1,097
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Separation and purification of scandium: From industry to medicine

, &

REFERENCES

  • Haque, N., Hughe, A., Lim, S. and Vernon, C. (2014) Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 3: 614–635.
  • Xie, F., Zhang, T.A., Dresinger, D. and Doyle, F. (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng., 56: 10–28.
  • Sears, J.M. and Boyle, T.J. (2017) Structural properties of scandium inorganic salts. Coord. Chem. Rev., 340: 154–171.
  • Wood, S.A. and Samson, I.M. (2006) The aqueous chemistry of gallium, germanium, indium and scandium. Ore Geol. Rev., 28: 57–102.
  • Amakawa, H., Nomura, M., Sasaki, K., Oura, Y. and Ebihara, M. (2007) Vertical distribution of scandium in the north central Pacific. Geophys. Res. Lett., 34: L11606.
  • Parker, C.E., Brown, M.T. and Bruland, K.W. (2016) Scandium in the open ocean: A comparison with other group 3 trivalent metals. Geophys. Res. Lett., 43: 2758–2764.
  • Li, X., Chen, Z., Chen, Z.Q. and Zhang, Y. (2013) A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Provence, Southeast China. Chemosphere, 93: 1240–1246.
  • Jeske, A. and Gworek, B. (2013) Distribution and mobility of scandium and yttrium in selected types of soils in Poland. Chem. Spec. Bioavailab., 25: 216–222.
  • Shtangeeva, I., Ayrault, S. and Jain, J. (2004) Scandium bioaccumulation and its effect on uptake of macro- and trace elements during initial phases of plant growth. Soil Sci. Plant Nutr., 50: 877–883.
  • Tai, P., Zhao, Q., Su, D., Li, P. and Stagnitti, F. (2010) Biological toxicity of lanthanide elements on algae. Chemosphere, 80: 1031–1035.
  • Wang, W., Pranolo, Y. and Cheng, C.Y. (2011) Metallurgical process for scandium recovery from various sources: A review. Hydrometallurgy, 108: 100–108.
  • Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K. and Lee, J.Y. (2016) Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165: 2–26.
  • El-Taher, A. and Abdelhaiim, M.A.K. (2014) Elemental analysis of limestone by instrumental neutron activation analysis. J. Radioanal. Nucl. Chem., 299: 1949–1953.
  • Liang, T., Li, K. and Wang, L. (2014) State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess., 186: 1499–1513.
  • Varbanova, E. and Stefanova, V. (2015) A comparative study of inductively coupled plasma optical emission spectrometry and microwave plasma atomic emission spectrometry for the direct determination of lanthanides in water and environmental samples. J. Int. Sci. Publ.: Ecol. Saf., 9: 362–374.
  • Druzian, G.T., Pereira, L.S.F., Mello, P.A., Mesko, M.F., Fabio, A., Duarte, F.A. and Flores, E.M. (2016) Rare earth element determination in heavy crude oil by USN-ICP-MS after digestion using a microwave-assisted single reaction chamber. J. Anal. At. Spectrom., 31: 1185–1191.
  • Pyrzynska, K., Kubiak, A. and Wysocka, I. (2015) Application of solid phase extraction procedures for rare earth elements determination in environmental samples. Talanta, 154: 15–22.
  • Wang, W. and Cheng, C.Y. (2011) Separation and purification of scandium by solvent extraction and related technologies: a review. J. Chem. Technol. Biotechnol., 86: 1237–1246.
  • Zawisza, B., Pytlakowska, K., Feist, B., Połowniak, M., Kita, A. and Sitko, R. (2011) Determination of rare earth elements by spectroscopic techniques: a review. J. Anal. At. Spectrom., 26: 2373–2390.
  • Spedding, G.H. (1958) Methods for preparing pure scandium oxide. J. Electrochem. Soc., 105: 683–686.
  • Habashi, F. (2013) Extractive metallurgy of rare earths. Can. Metall. Q., 52: 224–233.
  • Reddy, B.R. and Kumar, J.R. (2016) Rare earths extraction, separation, and recovery from phosphoric acid media. Solvent Extr. Ion Exch., 34: 226–240.
  • Zlobina, E., Ismailova, A. and Andtassibekov, K. (2017) Extractive separation of scandium from rare earth elements. MATEC Web of Conference 96. doi: 10.1051/matecconf/20179600001
  • Fujinaga, K., Yoshimori, M., Nakajima, Y., Oshima, S., Watanabe, Y., Stevens, G.W. and Komatsu, Y. (2013) Separation of Sc(III) from ZrO(II) by solvent extraction using oxidized Phoslex DT-8. Hydrometallurgy, 133: 33–36.
  • Korovin, V. and Shestak, Y. (2009) Scandium extraction from hydrochloric acid media by Levextrel-type resins containing di-isooctyl metyl phosphonate. Hydrometallurgy, 95: 346–349.
  • Turanov, A.N., Karandashev, V.K., Yarkevich, A.N. and Safronova, Z.V. (2010) Extraction and sorption preconcentration of rare earh elements(III) and scandium(III) with phosphoryl methyl-substituted butylphenylphosphinates from perchloric acid solutions. Russ. J. Inorg.Chem., 55: 1305–1311.
  • Turanov, A.N., Karandashev, Sharova, E.V., Artyushin, O.I. and Odinets, I.L. (2011) Extraction scandium by bis(diphenylphosphorylmethylcarbamoyl)alkanes. Russ. J. Inorg. Chem., 56: 457–472.
  • Shirokova, A.G., Pasechnik, L.A. and Yatsenko, S.P. (2012) Interaction of REE ions with organophosphorous compounds microencapsulated in a porous polymer. Russ. J. Inorg. Chem., 57: 604–607.
  • Karshigina, Z., Abisheva, Z., Bochevskaya, Y., Akcil, A. and Sargelova, E. (2015) Recovery of rare earth metals and precipitated silicon dioxide from phosphorous slag. Min. Eng., 77: 159–166.
  • Dobretsov, N.L. and Pokhilenko, N.P. (2010) Mineral resources and development in the Russian Arctic. Russ. Geol. Geophys., 51: 98–111.
  • Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. and Buchert, M. (2013) Recycling of rare earths: a critical review. J. Clean. Prod., 51: 1–22.
  • Akcil, A., Akhmadiyeva, N., Abdulvaliyev, R. and Meshram, P. (2017) Overview on extraction and separation of rare earth elements from red mud; Focus on scandium. Min. Proc. Ext. Met. Rev. in press. doi:10.1080/08827508.2017.1288116.
  • Gutiérrez-Gutiérrez, S.C., Coulon, F., Jiang, Y. and Wagland, S. (2015) Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Waste Manage, 42: 128–136.
  • Ochsenkühn-Petropoulou, M.T., Hatzilyberis, K.S., Mendrinos, L.M. and Salmas, C.E. (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind. Eng. Chem. Res., 41: 5794–5801.
  • Wang, K.Q., Yu, Y.B., Wang, H. and Chen, J. (2010) Experimental investigation on leaching scandium from red mud by hydrochloric acid. Chin. Rare Earth, 1: 95–98.
  • Wang, W., Pranolo, Y. and Cheng, C.Y. (2013) Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep. Purif. Technol., 108: 96–102.
  • Borra, C.R., Pontikes, Y., Binnemans, K. and Van Gerven, T. (2016) Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J. Sustain. Metall., 2: 28–37.
  • Borra, C.R., Pontikes, Y., Binnemans, K. and Van Gerven, T. (2015) Leaching of rare earths from bauxite residue (red mud). Min. Eng., 76: 20–27.
  • Borra, C.R., Mermans, J., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven, T. (2016) Selective recovery of rare earths from bauxite residue by combination of sulfonation, roasting and leaching. Min. Eng., 92: 151–159.
  • Onghena, B., Borra, C.R., Gerven, T.V. and Binnemans, K. (2017) Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid batainium bis(trifluoromethylsulfonyl)imide. Sep. Purif. Technol., 176: 208–219.
  • Davris, P., Balomenos, E., Panias, D. and Paspaliars, I. (2016) Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy, 164: 125–135.
  • Qu, Y. and Lian, B. (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Biores. Technol., 136: 16–23.
  • Barmettler, F., Castelberg, C., Fabbri, C. and Brandl, H. (2016) Microbial mobilization of rare earth elements (REE) from mineral solids – A mini review. Microbiology, 162: 190–204.
  • Roosen, J., Van Roosendal, S., Borra, C.R., Van Gerven, T., Mullens, S. and Binnemans, K. (2016) Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan-silica hybrid materials. Green Chem, 18: 2005–2013.
  • Zhang, W., Koivula, R., Wikinkoski, E., Xu, J., Hietala, S., Lehto, J. and Harjula, R. (2017) Efficient and selective recovery of trace scandium by inorganic titanium phosphate ion-exchangers from leachates of waste bauxite residue. ACS Sustainable Chem. Eng., 5: 3103–3114.
  • Zhu, X., Li, W., Tang, S., Zeng, M., Bai, P. and Chen, L. (2017) Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud. Chemosphere, 175: 365–372.
  • Taggart, R.K., Hower, J.C., Dwyer, G.S. and Hsu-Kim, H. (2016) Trends in the rare earth element content of U.S.-based coal combustion fly ashes. Environ. Sci. Technol., 50: 5919–5926.
  • Muravov, M.I., Bulaev, A.G., Melamud, V.S. and Kondrat`Eva, T.F. (2015) Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Microbiology, 161: 194–201.
  • Phuoc, T. X., Wang, P. and McIntryre, D. (2015) Discovering the feasibility of using the radiation forces for recovering rare earth elements from coal power plant by-products. Adv. Powder Technol., 26: 1465–1472.
  • Sahoo, P.K., Kim, K., Powell, M.A. and Equueenuddin, S.M. (2016) Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management. Int. J. Coal Sci. Technol., 3: 267–283.
  • Kashiwakura, S., Kumagai, Y., Kubo, H. and Wagatsuma, K. (2013) Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 solvent. Open J. Phys. Chem., 3: 69–75.
  • Wynne, J.H., Buckley, J.L., Coumbe, C.E., Phillips, J.P. and Stevenson, S. (2008) Reducing hazardous material and environmental impact through recycling of scandium nanomaterial waste. J. Environ. Sci. Health A, 43: 357–360.
  • Rim, K.T. (2016) Effects of rare earth elements on the environment and human health: A literature review. Toxicol. Environ. Health Sci., 8: 189–200.
  • Cerutti, S., Escudero, L.A., Gasquez, J.A., Olsina, R.A. and Martinez, L.D. (2011) On-line preconcentration and vapour generation of scandium prior to ICP-OES detection. J. Anal. At. Spectrom., 26: 2428–2433.
  • Liang, P., Liu, Y. and Guo, L. (2005) determination of trace earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochim. Acta Part B, 60: 125–129.
  • Rumble, J. (2017) CRC Handbook of Chemistry and Physics, 98th, CRC Press: Boca Raton, FL, USA.
  • Yang, K., Wei, W., Qi, L., Wu, W.H., Jing, Q.F. and Lin, D.H. (2014) Are engineering nanomaterials superior adsorbents for removal and pre-concentration of heavy metal cations from water? RSC Adv, 4: 46122–46125.
  • Yuchi, A., Sato, T., Morimoto, Y., Mizuno, H. and Wada, H. (1997) Adsorption mechanism of trivalent metal ions on chelating resins containing iminodiacetic acid groups with reference to selectivity. Anal. Chem., 69: 2941–2944.
  • Kim, I., Kim, S. and Kim, G. (2010) Analytical artifacts associated with the chelating resin extraction of dissolved rare earth elements in natural water samples. Aquat. Geochem., 16: 611–620.
  • Abbott, A.N., Hayley, B.A., McManus, J. and Reimers, C.E. (2015) The sedimentary flux of dissolved rare earth elements to the ocean. Geochim. Cosmochim. Acta, 154: 186–200.
  • Søndergaard, J., Asmund, G. and Larsen, M.M. (2015) Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a “standard” instrument setup. MethodsX, 2: 323–330.
  • Zhu, Y., Hioki, A. and Chiba, K. (2013) Development of an automatic pH-adjustment system for solid phase extraction prior to the determination of REEs in seawater by ICP-MS. J. Anal. Atom. Spectrom., 28: 883–889.
  • Hatje, V., Bruland, K.W. and Flegl, A.R. (2014) Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1®resin: method development and application in the San Francisco Bay plume. Marine Chem, 160: 34–41.
  • Ma, J., Wang, Shi, Y. and Li, Q. (2014) Synthesis and characterization of lysine-modified SBA-15 and its selective adsorption of scandium from a solution of rare earth elements. RSC Adv, 4: 41597–41604.
  • van Nygen, N., Iizuka, A., Shibata, E. and And Nakamura, T. (2016) Study of adsorption behavior of a new synthesized resin containing glycol amic acid group for separation of scandium from aqueous solutions. Hydrometallurgy, 165: 51–56.
  • Trujillo, I.S., Alonso, E., Torres, A.G. and Pavón, J.M. (2012) Development of a solid phase extraction method for the multielement determination of trace metals in natural waters including sea-water by FI-ICP-MS. Microchim. J., 101: 87–94.
  • Tu, Z., Hu, Z., Chang, X., Zhang, L., He, Q., Shi, J. and Gao, R. (2010) Silica gel modified with 1-(2-aminoethyl)-3-phenylurea for selective solid-phase extraction and preconcentration of Sc(III) from environmental samples. Talanta, 80: 1205–1209.
  • Shahida, S., Ali, A. and Khan, M.H. (2013) On-line spectrophotometric determination of scandium after preconcentration on XAD-4 resin impregnated with nalidixic acid. J. Iran. Chem. Soc., 10: 461–470.
  • Ramasamy, L., Repo, E., Srivastava, V. and Sillanpää, M. (2017) Chemically immobilized and physically adsorbed PAN/acetylacetone modified mesoporous silica for the recovery of rare earth elements from the waste water – comparative and optimization study. Water Res, 114: 264–276.
  • Zhang, L., Chang, X., Zhai, Y., He, Q., Huang, X., Hu, Z. and Jiang, N. (2008) Selective solid phase extraction of trace Sc(III) from environmental samples using silica gel modified with 4-(2-morinyldiazenyl)-N-(3-trimethylsily)propyl)benzamide. Anal. Chim. Acta, 629: 84–91.
  • Ramasamy, L., Khan, S., Repo, E. and Sillanpää, M. (2017) Synthesis of mesoporous and microporous amine and non-amine functionalized silica gels for the application of rare earth elements (REE) recovery from the waste water – understanding the role of pH, temperature, calcinations and mechanism in Lifgt REE and Heavy REE separation. Chem. Eng. J., 322: 56–65.
  • Iftekhar, S., Srivastava, V. and Sillanpää, M. (2017) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem. Eng. J., 320: 151–159.
  • Turanov, A.N., Karandashev, V.K., Sukhinina, N.S., Masalov, V.M. and Emelchenko, G.A. (2016) Adsorption of lanthanides and scandium ions by silica sol-gel material doped with novel bifunctional ionic liquid, trioctylmethylammonium 1-phenyl-3-methyl-4-benzoyl-5-onate. J. Environ. Chem. Eng., 4: 3788–3796.
  • Smith, S.C. and Rodriques, D.F. (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water, A review of mechanisms and applications. Carbon, 91: 122–143.
  • Zhang, B.T., Zheng, X., Li, H.F. and Lin, J.M. (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal. Chim. Acta, 784: 1–17.
  • Pyrzynska, K. (2013) Use of nanomaterials in sample preparation. TRAC Trends Anal. Chem., 43: 100–108.
  • Jerez, J., Isaguirre, A.C., Bazàn, C., Martinez, L.D. and Cerutti, S. (2014) Determination of scandium in acid mine drainage by ICP OES with flow injection on-line preconcentration using oxidized multiwalled carbon nanotubes. Talanta, 124: 89–94.
  • Branger, C., Meouche, W. and Margaillan, A. (2013) Recent advances on ion-imprinted polymers. React. Funct. Polym., 73: 859–875.
  • Liu, J., Yang, X., Cheng, X., Peng, Y. and Chen, H. (2013) Synthesis and application of ion-imprinted polymer particles for solid-phase extraction and determination of trace scandium by ICP-MS in different matrices. Anal, Meth, 5: 1811–1817.
  • Sun, X., Ji, Y., Guo, L., Chen, J. and Li, D. (2011) A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides. Sep. Purif. Technol., 81: 25–30.
  • Chen, Y., Wang, H., Pei, Y. and Wang, J. (2017) Selective separation of scandium(III) from rare earth metals by carboxyl-functionalizes liquids. Sep. Purif. Technol., 178: 261–268.
  • Depuydt, D., Dehaen, W. and Binnemans, K. (2015) Solvent extraction of scandium(III) by an aqueous biphasic system with nonfluorinated functionalized ionic liquid. Ind. Eng. Chem. Res., 54: 8988–8996.
  • Rout, A. and Binnemans, K. (2015) Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids. Dalton Trans, 44: 1379–1387.
  • Ojeda, C.B. and Rojas, F.S. (2012) Separation and preconcentration by cloud point extraction procedures for determination of ions: recent trends and applications. Microchim. Acta, 177: 1–21.
  • Pytlakowska, K., Kozik, V. and Dabioch, M. (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: A review. Talanta, 110: 202–228.
  • Khalifa, M.E., Kenawy, I.M., Hassanien, M.M. and Elnagar, M.M. (2016) Mixed micelle-mediated extraction and separation of scandium from yttrium and some lanthanide ions. Anal. Sci., 12: 395–400.
  • Li, Z. and Conti, P.S. (2010) Radiopharmaceutical chemistry for positron emission tomography. Adv. Drug Deliv. Rev., 62: 1031–1051.
  • Roesch, F. (2012) Scandium-44: benefits of a long-lived PET radionuclide available from the 44Ti/44Se generator system. Cur. Radiopharmac., 5: 187–201.
  • Hernandez, R., Valdovinos, H.F., Yang, Y., Chakravarty, R., Hong, H., Barnhart, T.E. and Cai, W. (2014) 44Sc: an attractive isotope for peptide-based PET imaging. Mol. Pharmaceutics, 11: 2954–2961.
  • Radchenko, V., Meyer, C.A.I., Engle, J.W., Naranjo, C.M., Uns, G.A., Mastern, T., Brugh, M., Brinbaum, E.R., John, K.D., Nortier, F.M. and Fassbender, M.E. (2016) Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system. J. Chromatogr. A, 1477: 39–46.
  • Krajewski, S., Cydzik, I., Abbas, K., Bulgheroni, A., Simonelli, F., Holzwarth, U. and Bilewicz, A. (2013) Cyclotron production of 44Sc for clinical application. Radiochim. Acta, 101: 333–338.
  • Aloliot, C., Kerdjoud, R., Michel, N., Haddad, F. and Huclier-Markai, S. (2015) Cyclotron production of high purity 44m,44Sc with deuterons from 44CaCO3 targets. Nucl. Med. Biol., 42: 524–529.
  • Severin, G.W., Engle, J.W., Valdovinos, H.F., Barnhart, T.E. and Nickles, R.J. (2012) Cyclotron produced 44Sc from natural calcium. Appl. Radiat. Isot., 70: 1526–1530.
  • Bokhari, T.H., Mushtaq, A. and Khan, I.U. (2010) separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J. Radianal. Nucl. Chem., 283: 389–393.
  • Filosofov, D.V., Loktionova, N.S. and Roesch, F.A. (2010) A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim. Acta, 98: 149–156.
  • Pruszyński, M., Loktionova, N.S., Filosofov, D.V. and Roesch, F. (2010) Post-elution processing of 44Ti/44Sc generator-derived 44Sc for clinical application. Appl. Radiat. Isot., 68: 1636–1641.
  • Deilam-Nezhad, L., Moghaddam-Banaem, L., Sadeghi, M. and Asgari, M. (2016) Production and purification of scandium-47: A potential radioisotope for cancer theranostics. App. Radiat. Isot., 118: 124–130.
  • Müller, C., Bunka, M., Reber, J., Fischer, C., Zhernosekov, K., Türler, A. and Schibli, R. (2013) Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β− emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J. Nucl. Med., 54: 1–7.
  • van der Meulen, N.P., Bunka, M., Domnanich, K.A., Müller, C., Haller, S., Vermeulen, C., Türler, A. and Schibli, R. (2015) Cyclotron production of 44Sc: from bench to bedside. Nucl. Med. Biol., 42: 745–751.
  • Valdovinos, H.F., Hernandez, R., Barnhart, T.E., Graves, S., Cai, W. and Nickels, R.J. (2015) Separation of cyclotron-produced 44Sc from a natural calcium target using a diphenylphosphonate functionalized extraction resin. Appl. Radiat. Isot., 95: 23–29.
  • Lee, M.H., Park, T.H., Park, J.H., Song, K. and Lee, M.S. (2013) Radiochemical separation of Pu, U, Am and Sr isotopes in environmental samples using extraction chromatography resins. J. Radioanal. Nucl. Chem., 295: 1419–1422.
  • Misiak, R., Walczak, R., Wąs, R., Bartzyel, M., Mietelski, J.W. and Bilewicz, A. (2017) 47Sc production development by cyclotron irradiation of 48Ca. J. Radioanal. Nucl. Chem. in press. doi:10.1007/s10967-017-5321-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.