438
Views
37
CrossRef citations to date
0
Altmetric
Reviews

On the Performance of Free Radicals Combined Electrocoagulation Treatment Processes

& ORCID Icon
Pages 143-158 | Received 21 Mar 2017, Accepted 26 Mar 2018, Published online: 09 Apr 2018

REFERENCES

  • Murugananthan, M., Raju, G.B. and Prabhakar, S. (2004). Removal of sulfide, sulfate and sulfite ions by electro coagulation. J. Hazard. Mater., 109: (1) 37–44. doi:10.1016/j.jhazmat.2003.12.009.
  • Al-Shannag, M., Bani-Melhem, K., Al-Anber, Z. and Al-Qodah, Z. (2013). Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique. Sep. Sci. Technol., 48: (4) 673–680. doi:10.1080/01496395.2012.707729.
  • Al-Shannag, M., Al-Qodah, Z., Alananbeh, K., Bouqellah, N., Assirey, E. and Bani-Melhem, K. (2014) COD reduction of baker’s yeast wastewater using batch electrocoagulation. Environ. Eng. Manag. J., 13: (12) 3153–3160.
  • Wang, C.-T., Chou, W.-L. and Kuo, Y.-M. (2009). Removal of COD from laundry wastewater by electrocoagulation/electroflotation. J. Hazard. Mater., 164: (1) 81–86. doi:10.1016/j.jhazmat.2008.07.122.
  • Uğurlu, M., Gürses, A., Doğar, Ç. and Yalçın, M. (2008). The removal of lignin and phenol from paper mill effluents by electrocoagulation. J. Environ. Manag., 87: (3) 420–428. doi:10.1016/j.jenvman.2007.01.007.
  • Daneshvar, N., Oladegaragoze, A. and Djafarzadeh, N. (2006). Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. J. Hazard. Mater., 129: (1) 116–122. doi:10.1016/j.jhazmat.2005.08.033.
  • Esfandyari, Y., Mahdavi, Y., Seyedsalehi, M., Hoseini, M., Safari, G.H., Ghozikali, M.G., Kamani, H. and Jaafari, J. (2015). Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes. Environ. Sci. Pollut. Res., 22: (8) 6288–6297. doi:10.1007/s11356-014-3832-5.
  • Pulkka, S., Martikainen, M., Bhatnagar, A. and Sillanpää, M. (2014) Electrochemical methods for the removal of anionic contaminants from water – a review. Sep. Purif. Technol., 132: 252–271.
  • Butler, E., Hung, Y.-T., Yeh, R.Y.-L. and Suleiman Al Ahmad, M. (2011). Electrocoagulation in wastewater treatment. Water, 3: (2) 495–525. doi:10.3390/w3020495.
  • Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S. and Giammar, D.E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res., 45: (1) 384–392. doi:10.1016/j.watres.2010.08.016.
  • Al Aji, B., Yavuz, Y. and Koparal, A.S. (2012) Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep. Purif. Technol., 86: 248–254. doi: 10.1016/j.seppur.2011.11.011.
  • Akbal, F. and Camcı, S. (2011). Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 269: (1) 214–222. doi:10.1016/j.desal.2010.11.001.
  • Merzouk, B., Gourich, B., Sekki, A., Madani, K. a nd Chibane, M. (2009). Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique: a case study. J. Hazard Mater., 164: (1) 215–222. doi:10.1016/j.jhazmat.2008.07.144.
  • Mouedhen, G., Feki, M., De Petris-Wery, M. and Ayedi, H. (2009). Electrochemical removal of Cr (VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena. J. Hazard Mater., 168: (2) 983–991. doi:10.1016/j.jhazmat.2009.02.117.
  • Nanseu-Njiki, C.P., Tchamango, S.R., Ngom, P.C., Darchen, A. and Ngameni, E. (2009). Mercury (II) removal from water by electrocoagulation using aluminium and iron electrodes. J. Hazard Mater., 168: (2) 1430–1436. doi:10.1016/j.jhazmat.2009.03.042.
  • Singh, K., Singh, A. and Hasan, S. (2006). Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour. Technol., 97: (8) 994–1001. doi:10.1016/j.biortech.2005.04.043.
  • Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M.R. and Alkasrawi, M. (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem. Eng. J., 260: 749–756. doi: 10.1016/j.cej.2014.09.035.
  • Amarasinghe, B. and Williams, R. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J., 132: (1) 299–309. doi:10.1016/j.cej.2007.01.016.
  • Heidmann, I. and Calmano, W. (2008). Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Cr (VI) present in aqueous solutions by aluminium electrocoagulation. J. Hazard Mater., 152: (3) 934–941. doi:10.1016/j.jhazmat.2007.07.068.
  • Mahmad, M.K.N., Rozainy, M.R., Abustan, I. and Baharun, N. (2015) Removal of iron and total chromium contaminations in landfill leachate by using electrocoagulation process. Key Eng. Mater., 660: 279–283. doi: 10.4028/www.scientific.net/KEM.660.279.
  • Kartikaningsih, D., Shih, Y.-J. and Huang, Y.-H. (2016) Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode. Sust. Environ. Res., 26: 150–155. doi: 10.1016/j.serj.2015.10.004.
  • Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A. and Mahvi, A.H. (2015). Heavy metals removal from aqueous environments by electrocoagulation process – a systematic review. J. Environ. Health Sci. Eng., 13: (1) 1–28. doi:10.1186/s40201-015-0233-8.
  • Hashim, K.S., Shaw, A., Al Khaddar, R., Pedrola, M.O. and Phipps, D. (2017) Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manag., 189: 98–108. doi: 10.1016/j.jenvman.2016.12.035.
  • Bani-Melhem, K., Al-Shannag, M., Alrousan, D., Al-Kofahi, S., Al-Qodah, Z. and Al-Kilani, M.R. (2017) Impact of soluble COD on grey water treatment by electrocoagulation technique. Desalination Water Treat., 89: 101–110. doi: 10.5004/dwt.2017.21379.
  • Kabdaşlı, I., Arslan-Alaton, I., Ölmez-Hancı, T. and Tünay, O. (2012). Electrocoagulation applications for industrial wastewaters: a critical review. Environ. Technol. Rev., 1: (1) 2–45. doi:10.1080/21622515.2012.715390.
  • Verma, S.K., Khandegar, V. and Saroha, A.K. (2013). Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioactive Waste, 17: (2) 146–152. doi:10.1061/(ASCE)HZ.2153-5515.0000170.
  • Khandegar, V. and Saroha, A.K. (2013) Electrocoagulation for the treatment of textile industry effluent – a review. J. Environ. Manag., 128: 949–963. doi: 10.1016/j.jenvman.2013.06.043.
  • Sahu, O., Mazumdar, B. and Chaudhari, P. (2014). Treatment of wastewater by electrocoagulation: a review. Environ. Sci. Pollut. Res., 21: (4) 2397–2413. doi:10.1007/s11356-013-2208-6.
  • Zheng, T., Wang, J., Wang, Q., Meng, H. and Wang, L. (2015) Research trends in electrochemical technology for water and wastewater treatment. Applied Water Sci., 7: (1) 13–30. doi:10.1007/s13201-015-0280-4.
  • Moussa, D.T., El-Naas, M.H., Nasser, M. and Al-Marri, M.J. (2016) A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J. Environ. Manag., 186: 24–41. doi: 10.1016/j.jenvman.2016.10.032.
  • Hakizimana, J.N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P. and Naja, J. (2017) Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches. Desalination., 404: 1–21. doi: 10.1016/j.desal.2016.10.011.
  • Al-Qodah, Z. and Al-Shannag, M. (2017) Heavy metal ions removal from wastewater using electrocoagulation processes: a comprehensive review. Sep. Sci. Technol., 52: (17) 2649–2676.
  • Siringi, D.O., Home, P., Chacha, J.S. and Koehn, E. (2012) Is electrocoagulation (EC) a solution to the treatment of wastewater and providing clean water for daily use. ARPN J. Eng. Appl. Sci., 7: (2) 197–204.
  • Dominguez‐Ramos, A., Aldaco, R. and Irabien, A. (2010). Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate wastewater. J. Chem. Technol. Biotechnol., 85: (6) 821–830. doi:10.1002/jctb.v85:6.
  • Salameh, W.K.B., Ahmad, H. and Al-Shannag, M. (2015) Treatment of olive mill wastewater by electrocoagulation processes and water resources management. World Acad. Sci. Eng. Technol.: Int. J. Environ. Chem. Ecol. Geol. Geop. Eng., 9: (4) 288–292.
  • Fernandes, A., Pacheco, M., Ciríaco, L. and Lopes, A. (2015) Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future. Appl. Catal. B: Environ., 176: 183–200. doi: 10.1016/j.apcatb.2015.03.052.
  • Zhao, M., Xu, Y., Zhang, C., Rong, H. and Zeng, G. (2016). New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol., 100: (15) 6509–6518. doi:10.1007/s00253-016-7646-x.
  • Cañizares, P., Louhichi, B., Gadri, A., Nasr, B., Paz, R., Rodrigo, M. and Saez, C. (2007). Electrochemical treatment of the pollutants generated in an ink-manufacturing process. J. Hazard. Mater., 146: (3) 552–557. doi:10.1016/j.jhazmat.2007.04.085.
  • Holt, P.K. (2002) Electrocoagulation: unravelling and synthesising the mechanisms behind a water treatment process. PhD thesis, University of Sydney, Australia.
  • Fekete, É., Lengyel, B., Cserfalvi, T. and Pajkossy, T. (2016) Electrochemical dissolution of aluminium in electrocoagulation experiments. J. Solid State Electrochem., 20: 3107–3114. doi: 10.1007/s10008-016-3195-6.
  • Vasudevan, S., Lakshmi, J. and Sozhan, G. (2011). Studies on the Al–Zn–In-alloy as anode material for the removal of chromium from drinking water in electrocoagulation process. Desalination, 275: (1) 260–268. doi:10.1016/j.desal.2011.03.011.
  • Lin, C.-J., Lo, S.-L., Kuo, C.-Y. and Wu, C.-H. (2005). Pilot-scale electrocoagulation with bipolar aluminum electrodes for on-site domestic greywater reuse. J. Environ. Eng., 131: (3) 491–495. doi:10.1061/(ASCE)0733-9372(2005)131:3(491).
  • Prajapati, A.K., Chaudhari, P.K., Pal, D., Chandrakar, A. and Choudhary, R. (2016) Electrocoagulation treatment of rice grain based distillery effluent using copper electrode. J. Water Process Eng., 11: 1–7. doi: 10.1016/j.jwpe.2016.03.008.
  • Ali, I., Asim, M. and Khan, T. (2013). Arsenite removal from water by electro-coagulation on zinc–zinc and copper–copper electrodes. Int. J. Environ. Sci. Technol., 10: (2) 377–384. doi:10.1007/s13762-012-0113-z.
  • Oumar, D., Patrick, D., Gerardo, B., Rino, D. and Ihsen, B.S. (2016) Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate. J. Environ. Manag., 181: 477–483. doi: 10.1016/j.jenvman.2016.06.067.
  • Vasudevan, S. and Lakshmi, J. (2012). Electrochemical removal of boron from water: adsorption and thermodynamic studies. Can. J. Chem. Eng., 90: (4) 1017–1026. doi:10.1002/cjce.20585.
  • Al-Shannag, M., Lafi, W., Bani-Melhem, K., Gharagheer, F. and Dhaimat, O. (2012). Reduction of COD and TSS from paper industries wastewater using electro-coagulation and chemical coagulation. Sep. Sci. Technol., 47: (5) 700–708. doi:10.1080/01496395.2011.634474.
  • Song, S., Yao, J., He, Z., Qiu, J. and Chen, J. (2008). Effect of operational parameters on the decolorization of CI Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation. J. Hazard Mater., 152: (1) 204–210. doi:10.1016/j.jhazmat.2007.06.104.
  • Al-Momani, F., Shawaqfah, M.A., Shawaqfeh, A. and Al-Shannag, M. (2008). Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds. J. Environ. Sci., 20: (6) 675–682. doi:10.1016/S1001-0742(08)62112-9.
  • Hernández-Ortega, M., Ponziak, T., Barrera-Díaz, C., Rodrigo, M., Roa-Morales, G. and Bilyeu, B. (2010). Use of a combined electrocoagulation–ozone process as a pre-treatment for industrial wastewater. Desalination, 250: (1) 144–149. doi:10.1016/j.desal.2008.11.021.
  • Asaithambi, P., Susree, M., Saravanathamizhan, R. and Matheswaran, M. (2012) Ozone assisted electrocoagulation for the treatment of distillery effluent. Desalination., 297: 1–7. doi: 10.1016/j.desal.2012.04.011.
  • Lafi, W.K., Shannak, B., Al-Shannag, M., Al-Anber, Z. and Al-Hasan, M. (2009). Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Sep. Purif. Technol., 70: (2) 141–146. doi:10.1016/j.seppur.2009.09.008.
  • Sauleda, R. and Brillas, E. (2001). Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light. Appl. Catal. B: Environ., 29: (2) 135–145. doi:10.1016/S0926-3373(00)00197-1.
  • Bernal-Martínez, L.A., Barrera-Díaz, C., Solís-Morelos, C. and Natividad, R. (2010). Synergy of electrochemical and ozonation processes in industrial wastewater treatment. Chem. Eng. J., 165: (1) 71–77. doi:10.1016/j.cej.2010.08.062.
  • Huang, C., Dong, C. and Tang, Z. (1993). Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag. (Oxford), 13: (5–7) 361–377. doi:10.1016/0956-053X(93)90070-D.
  • He, Z., Song, S., Qiu, J., Yao, J., Cao, X., Hu, Y. and Chen, J. (2007). Decolorization of CI Reactive Yellow 84 in aqueous solution by electrocoagulation enhanced with ozone: influence of operating conditions. Environ. Technol., 28: (11) 1257–1263. doi:10.1080/09593332808618884.
  • Asaithambi, P., Aziz, A.R.A. and Daud, W.M.A.B.W. (2016) Integrated ozone – electrocoagulation process for the removal of pollutant from industrial effluent: optimization through response surface methodology. Chem. Eng. Proces.: Process Intensification., 105: 92–102. doi: 10.1016/j.cep.2016.03.013.
  • Wu, C.-H., Chang, C.-L. and Kuo, C.-Y. (2008). Decolorization of Procion Red MX-5B in electrocoagulation (EC), UV/TiO2 and ozone-related systems. Dyes Pigments, 76: (1) 187–194. doi:10.1016/j.dyepig.2006.08.017.
  • Roa-Morales, G., Barrera-Díaz, C., Balderas-Hernández, P., Zaldumbide-Ortiz, F., Reyes Perez, H. and Bilyeu, B. (2014) Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes. J. Mex. Chem. Soc., 58: (3) 362–368.
  • Behin, J., Farhadian, N., Ahmadi, M. and Parvizi, M. (2015) Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: application to decolorization of acid dye. J. Water Process Eng., 8: 171–178. doi: 10.1016/j.jwpe.2015.10.003.
  • Cañizares, P., Sáez, C., Sánchez-Carretero, A. and Rodrigo, M. (2009). Synthesis of novel oxidants by electrochemical technology. J. Appl. Electrochem., 39: (11) 2143–2149. doi:10.1007/s10800-009-9792-7.
  • Song, S., He, Z., Qiu, J., Xu, L. and Chen, J. (2007). Ozone assisted electrocoagulation for decolorization of CI Reactive Black 5 in aqueous solution: an investigation of the effect of operational parameters. Sep. Purif. Technol., 55: (2) 238–245. doi:10.1016/j.seppur.2006.12.013.
  • Hsing, H.-J., Chiang, P.-C., Chang, -E.-E. and Chen, M.-Y. (2007). The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study. J. Hazard. Mater., 141: (1) 8–16. doi:10.1016/j.jhazmat.2006.05.122.
  • Orescanin, V., Kollar, R. and Nad, K. (2011). The application of the ozonation/electrocoagulation treatment process of the boat pressure washing wastewater. J. Environ. Sci. Health, 46: (12) 1338–1345. doi:10.1080/10934529.2011.606423.
  • García-García, P., Arroyo-López, F.N. and Rodríguez-Gómez, F. (2014) Partial purification of iron solutions from ripe table olive processing using ozone and electro-coagulation. Sep. Purif. Technol., 133: 227–235. doi: 10.1016/j.seppur.2014.06.011.
  • Daghrir, R., Gherrou, A., Noel, I. and Seyhi, B. (2016). Hybrid process combining electrocoagulation, electroreduction, and ozonation processes for the treatment of grey wastewater in batch mode. J. Environ. Eng., 142: (5) 04016008. doi:10.1061/(ASCE)EE.1943-7870.0001071.
  • Xu, Y. (2001). Comparative studies of the Fe3+/2+–UV, H2O2–UV, TiO2–UV/vis systems for the decolorization of a textile dye X-3B in water. Chemosphere, 43: (8) 1103–1107. doi:10.1016/S0045-6535(00)00191-0.
  • So, C., Cheng, M.Y., Yu, J. and Wong, P. (2002). Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. Chemosphere, 46: (6) 905–912. doi:10.1016/S0045-6535(01)00153-9.
  • Lafi, W.K., Al-Anber, M., Al-Anber, Z.A., Al-Shannag, M. and Khalil, A. (2010). Coagulation and advanced oxidation processes in the treatment of olive mill wastewater (OMW). Desalination Water Treat., 24: (1–3) 251–256. doi:10.5004/dwt.2010.1567.
  • Peyton, G. and Glaze, W. (1985) The mechanism of photolytic ozonation, in: abstracts of papers of the American Chemical Society. In Am. Chem. Soc., Rod G. Zika, University of Miami and William J. Cooper, Florida International University, Washington, DC, 5–15.
  • Tezcanli-Güyer, G. and Ince, N. (2004). Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics, 42: (1) 603–609. doi:10.1016/j.ultras.2004.01.096.
  • Konstantinou, I.K. and Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B: Environ., 49: (1) 1–14. doi:10.1016/j.apcatb.2003.11.010.
  • Qu, P., Zhao, J., Shen, T. and Hidaka, H. (1998). TiO2-assisted photodegradation of dyes: a study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. J. Mol. Catal. A: Chem., 129: (2) 257–268. doi:10.1016/S1381-1169(97)00185-4.
  • Chen, Y., Sun, Z., Yang, Y. and Ke, Q. (2001). Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water. J. Photochem. Photobiol. A: Chem., 142: (1) 85–89. doi:10.1016/S1010-6030(01)00477-4.
  • Thiam, A., Zhou, M., Brillas, E. and Sirés, I. (2014). A first pre‐pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs. J. Chem. Technol. Biotechnol., 89: (8) 1136–1144. doi:10.1002/jctb.2014.89.issue-8.
  • Akyol, A., Can, O.T. and Bayramoglu, M. (2015) Treatment of hydroquinone by photochemical oxidation and electrocoagulation combined process. J. Water Process Eng., 8: 45–54. doi: 10.1016/j.jwpe.2015.09.001.
  • Jaafarzadeh, N., Omidinasab, M. and Ghanbari, F. (2016) Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater. Process Saf. Environ. Prot., 102: 462–472. doi:10.1016/j.psep.2016.04.019
  • Li, H., Gong, Y., Huang, Q. and Zhang, H. (2013). Degradation of Orange II by UV-assisted advanced Fenton process: response surface approach, degradation pathway, and biodegradability. Ind. Eng. Chem. Res., 52: (44) 15560–15567. doi:10.1021/ie401503u.
  • Asaithambi, P., Sajjadi, B., Aziz, A.R.A. and Daud, W.M.A.B.W. (2016) Performance evaluation of hybrid electrocoagulation process parameters for the treatment of distillery industrial effluent. Process Saf. Environ. Prot., 104: 406–412. doi: 10.1016/j.psep.2016.09.023.
  • Qing, Y., Hang, Y., Xuelei, L., Hui, W. and Shu, X. (2016). Combined electrocoagulation, electrolysis and photocatalysis technologies applied to ship sewage treatment. Int. J. Environ. Sci. Dev., 7: (4) 248–255. doi:10.7763/IJESD.2016.V7.778.
  • Boroski, M., Rodrigues, A.C., Garcia, J.C., Sampaio, L.C., Nozaki, J. and Hioka, N. (2009). Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J. Hazard. Mater., 162: (1) 448–454. doi:10.1016/j.jhazmat.2008.05.062.
  • Kovatcheva, V.K. and Parlapanski, M.D. (1999). Sono-electrocoagulation of iron hydroxides. Colloid Surf. A: Phys. Eng. Aspects, 149: (1) 603–608. doi:10.1016/S0927-7757(98)00414-2.
  • Barrera-Díaz, C.E., Roa-Morales, G., Hernández, P.B., Fernandez-Marchante, C.M. and Rodrigo, M.A. (2014). Enhanced electrocoagulation: new approaches to improve the electrochemical process. J. Electrochem. Sci. Eng., 4: (4) 285–296. doi:10.5599/jese.2014.0060.
  • Mujyambere, J.M.V. and Muthukumar, K. (2016) Studies on dye decolorization by ultrasound assisted electrocoagulation. Clean – Soil Air Water, 44: 232–238. doi: 10.1002/clen.201400011.
  • Farooq, R., Wang, Y., Lin, F., Shaukat, S., Donaldson, J. and Chouhdary, A. (2002). Effect of ultrasound on the removal of copper from the model solutions for copper electrolysis process. Water Res., 36: (12) 3165–3169. doi:10.1016/S0043-1354(01)00546-2.
  • Al-Qodah, Z., Al-Bsoul, A., Assirey, E. and Al-Shannag, M. (2014) Combined ultrasonic irradiation and aerobic biodegradation treatment for olive mills wastewaters. Environ. Eng. Manag. J., 13: (8) 2109–2118.
  • Bremner, D.H., E Burgess, A. and Chand, R. (2011). The chemistry of ultrasonic degradation of organic compounds. Curr. Org. Chem., 15: (2) 168–177. doi:10.2174/138527211793979862.
  • Matouq, M., Al-Ayed, O., Al-Anber, Z., Al-Shannag, M., Kloub, N., Tagawa, T. and Aljbour, S. (2010). Wastewater treatment resulting from an oil shale retorting at high frequency ultrasound waves with a chemical elemental analysis. Energy Sources, Pt. A: Recov. Util. Environ. Effects, 32: (20) 1878–1884. doi:10.1080/15567030902842202.
  • Matouq, M.A., Al-Anber, Z.A., Tagawa, T., Aljbour, S. and Al-Shannag, M. (2008). Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave. Ultrason. Sonochem., 15: (5) 869–874. doi:10.1016/j.ultsonch.2007.10.012.
  • Sun, Y., Qiao, L., Ye, X., Liu, D., Zhang, X. and Huang, H. (2013). The sonodegradation of caffeic acid under ultrasound treatment: relation to stability. Molecules, 18: (1) 561–573. doi:10.3390/molecules18010561.
  • Kathiravan, M.N. and Muthukumar, K. (2011). Ultrasound mediated reduction of Cr(VI) using sludge obtained during electrocoagulation. Environ. Technol., 32: (13) 1523–1531. doi:10.1080/09593330.2010.543928.
  • Chu, J.Y., Li, Y.R., Li, N. and Huang, W.H. (2012) Treatment of car-washing wastewater by electrocoagulation-ultrasound technique for reuse. In Advanced Materials Research, Trans Tech Publ., Cai Suo Zhang, 227–232.
  • Qiu, M., Wang, L. and Xue, J. (2010) Kinetics of the removal of phosphorus by ultrasound-assisted electro-coagulation. Acta Sci. Circunstantiae, 30: (3) 519–523.
  • Lakshmi, P.M. and Sivashanmugam, P. (2013) Treatment of oil tanning effluent by electrocoagulation: influence of ultrasound and hybrid electrode on COD removal. Sep. Purif. Technol., 116: 378–384. doi: 10.1016/j.seppur.2013.05.026.
  • Asaithambi, P., Aziz, A.R.A., Sajjadi, B. and Daud, W.M. (2017) Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent. Environ. Sci. Pollut. Res., 24: 5168–5178. doi: 10.1007/s11356-016-6909-5.
  • He, -C.-C., Hu, C.-Y. and Lo, S.-L. (2016) Evaluation of sono-electrocoagulation for the removal of Reactive Blue 19 passive film removed by ultrasound. Sep. Purif. Technol., 165: 107–113. doi: 10.1016/j.seppur.2016.03.047.
  • Asgharian, F., Khosravi‐Nikou, M., Anvaripour, B. and Danaee, I. (2017). Electrocoagulation and ultrasonic removal of humic acid from wastewater. Environ. Prog. Sust. Energy, 36: (3) 822–829. doi:10.1002/ep.12512.
  • JiaYan, Q. (2012) Research on the Treatment of Chlorpyrifos Wastewater by Ultrasound-assisted Electro-coagulation, PhD dissertation, Nanjing University of Aeronautics and Astronautics, China.
  • Kamaraj, R., Ganesan, P., Lakshmi, J. and Vasudevan, S. (2013). Removal of copper from water by electrocoagulation process – effect of alternating current (AC) and direct current (DC). Environ. Sci. Pollut. Res., 20: (1) 399–412. doi:10.1007/s11356-012-0855-7.
  • Zalloum, H.M., Al-Qodah, Z. and Mubarak, M.S. (2008). Copper adsorption on chitosan-derived Schiff bases. J. Macromol. Sci. Part., 46: (1) 46–57. doi:10.1080/10601320802515225.
  • Al-Qodah, Z., Shawaqfeh, A. and Lafi, W. (2007). Two-resistance mass transfer model for the adsorption of the pesticide deltamethrin using acid treated oil shale ash. Adsorption, 13: (1) 73–82. doi:10.1007/s10450-007-9004-x.
  • Al-Qodah, Z. (1998) Adsorption of methylene blue with diatomite. J. Eng. Technol., 17: 128–137.
  • Thiam, A., Zhou, M., Brillas, E. and Sirés, I. (2014) Two-step mineralization of Tartrazine solutions: study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl. Catal. B: Environ., 150: 116–125. doi: 10.1016/j.apcatb.2013.12.011.
  • Sridhar, R., Sivakumar, V., Immanuel, V.P. and Maran, J.P. (2011). Treatment of pulp and paper industry bleaching effluent by electrocoagulant process. J. Hazard. Mater., 186: (2) 1495–1502. doi:10.1016/j.jhazmat.2010.12.028.
  • Al‐Qodah, Z. and Al‐Shannag, M. (2007). Application of magnetically stabilized fluidized beds for cell suspension filtration from aqueous solutions. Sep. Sci. Technol., 42: (2) 421–438. doi:10.1080/01496390600997807.
  • Al‐Qodah, Z. and Al‐Shannag, M. (2006). Separation of yeast cells from aqueous solutions using magnetically stabilized fluidized beds. Lett. Appl. Microbiol., 43: (6) 652–658. doi:10.1111/lam.2006.43.issue-6.
  • Al-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, I. and Orfali, W. (2017) Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochem. Eng. J., 121: 94–106. doi: 10.1016/j.bej.2017.02.003.
  • Al-Qodah, Z., Yahya, M.A. and Al-Shannag, M. (2017) On the performance of bioadsorption processes for heavy metal ions removal by low-cost agricultural and natural by-products bioadsorbent: a review. Desalination Water Treat., 85: 339–357. doi: 10.5004/dwt.2017.21256.
  • Al-Qodah, Z., Al-Shannag, M., Amro, A., Bob, M., Bani-Melhem, K. and Alkasrawi, M. (2017). Impact of surface modification of green algal biomass by phosphorylation on the removal of copper(II) ions from water. Turk. J. Chem., 41: (2) 190–208. doi:10.3906/kim-1605-38.
  • Al-Shannag, M., Al-Qodah, Z., Nawasreh, M., Al-Hamamreh, Z., Bani-Melhem, K. and Alkasrawi, M. (2017) On the performance of Ballota Undulata biomass for the removal of cadmium(II) ions from water. Desalination Water Treat., 67: 223–230. doi: 10.5004/dwt.2017.20379.
  • Al-Qodah, Z., Al-Shannag, M., Bani-Melhem, K., Assirey, E., Alananbeh, K. and Bouqellah, N. (2015) Biodegradation of olive mills wastewater using thermophilic bacteria. Desalination Water Treat., 56: 1908–1917. doi: 10.1080/19443994.2014.954148.
  • Al-Qodah, Z., Lafi, W., Al-Anber, Z., Al-Shannag, M. and Harahsheh, A. (2007). Adsorption of methylene blue by acid and heat treated diatomaceous silica. Desalination, 217: (1–3) 212–224. doi:10.1016/j.desal.2007.03.003.
  • Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M.R. and Alkasrawi, M. (2015) On the performance of real grey water treatment using a submerged membrane bioreactor system. J. Membr. Sci., 476: 40–49.
  • Boroski, M., Rodrigues, A.C., Garcia, J.C., Gerola, A.P., Nozaki, J. and Hioka, N. (2008). The effect of operational parameters on electrocoagulation–flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories. J. Hazard. Mater., 160: (1) 135–141. doi:10.1016/j.jhazmat.2008.02.094.
  • Asha, A., Muthukrishnaraj, A. and Balasubramanian, N. (2014). Improvement of biodegradability index through electrocoagulation and advanced oxidation process. Int. J. Ind. Chem., 5: (1) 4–21. doi:10.1007/s40090-014-0004-x.
  • Aziz, A.R.A., Asaithambi, P. and Daud, W.M. (2016) Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent. Process Saf. Environ. Prot., 99: 227–235. doi: 10.1016/j.psep.2015.11.010.
  • Sister, V. and Kirshankova, E. (2005). Ultrasonic techniques in removing surfactants from effluents by electrocoagulation. Chem. Petrol. Eng., 41: (9–10) 553–556. doi:10.1007/s10556-006-0017-1.
  • Li, J., Song, C., Su, Y., Long, H., Huang, T., Yeabah, T.O. and Wu, W. (2013). A study on influential factors of high-phosphorus wastewater treated by electrocoagulation–ultrasound. Environ. Sci. Pollut. Res., 20: (8) 5397–5404. doi:10.1007/s11356-013-1537-9.
  • Gurram, R., Al-Shannag, M., Knapp, S., Das, T., Singsaas, E., Alkasrawi, M. (2016). Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Technologies and Environmental Policy, 18: (1) 269–278. doi:10.1007/s10098-015-1015-9.
  • Gurram, R, Al-Shannag, M., Lecher, N., Duncan, S., Singsaas, E. and Alkasrawi, M. (2015). Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresource technology, 192: 529–539. doi:10.1016/j.biortech.2015.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.