, B. (2016) Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano, 10: 3886–3899.
  • Phillips, J.A., Xu, Y., Xia, Z., Fan, Z.H., and Tan, W. (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal. Chem., 81: 1033–1039.
  • Xu, Y., Phillips, J.A., Yan, J., Li, Q., Fan, Z.H., and Tan, W. (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem., 81: 7436–7442.
  • Zhu, Y., Kekalo, K., Ndong, C., Huang, Y., Shubitidze, F., Griswold, K.E., Baker, I., and Zhang, J.X.J. (2016) Magnetic-nanoparticle-based immunoassays-on-chip: materials synthesis, surface functionalization, and cancer cell screening. Adv. Funct. Mater., 26: 3953–3972.
  • Chen, P., Huang, Y., Hoshino, K., and Zhang, J.X.J. (2014) Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips. Lab Chip, 14: 446–458.
  • Hoshino, K., Huang, Y-Y., Lane, N., Huebschman, M., Uhr, J.W., Frenkel, E.P., and Zhang, J.X.J. (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 11: 3449–3457.
  • Huang, Y.Y., Hoshino, K., Chen, P., Wu, C.H., Lane, N., Huebschman, M., Liu, H., Sokolov, K., Uhr, J.W., Frenkel, E.P., and Zhang, J.X.J. (2013) Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system. Biomed. Microdevices, 15: 673–681.
  • Hoshino, K., Chen, P., Huang, Y.Y., and Zhang, J.X.J. (2012) Computational analysis of microfluidic immunomagnetic rare cell separation from a particulate blood flow. Anal. Chem., 84: 4292–4299.
  • Huang, Y., Chen, P., Wu, C., Hoshino, K., Sokolov, K., Lane, N., Liu, H., Huebschman, M., Frenkel, E., and Zhang, J.X.J. (2015) Screening and molecular analysis of single circulating tumor cells using micromagnet array. Sci. Rep., 5: 16047.
  • Chen, P., Huang, Y.Y., Bhave, G., Hoshino, K., and Zhang, J.X.J. (2016) Inkjet-print micromagnet array on glass slides for immunomagnetic enrichment of circulating tumor cells. Ann. Biomed. Eng., 44: 1710–1720.
  • Ng, E., Hoshino, K., and Zhang, J.X.J. (2013) Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface. Methods, 63: 266–275.
  • Chen, P., Huang, Y-Y., Hoshino, K., and Zhang, J.X.J. (2015) Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells. Sci. Rep., 5: 8745.
  • Wu, C.H., Huang, Y.Y., Chen, P., Hoshino, K., Liu, H., Frenkel, E.P., Zhang, J.X.J., and Sokolov, K.V. (2013) Versatile immunomagnetic nanocarrier platform for capturing cancer cells. ACS Nano, 7: 8816–8823.
  • Chen, K.C., Pan, Y.C., Chen, C.L., Lin, C.H., Huang, C.S., and Wo, A.M. (2012) Enumeration and viability of rare cells in a microfluidic disk via positive selection approach. Anal. Biochem., 429: 116–123.
  • Ozkumur, E., Shah, A.M., Ciciliano, J.C., Emmink, B.L., Miyamoto, D.T., Brachtel, E., Yu, M., Chen, P., Morgan, B., Trautwein, J., Kimura, A., Sengupta, S., Stott, S.L., Karabacak, N.M., Barber, T.A., Walsh, J.R., Smith, K., Spuhler, P.S., Sullivan, J.P., Lee, R.J., Ting, D.T., Luo, X., Shaw, A.T., Bardia, A., Sequist, L.V, Louis, D.N., Maheswaran, S., Kapur, R., Haber, D.A., and Toner, M. (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med., 5: 179ra47.
  • Kim, S., Han, S-I., Park, M-J., Jeon, C-W., Joo, Y-D., Choi, I., and Han, K. (2013) Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal. Chem., 85: 2779–2786.
  • Park, J.M., Lee, J.Y., Lee, J.G., Jeong, H., Oh, J.M., Kim, Y.J., Park, D., Kim, M.S., Lee, H.J., Oh, J.H., Lee, S.S., Lee, W.Y., and Huh, N. (2012) Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal. Chem., 84: 7400–7407.
  • Lin, M.X, Hyun, K.A., Moon, H.S., Sim, T.S., Lee, J.G., Park, J.C., Lee, S.S., and Jung, H.I. (2013) Continuous labeling of circulating tumor cells with microbeads using a vortex micromixer for highly selective isolation. Biosens. Bioelectron., 40: 63–67.
  • Kim, M.S., Kim, J., Lee, W., Cho, S.J., Oh, J.M., Lee, J.Y., Baek, S., Kim, Y.J., Sim, T.S., Lee, H.J., Jung, G.E., Kim, S.I., Park, J.M., Oh, J.H., Gurel, O., Lee, S.S., and Lee, J.G. (2013) A trachea-inspired bifurcated microfilter capturing viable circulating tumor cells via altered biophysical properties as measured by atomic force microscopy. Small, 9: 3103–3110.
  • Liu, Z., Fusi, A., Klopocki, E., Schmittel, A., Tinhofer, I., Nonnenmacher, A., and Keilholz, U. (2011) Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J. Transl. Med., 9: 70.
  • Hyun, K.A., Lee, T.Y., and Jung, H.I. (2013) Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Anal. Chem., 85: 4439–4445.
  • Diéguez, L., Winter, M.A., Pocock, K.J., Bremmell, K.E., and Thierry, B. (2015) Efficient microfluidic negative enrichment of circulating tumor cells in blood using roughened pdms. Analyst, 140: 3565–3572.
  • Chen, C-L., Chen, K-C., Pan, Y-C., Lee, T-P., Hsiung, L-C., Lin, C.-M., Chen, C.-Y., Lin, C.-H., Chiang, B.-L., and Wo, A.M. (2011) Separation and detection of rare cells in a microfluidic disk via negative selection. Lab Chip, 11: 474–483.
  • Lu, Y., Liang, H., Yu, T., Xie, J., Chen, S., Dong, H., Sinko, P.J., Lian, S., Xu, J., Wang, J., Yu, S., Shao, J., Yuan, B., Wang, L., and Jia, L. (2015) Isolation and characterization of living circulating tumor cells in patients by immunomagnetic negative enrichment coupled with flow cytometry. Cancer, 121: 3036–3045.
  • Sajay, B.N.G., Chang, C.P., Ahmad, H., Khuntontong, P., Wong, C.C., Wang, Z., Puiu, P. D., Soo, R., and Rahman, A.R.A. (2014) Microfluidic platform for negative enrichment of circulating tumor cells. Biomed. Microdevices, 16: 537–548.
  • Bhuvanendran Nair Gourikutty, S., Chang, C-P., and Poenar, D.P. (2016) An integrated on-chip platform for negative enrichment of tumour cells. J. Chromatogr. B, 1028: 153–164.
  • Karabacak, N.M., Spuhler, P.S., Fachin, F., Lim, E.J., Pai, V., Ozkumur, E., Martel, J.M., Kojic, N., Smith, K., Chen, P., Yang, J., Hwang, H., Morgan, B., Trautwein, J., Barber, T.A., Stott, S.L., Maheswaran, S., Kapur, R., Haber, D.A., and Toner, M. (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc., 9: 694–710.
  • Kwon, K.W., Choi, S.S., Lee, S.H., Kim, B., Lee, S.N., Park, M.C., Kim, P., Hwang, S.Y., and Suh, K.Y. (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip, 7: 1461–1468.
  • Kuo, J.S., Zhao, Y., Schiro, P.G., Ng, L., Lim, D.S.W., Shelby, J.P., and Chiu, D.T. (2010) Deformability considerations in filtration of biological cells. Lab Chip, 10: 837–842.
  • Zheng, S., Lin, H.K., Lu, B., Williams, A., Datar, R., Cote, R.J., and Tai, Y.C. (2011) 3d microfilter device for viable circulating tumor cell (ctc) enrichment from blood. Biomed. Microdevices, 13: 203–213.
  • Bhagat, A.A.S., Hou, H.W., Li, L.D., Lim, C.T., and Han, J.H. (2011) Dean flow fractionation (DFF) isolation of circulating tumor cells (CTCs) from blood. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Seattle, Washington, USA, 524–526.
  • Hosokawa, M., Kenmotsu, H., Koh, Y., Yoshino, T., Yoshikawa, T., Naito, T., Takahashi, T., Murakami, H., Nakamura, Y., Tsuya, A., Shukuya, T., Ono, A., Akamatsu, H., Watanabe, R., Ono, S., Mori, K., Kanbara, H., Yamaguchi, K., Tanaka, T., Matsunaga, T., and Yamamoto, N. (2013) Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS One, 8: e67466.
  • Becker, F.F., Wang, X.B., Huang, Y., Pethig, R., Vykoukal, J., and Gascoyne, P.R.C. (1994) The removal of human leukaemia cells from blood using interdigitated microelectrodes. J. Phys. D Appl. Phys., 27: 2659–2662.
  • Becker, F.F., Wang, X.B., Huang, Y., Pethig, R., Vykoukal, J., and Gascoyne, P.R. (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. U.S.A., 92: 860–864.
  • Gascoyne, P.R.C., Wang, X.B., Huang, Y., and Becker, R.F. (1997) Dielectrophoretic separation of cancer cells from blood. IEEE T. Ind. Appl., 33: 670–678.
  • Das, C.M., Becker, F., Vernon, S., Noshari, J., Joyce, C., and Gascoyne, P.R.C. (2005) Dielectrophoretic segregation of different human cell types on microscope slides dielectrophoretic segregation of different human cell types on microscope slides. Anal. Chem., 77: 2708–2719.
  • Tai, C.H., Hsiung, S.K., Chen, C.Y., Tsai, M.L., and Lee, G.B. (2007) Automatic microfluidic platform for cell separation and nucleus collection. Biomed. Microdevices, 9: 533–543.
  • Kim, U., Shu, C-W., Dane, K.Y., Daugherty, P.S., Wang, J.Y.J., and Soh, H.T. (2007) Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. Proc. Natl. Acad. Sci. U.S.A., 104: 20708–20712.
  • Cristofanilli, M., Krishnamurthy, S., Das, C.M., Reuben, J.M., Spohn, W., Noshari, J., Becker, F., and Gascoyne, P.R. (2008) Dielectric cell separation of fine needle aspirates from tumor xenografts. J. Sep. Sci., 31: 3732–3739.
  • Kang, Y., Li, D., Kalams, S.A., and Eid, J.E. (2008) Dc-dielectrophoretic separation of biological cells by size. Biomed. Microdevices, 10: 243–249.
  • Kostner, S., van den Driesche, S., Witarski, W., Pastorekova, S., and Vellekoop, M.J. (2010) Guided dielectrophoresis: a robust method for continuous particle and cell separation. IEEE Sens. J., 10: 1440–1446.
  • Alazzam, A., Stiharu, I., Bhat, R., and Meguerditchian, A.N. (2011) Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis. 32: 1327–1336.
  • Huang, S-B., Wu M-H., Lin, Y-H., Hsieh, C-H., Yang, C-L., Lin, H.-C., Tseng, C.-P., and Lee, G.-B. (2013) High-purity and label-free isolation of circulating tumor cells (ctcs) in a microfluidic platform by using optically-induced-dielectrophoretic (odep) force. Lab Chip, 13: 1371–1383.
  • Takao, M. and Takeda, K. (2011) Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry. Cytom. A, 79: 107–117.
  • Mittal, S., Wong, I.Y., Deen, W.M., and Toner, M. (2012) Antibody-functionalized fluid-permeable surfaces for rolling cell capture at high flow rates. Biophys. J., 102: 721–730.
  • Schiro, P.G., Zhao, M., Kuo, J.S., Koehler, K.M., Sabath, D.E., and Chiu, D.T. (2012) Sensitive and high-throughput isolation of rare cells from peripheral blood with ensemble-decision aliquot ranking. Angew. Chem. Int. Ed., 51: 4618–4622.
  • Kralj, J.G., Arya, C., Tona, A., Forbes, T.P., Munson, M.S., Sorbara, L., Srivastava, S., and Forry, S.P. (2012) A simple packed bed device for antibody labelled rare cell capture from whole blood. Lab Chip, 12: 4972–4975.
  • Ko, J., Carpenter, E., and Issadore, D. (2015) Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst, 141:450–460.
  • He, M. and Zeng, Y. (2016) Microfluidic exosome analysis toward liquid biopsy for cancer. J. Lab. Autom., 21: 599–608.
  • Wang, Z., Wu, H., Fine, D., Schmulen, J., Hu, Y., Godin, B., Zhang, J.X.J., and Liu, X. (2013) Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip, 13: 2879–2882.
  • Davies, R.T., Kim, J., Jang, S.C., Choi, E-J., Gho, Y.S., and Park, J. (2012) Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip, 12: 5202–5210.
  • Santana, S.M., Antonyak, M.A., Cerione, R.A., and Kirby, B.J. (2014) Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations. Biomed. Microdevices, 16: 869–877.
  • Jo, W., Jeong, D., Kim, J., Cho, S., Jang, S.C., Han, C., Kang, J.Y., Gho, Y.S., and Park, J. (2014) Microfluidic fabrication of cell-derived nanovesicles as endogenous rna carriers. Lab Chip, 14: 1261–1269.
  • Lee, K., Shao, H., Weissleder, R., and Lee, H. (2015) Acoustic purification of extracellular microvesicles. ACS Nano, 9: 2321–2327.
  • Maiolo, D., Paolini, L., Di Noto, G., Zendrini, A., Berti, D., Bergese, P., and Ricotta, D. (2015) Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal. Chem., 87: 4168–4176.
  • Zhu, L., Wang, K., Cui, J., Liu, H., Bu, X., Ma, H., Wang, W., Gong, H., Lausted, C., Hood, L., Yang, G., and Hu, Z. (2014) Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal. Chem., 86: 8857–8864.
  • Chiu, Y., Cai, W., Shih, Y.V., Lian, I., and Lo, Y. (2016) A single-cell assay for time lapse studies of exosome secretion and cell behaviors. Small, 12: 3658–3666.
  • Chen, C., Skog, J., Hsu, C., Lessard, R.T., Balaj, L., Wurdinger, T., Carter, B.S., Breakefield, X.O., Toner, M., and Irimia, D. (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip, 10: 505–511.
  • Kanwar, S.S., Dunlay, C.J., Simeone, D.M., and Nagrath, S. (2014) Microfluidic device (exochip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip, 14: 1891–1900.
  • Zhang, P., He, M., and Zeng, Y. (2016) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip, 16: 3033–3042.
  • Vaidyanathan, R., Naghibosadat, M., Rauf, S., Korbie, D., Carrascosa, L.G., Shiddiky, M.J.A., and Trau, M. (2014) Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal. Chem., 86: 11125–11132.
  • Shao, H., Chung, J., Lee, K., Balaj, L., Min, C., Carter, B.S., Hochberg, F.H., Breakefield, X.O., Lee, H., and Weissleder, R. (2015) Chip-based analysis of exosomal mrna mediating drug resistance in glioblastoma. Nat. Commun., 6: 6999.
  • Zhao, Z., Yang, Y., Zeng, Y., and He, M. (2016) A microfluidic exosearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip, 16: 489–496.
  • Dudani, J.S., Gossett, D.R., Tse, H.T.K., Lamm, R.J., Kulkarni, R.P., and Carlo, D.D. (2015) Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics, 9: 014112.
  • He, M., Crow, J., Roth, M., Zeng, Y., and Godwin, A.K. (2014) Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip, 14: 3773–3780.
  • Shao, H., Chung, J., Balaj, L., Charest, A., Bigner, D.D., Carter, B.S., Hochberg, F.H., Breakefield, X.O., Weissleder, R., and Lee, H. (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med., 18: 1835–1840.
  • Rho, J., Chung, J., Im, H., Liong, M., Shao, H., Castro, C.M., Weissleder, R., and Lee, H. (2013) Magnetic nanosensor for detection and profiling of erythrocyte-derived microvesicles. ACS Nano, 7: 11227–11233.
  • Duarte, G.R.M., Coltro, W.K.T., Borba, J.C., Price, C.W., Landers, J.P., and Carrilho, E. (2012) Disposable polyester-toner electrophoresis microchips for dna analysis. Analyst, 137: 2692–2698.
  • Reinholt, S.J. and Baeumner, A.J. (2014) Microfluidic isolation of nucleic acids. Angew. Chem. Int. Ed., 53: 13988–13981.
  • Ahmad, H., Sutherland, A., Shin, Y.S., Hwang, K., Qin, L., Krom, R.-J., and Heath, J.R. (2011) A robotics platform for automated batch fabrication of high density, microfluidics-based dna microarrays, with applications to single cell, multiplex assays of secreted proteins. Rev. Sci. Instrum., 82: 94301.
  • Yu, J., Zhou, J., Sutherland, A., Wei, W., Shin, Y.S., Xue, M., and Heath, J.R. (2014) Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu. Rev. Anal. Chem., 7: 275–295.
  • Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H., and Burke, D.T. 1998. An integrated nanoliter dna analysis device. Science, 282: 484–487.
  • Chan, E.Y., Goncalves, N.M., Haeusler, R.A., Hatch, A.J., Larson, J.W., Maletta, A.M., Yantz, G.R., Carstea, E.D., Fuchs, M., Wong, G.G., Gullans, S.R., and Gilmanshin, R. (2004) Dna mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res., 14: 1137–1146.
  • Dimalanta, E.T., Lim, A., Runnheim, R., Lamers, C., Churas, C., Forrest, D.K., De Pablo, J.J., Graham, M.D., Coppersmith, S.N., Goldstein, S., and Schwartz, D.C. (2004) A microfluidic system for large dna molecule arrays. Anal. Chem., 76: 5293–5301.
  • Lehmann, U., Vandevyver, C., Parashar, V.K., and Gijs, M.A.M. (2006) Droplet-based dna purification in a magnetic lab-on-a-chip. Angew. Chem. Int. Ed., 45: 3062–3067.
  • Neely, L.A., Patel, S., Garver, J., Gallo, M., Hackett, M., McLaughlin, S., Nadel, M., Harris, J., Gullans, S., and Rooke, J. (2006) A single-molecule method for the quantitation of microrna gene expression. Nat. Methods, 3: 41–46.
  • Marcus, J.S., Anderson, W.F., and Quake, S.R. (2006) Microfluidic single-cell mrna isolation and analysis. Anal. Chem., 78: 3084–3089.
  • Park, D.S.W., Hupert, M.L., Witek, M.A., You, B.H., Datta, P., Guy, J., Lee, J.B., Soper, S.A., Nikitopoulos, D.E., and Murphy, M.C. (2008) A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification. Biomed. Microdevices, 10: 21–33.
  • Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B., and Tewari, M. (2008) Circulating micrornas as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U.S.A., 105: 10513–10518.
  • Jo, K., Chen, Y.L., de Pablo, J.J., and Schwartz, D.C. (2009) Elongation and migration of single dna molecules in microchannels using oscillatory shear flows. Lab Chip, 9: 2348–2355.
  • Nugen, S.R., Asiello, P.J., and Baeumner, A.J. (2009) Design and fabrication of a microfluidic device for near-single cell mrna isolation using a copper hot embossing master. Microsyst. Technol., 15: 477–483.
  • Puleo, C.M. and Wang, T-H. (2009) Microfluidic means of achieving attomolar detection limits with molecular beacon probes. Lab Chip, 9: 1065–1072.
  • De, A.F., Gentile, F., Mecarini, F., Das, G., Moretti, M., Candeloro, P., Coluccio, M.L., Cojoc, G., Accardo, A., Liberale, C., Zaccaria, R.P., Perozziello, G., Tirinato, L., Toma, A., Cuda, G., Cingolani, R., and Di Fabrizio, E. (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing sers structures. Nat. Photon., 5: 682–687.
  • Pekin, D., Skhiri, Y., Baret, J-C., Corre, D.L., Mazutis, L., Salem, C. Ben, Millot, F., Harrak, A. El, Hutchison, J. B., Larson, J. W., Link, D. R., Laurent-Puig, P., Griffiths, A. D., and Taly, V. (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip, 11: 2156–2166.
  • Kim, S., Streets, A.M., Lin, R.R., Quake, S.R., Weiss, S., and Majumdar, D.S. (2011) High-throughput single-molecule optofluidic analysis. Nat. Methods, 8: 242–245.
  • Zhang, Y., Park, S., Liu, K., Tsuan, J., Yang, S., and Wang, T-H. (2011) A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip, 11: 398–406.
  • Lam, E.T., Hastie, A., Lin, C., Ehrlich, D., Das, S.K., Austin, M.D., Deshpande, P., Cao, H., Nagarajan, N., Xiao, M., and Kwok, P.Y. (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol., 30: 771–776.
  • Xu, W. and Muller, S.J. (2012) Polymer-monovalent salt-induced dna compaction studied via single-molecule microfluidic trapping. Lab Chip. 12: 647–651.
  • Schrauder, M.G., Strick, R., Schulz-Wendtland, R., Strissel, P.L., Kahmann, L., Loehberg, C.R., Lux, M.P., Jud, S. M., Hartmann, A., Hein, A., Bayer, C.M., Bani, M.R., Richter, S., Adamietz, B.R., Wenkel, E., Rauh, C., Beckmann, M.W., and Fasching, P.A. (2012) Circulating micro-rnas as potential blood-based markers for early stage breast cancer detection. PLoS One, 7: e29770.
  • Goda, T., Masuno, K., Nishida, J., Kosaka, N., Ochiya, T., Matsumoto, A., and Miyahara, Y. (2012) A label-free electrical detection of exosomal micrornas using microelectrode array. Chem. Commun., 48: 11942–11944.
  • Zhang, H., Jenkins, G., Zou, Y., Zhu, Z., and Yang, C.J. (2012) Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. Anal. Chem., 84: 3599–3606.
  • Rane, T.D., Zec, H.C., Puleo, C., Lee, A.P., and Wang, T-H. (2012) Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip, 12: 3341–3347.
  • Sonnenberg, A., Marciniak, J.Y., Mccanna, J., Krishnan, R., Rassenti, L., Kipps, T.J., and Heller, M.J. (2013) Dielectrophoretic isolation and detection of cfc-dna nanoparticulate biomarkers and virus from blood. Electrophoresis, 34: 1076–1084.
  • Reinholt, S.J., Behrent, A., Greene, C., Kalfe, A., and Baeumner, A.J. (2014) Isolation and amplification of mrna within a simple microfluidic lab on a chip. Anal. Chem., 86: 849–856.
  • Wei, F., Lin, C-C, Joon, A., Feng, Z., Troche, G., Lira, M.E., Chia, D., Mao, M., Ho, C.-L., Su, W.-C., and Wong, D.T.W. (2014) Noninvasive saliva-based egfr gene mutation detection in patients with lung cancer. Am. J .Respir. Crit. Care Med., 190: 1117–1126.
  • Mccanna, J.P., Sonnenberg, A., and Heller, M.J. (2014) Low level epifluorescent detection of nanoparticles and dna on dielectrophoretic microarrays. J. Biophotonics., 7: 863–873.
  • Taller, D., Richards, K., Slouka, Z., Senapati, S., Hill, R., Go, D.B., and Chang, H.-C. (2015) On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal rna for pancreatic cancer study and diagnosis. Lab Chip., 15: 1656–1666.
  • Dias, T.M., Cardoso, F.A., Martins, S.A.M., Martins, V.C., Cardoso, S., Gaspar, J.F., Monteiro, G., and Freitas, P.P. (2016) Implementing a strategy for on-chip detection of cell-free dna fragments using gmr sensors: a translational application in cancer diagnostics using alu elements. Anal. Methods., 8: 119–128.
  • Hao, N.J., Li, L., and Tang, F. (2016) Shape matters when engineering mesoporous silica-based nanomedicines. Biomater. Sci., 4: 575–591.
  • Hao, N.J., Li, L., and Tang, F. (2017) Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int. Mater. Rev., 62: 57–77.
  • Oosthuyzen, W., Sime, N.E.L., Ivy, J.R., Turtle, E.J., Street, J.M., Pound, J., Bath, L.E., Webb, D.J., Gregory, C.D., Bailey, M.A., and Dear, J.W. (2013) Quantification of human urinary exosomes by nanoparticle tracking analysis. J. Physiol., 591: 5833–5842.
  • Fakhoury, J.R., Sisson, J.C., and Zhang, J.X.J. (2009) Microsystems for controlled genetic perturbation of live drosophila embryos: rna interference, development robustness and drug screening. Microfluid. Nanofluid., 6: 299–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.