306
Views
5
CrossRef citations to date
0
Altmetric
Review

Progress in Pretreatment and Analysis of Fatty Acids in Foods: An Update since 2012

, ORCID Icon, , , , & ORCID Icon show all
Pages 203-222 | Received 10 Dec 2018, Accepted 16 Sep 2019, Published online: 16 Oct 2019

REFERENCES

  • Jenkins, B.; West, J.; Koulman, A. A Review of Odd-Chain Fatty Acid Metabolism and the Role of Pentadecanoic Acid (C15:0) and Heptadecanoic Acid (C17:0) in Health and Disease. Molecules. 2015, 20, 2425–2444. DOI: 10.3390/molecules20022425.
  • Simopoulos, A. P. Omega-3 Fatty Acids in Health and Disease and in Growth and Development. Am. J. Clin. Nutr. 1991, 54, 438–463. DOI: 10.1093/ajcn/54.3.438.
  • Willett, W. C. Trans Fatty Acids and Cardiovascular Disease-epidemiological Data. Atherosclerosis. Supp. 2006, 7, 5–8. DOI: 10.1016/j.atherosclerosissup.2006.04.002.
  • Paloma, A. M.; García-González, V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients. 2018, 10, 393. DOI: 10.3390/nu10040393.
  • Schott, C. K.; Huang, D. T. ω-3 Fatty Acids, γ-linolenic Acid, and Antioxidants: Immunomodulators or Inert Dietary Supplements? Crit. Care. 2012, 16, 325. DOI: 10.1186/cc11863.
  • Dugan, M. E.; Vahmani, P.; Turner, T. D.; Mapiye, C.; Juárez, M.; Prieto, N.; Beaulieu, A. D.; Zijlstra, R. T.; Patience, J. F.; Aalhus, J. L. Pork as a Source of Omega-3 (n-3) Fatty Acids. J. Clin. Med. 2015, 4, 1999–2011. DOI: 10.3390/jcm4121956.
  • Simopoulos, A. P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients. 2016, 8, 128. DOI: 10.3390/nu8030128.
  • Chen, Y.; Yang, Y.; Nie, S.; Yang, X.; Wang, Y.; Yang, M.; Li, C.; Xie, M. The Analysis of Trans Fatty Acid Profiles in Deep Frying Palm Oil and Chicken Fillets with an Improved Gas Chromatography Method. Food. Control. 2014, 44, 191–197. DOI: 10.1016/j.foodcont.2014.04.010.
  • Bhardwaj, S.; Passi, S. J.; Misra, A.; Pant, K. K.; Anwar, K.; Pandey, R. M.; Kardam, V. Effect of Heating/reheating of Fats/oils, as Used by Asian Indians, on Trans Fatty Acid Formation. Food. Chem. 2016, 212, 663–670. DOI: 10.1016/j.foodchem.2016.06.021.
  • Aldai, N.; Dugan, M. E. R.; Rolland, D. C.; Kramer, J. K. G. Survey of the Fatty Acid Composition of Canadian Beef: Backfat and Longissimus Lumborum Muscle. Can. J. Anim. Sci. 2009, 89, 315–329. DOI: 10.4141/CJAS08126.
  • Soliman, L. C.; Andrucson, E. M.; Donkor, K. K.; Church, J. S.; Cinel, B. Determination of Fatty Acids in Beef by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Food. Anal. Method. 2015, 9, 630–637. DOI: 10.1007/s12161-015-0229-0.
  • Wall, R.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C. Fatty Acids from Fish: The Anti-inflammatory Potential of Long-chain Omega-3 Fatty Acids. Nutr. Rev. 2010, 68, 280–289. DOI: 10.1111/j.1753-4887.2010.00287.x.
  • Kris-Etherton, P. M.; Harris, W. S.; Appel, L. J. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation. 2002, 106, 2747–2757. DOI: 10.1161/01.CIR.0000038493.65177.94.
  • Prentki, M.; Madiraju, S. R. Glycerolipid/free Fatty Acid Cycle and Islet Beta-cell Function in Health, Obesity and Diabetes. Mol. Cellular. Endocrinol. 2012, 353, 88–100. DOI: 10.1016/j.mce.2011.11.004.
  • Ruiz-Rodriguez, A.; Reglero, G. E. Ibañez Recent Trends in the Advanced Analysis of Bioactive Fatty Acids. J. Pharm. Biomed. Anal. 2010, 51, 305–326. DOI: 10.1016/j.jpba.2009.05.012.
  • Wu, Z.; Zhang, Q.; Li, N.; Pu, Y.; Wang, B.; Zhang, T. Comparison of Critical Methods Developed for Fatty Acid Analysis: A Review. J. Sep. Sci. 2017, 40, 288–298. DOI: 10.1002/jssc.201600707.
  • Brenna, J. T. Fatty Acid Analysis by High Resolution Gas Chromatography and Mass Spectrometry for Clinical and Experimental Applications. Curr. Opin. Clin. Nutr Metab. Care. 2013, 16, 548–554. DOI: 10.1097/MCO.0b013e328363bc0a.
  • Tao, F.; Ngadi, M. Recent Advances in Rapid and Nondestructive Determination of Fat Content and Fatty Acids Composition of Muscle Foods. Crit. Rev. Food. Sci. Nutr. 2018, 58, 1565–1593. DOI: 10.1080/10408398.2016.1261332.
  • Schiavon, S.; Pellattiero, E.; Cecchinato, A.; Tagliapietra, F.; Dannenberger, D.; Nuernberg, K.; Nuernberg, G.; Bittante, G. The Influence of Different Sample Preparation Procedures on the Determination of Fatty Acid Profiles of Beef Subcutaneous Fat, Liver and Muscle by Gas Chromatography. J. Food. Compos. Anal. 2016, 50, 10–18. DOI: 10.1016/j.jfca.2016.05.001.
  • Prema, D.; Turner, T. D.; Jensen, J.; Pilfold, J. L.; Church, J. S.; Donkor, K. K.; Cinel, B. Rapid Determination of Total Conjugated Linoleic Acid Concentrations in Beef by 1H NMR Spectroscopy. J. Food. Compos. Anal. 2015, 41, 54–57. DOI: 10.1016/j.jfca.2014.12.017.
  • Jonnada, M.; El Rassi, G. D.; El Rassi, Z. Selective Precolumn Derivatization of Fatty Acids with the Fluorescent Tag 6-aminoquinoline and Their Determination in Some Food Samples by Reversed-phase Chromatography. Electrophoresis. 2017, 38, 1592–1601. DOI: 10.1002/elps.201600544.
  • Wang, J.; Wu, W.; Wang, X.; Wang, M.; Wu, F. An Effective GC Method for the Determination of the Fatty Acid Composition in Silkworm Pupae Oil Using a Two-step Methylation Process. J. Serb. Chem. Soc. 2015, 80, 9–20. DOI: 10.2298/JSC140401073W.
  • Liu, Z.; Ezernieks, V.; Rochfort, S.; Cocks, B. Comparison of Methylation Methods for Fatty Acid Analysis of Milk Fat. Food. Chem. 2018, 261, 210–215. DOI: 10.1016/j.foodchem.2018.04.053.
  • Blasi, F.; Montesano, D.; Simonetti, M. S.; Cossignani, L.; Simple, A. Rapid Extraction Method to Evaluate the Fatty Acid Composition and Nutritional Value of Goji Berry Lipid. Food. Anal. Method. 2016, 10, 970–979. DOI: 10.1007/s12161-016-0652-x.
  • Dreiucker, J.; Vetter, W. Fatty Acids Patterns in Camel, Moose, Cow and Human Milk as Determined with GC/MS after Silver Ion Solid Phase Extraction. Food. Chem. 2011, 126, 762–771. DOI: 10.1016/j.foodchem.2010.11.061.
  • Quigley, A.; Connolly, D.; Cummins, W. The Application of Dispersive Liquid-liquid Microextraction in the Analyses of the Fatty Acid Profile in Bovine Milk in Response to Changes in Body Condition Score. J. Chromatogr. B. 2018, 1073, 130–135. DOI: 10.1016/j.jchromb.2017.12.014.
  • Ahmadvand, M.; Sereshti, H.; Parastar, H. Second-order Calibration for the Determination of Fatty Acids in Pomegranate Seeds by Vortex-assisted Extraction-dispersive Liquid–Liquid Micro-extraction and Gas Chromatography-mass Spectrometry. RSC. Adv. 2015, 5, 11633–11643. DOI: 10.1039/C4RA08955C.
  • de Cássia Rodrigues Batista, C.; de Oliveira, M. S.; Araújo, M. E.; Rodrigues, A. M. C.; Botelho, J. R. S.; Da Silva Souza Filho, A. P.; Machado, N. T.; Carvalho, R. N. Supercritical CO2 Extraction of Açaí (euterpe Oleracea) Berry Oil: Global Yield, Fatty Acids, Allelopathic Activities, and Determination of Phenolic and Anthocyanins Total Compounds in the Residual Pulp. J. Supercrit. Fluid. 2016, 107, 364–369. DOI: 10.1016/j.supflu.2015.10.006.
  • Pradhan, R. C.; Meda, V.; Rout, P. K.; Naik, S.; Dalai, A. K. Supercritical CO2 Extraction of Fatty Oil from Flaxseed and Comparison with Screw Press Expression and Solvent Extraction Processes. J. Food. Eng. 2010, 98, 393–397. DOI: 10.1016/j.jfoodeng.2009.11.021.
  • Lee, M. R.; Tweed, J. K.; Kim, E. J.; Scollan, N. D. Beef, Chicken and Lamb Fatty Acid Analysis–A Simplified Direct Bimethylation Procedure Using Freeze-dried Material. Meat. Sci. 2012, 92, 863–866. DOI: 10.1016/j.meatsci.2012.06.013.
  • Porto, B. L. S.; Faria, I. D. L.; de Oliveira Mendes, T.; de Oliveira, M. A. L. Fast Screening Method for the Analysis of Trans Fatty Acids in Processed Food by CZE-UV with Direct Detection. Food. Control. 2015, 55, 230–235. DOI: 10.1016/j.foodcont.2015.02.027.
  • Segura, J.; Lopez-Bote, C. J. A Laboratory Efficient Method for Intramuscular Fat Analysis. Food. Chem. 2014, 145, 821–825. DOI: 10.1016/j.foodchem.2013.08.131.
  • Pestana, J. M.; Costa, A. S.; Martins, S. V.; Alfaia, C. M.; Alves, S. P.; Lopes, P. A.; Bessa, R. J.; Prates, J. A. Effect of Slaughter Season and Muscle Type on the Fatty Acid Composition, Including Conjugated Linoleic Acid Isomers, and Nutritional Value of Intramuscular Fat in Organic Beef. J. Sci. Food. Agric. 2012, 92, 2428–2435. DOI: 10.1002/jsfa.5648.
  • Zhou, L.; Li, P.; Zhao, Y.; Hou, S.; Cong, B.; Huang, J.; Ding, Y.; Zeng, X. Optimization of Lipid Extraction and Determination of Fatty Acid Compositions in Edible Meats of Freshwater and Marine Shrimps. J. AquaT. Food. Prod. T. 2017, 26, 824–834. DOI: 10.1080/10498850.2017.1323066.
  • Folch, J.; Lees, M.; Sloane Stanley, G. H. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509.
  • Bligh, E. G.; Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. DOI: 10.1139/o59-099.
  • Iverson, S. J.; Lang, S. L.; Cooper, M. H. Comparison of the Bligh and Dyer and Folch Methods for Total Lipid Determination in a Broad Range of Marine Tissue. Lipids. 2001, 36, 1283–1287. DOI: 10.1007/s11745-001-0843-0.
  • Tanamati, A.; Oliveira, C. C.; Visentainer, J. V.; Matsushita, M.; de Souza, N. E. Comparative Study of Total Lipids in Beef Using Chlorinated Solvent and Low-Toxicity Solvent Methods. J. Am. Oil. Chem. Soc. 2005, 82, 393–397. DOI: 10.1007/s11746-005-1083-4.
  • Ahmed, S. T.; Islam, M. M.; Bostami, A. B.; Mun, H. S.; Kim, Y. J.; Yang, C. J. Meat Composition, Fatty Acid Profile and Oxidative Stability of Meat from Broilers Supplemented with Pomegranate (punica Granatum L.) By-products. Food. Chem. 2015, 188, 481–488. DOI: 10.1016/j.foodchem.2015.04.140.
  • Dal Bosco, A.; Mattioli, S.; Cullere, M.; Szendro, Z.; Gerencser, Z.; Matics, Z.; Castellini, C.; Szin, M.; Dalle Zotte, A. Effect of Diet and Packaging System on the Oxidative Status and Polyunsaturated Fatty Acid Content of Rabbit Meat during Retail Display. Meat. Sci. 2018, 143, 46–51. DOI: 10.1016/j.meatsci.2018.04.004.
  • Lucarini, M.; Durazzo, A.; Sánchez Del Pulgar, J.; Gabrielli, P.; Lombardi-Boccia, G. Determination of Fatty Acid Content in Meat and Meat Products: The FTIR-ATR Approach. Food. Chem. 2018, 267, 223–230. DOI: 10.1016/j.foodchem.2017.11.042.
  • Hauff, S.; Vetter, W. Quantification of Branched Chain Fatty Acids in Polar and Neutral Lipids of Cheese and Fish Samples. J. Agric. Food. Chem. 2010, 58, 707–712. DOI: 10.1021/jf9034805.
  • Terrasa, A. M.; Dello Staffolo, M.; Tomás, M. C. Nutritional Improvement and Physicochemical Evaluation of Liver Pâté Formulations. LWT – Food. Sci. Tech. 2016, 66, 678–684. DOI: 10.1016/j.lwt.2015.11.018.
  • Parrish, C. C.; Nichols, P. D.; Pethybridge, H.; Young, J. W. Direct Determination of Fatty Acids in Fish Tissues: Quantifying Top Predator Trophic Connections. Oecologia. 2015, 177, 85–95. DOI: 10.1007/s00442-014-3131-3.
  • Chvalová, D.; Spicka, J. Identification of Furan Fatty Acids in the Lipids of Common Carp (cyprinus Carpio L.). Food. Chem. 2016, 200, 183–188. DOI: 10.1016/j.foodchem.2016.01.029.
  • Dalziel, C. J.; Kliem, K. E.; Givens, D. I. Fat and Fatty Acid Composition of Cooked Meat from UK Retail Chickens Labelled as from Organic and Non-organic Production Systems. Food. Chem. 2015, 179, 103–108. DOI: 10.1016/j.foodchem.2015.01.118.
  • Bravo-Lamas, L.; Barron, L. J.; Kramer, J. K.; Etaio, I.; Aldai, N. Characterization of the Fatty Acid Composition of Lamb Commercially Available in Northern Spain: Emphasis on the Trans-18:1 and CLA Content and Profile. Meat. Sci. 2016, 117, 108–116. DOI: 10.1016/j.meatsci.2016.02.043.
  • Kramer, J. K.; Fellner, V.; Dugan, M. E.; Sauer, F. D.; Mossoba, M. M.; Yurawecz, M. P. Evaluating Acid and Base Catalysts in the Methylation of Milk and Rumen Fatty Acids with Special Emphasis on Conjugated Dienes and Total Trans Fatty Acids. Lipids. 1997, 32, 1219–1228. DOI: 10.1007/s11745-997-0156-3.
  • Aldai, N.; Lavin, P.; Kramer, J. K.; Jaroso, R.; Mantecon, A. R. Breed Effect on Quality Veal Production in Mountain Areas: Emphasis on Meat Fatty Acid Composition. Meat. Sci. 2012, 92, 687–696. DOI: 10.1016/j.meatsci.2012.06.024.
  • Kramer, J. K.; Hernandez, M.; Cruz-Hernandez, C.; Kraft, J.; Dugan, M. E. Combining Results of Two GC Separations Partly Achieves Determination of All Cis and Trans 16:1, 18:1, 18:2 and 18:3 except CLA Isomers of Milk Fat as Demonstrated Using Ag-ion SPE Fractionation. Lipids. 2008, 43, 259–273. DOI: 10.1007/s11745-007-3143-4.
  • Belaunzaran, X.; Bravo-Lamas, L.; Kramer, J. K. G.; Morales, R.; Aldai, N. Silver Ion Solid-phase Extraction Cartridges Employing Glass Housings Overcome the Limitations Observed in the GC Analysis of Animal Lipids with Lowtransfatty Acid Content. Eur. J. Lipid. Sci. Tech. 2017, 119, 1600124. DOI: 10.1002/ejlt.201600124.
  • Turner, T. D.; Meadus, W. J.; Mapiye, C.; Vahmani, P.; López-Campos, Ó.; Duff, P.; Rolland, D. C.; Church, J. S.; Dugan, M. E. R. Isolation of α-linolenic Acid Biohydrogenation Products by Combined Silver Ion Solid Phase Extraction and Semi-preparative High Performance Liquid Chromatography. J. Chromatogr. B. 2015, 980, 34–40. DOI: 10.1016/j.jchromb.2014.11.038.
  • Sacchi, R.; Addeo, F.; Paolillo, L. 1H and 13C NMR of Virgin Olive Oil. An Overview. Magn. Reson. Chem. 1998, 35, S133–S145. DOI: 10.1002/(SICI)1097-458X(199712)35:13<S133::AID-OMR213>3.0.CO;2-K.
  • Zhang, M.; Yang, X.; Zhao, H. T.; Dong, A. J.; Wang, J.; Liu, G. Y.; Wang, P.; Cheng, C. L.; Zhang, H. A Quick Method for Routine Analysis of C18 Trans Fatty Acids in Non-hydrogenated Edible Vegetable Oils by Gas Chromatography–Mass Spectrometry. Food. Control. 2015, 57, 293–301. DOI: 10.1016/j.foodcont.2015.04.027.
  • Wu, J.; Ge, Y.; Qin, W. Combination of Running-buffer-mediated Extraction and Polyamidoamine-dendrimer-assisted Capillary Electrophoresis for Rapid and Sensitive Determination of Free Fatty Acids in Edible Oils. J. Agric. Food. Chem. 2014, 62, 4104–4111. DOI: 10.1021/jf4056105.
  • Liu, M.; Wei, F.; Lv, X.; Dong, X.-Y.; Chen, H. Rapid and Sensitive Detection of Free Fatty Acids in Edible Oils Based on Chemical Derivatization Coupled with Electrospray Ionization Tandem Mass Spectrometry. Food. Chem. 2018, 242, 338–344. DOI: 10.1016/j.foodchem.2017.09.069.
  • Wei, F.; Zhao, Q.; Lv, X.; Dong, X. Y.; Feng, Y. Q.; Chen, H. Rapid Magnetic Solid-phase Extraction Based on Monodisperse Magnetic Single-crystal Ferrite Nanoparticles for the Determination of Free Fatty Acid Content in Edible Oils. J. Agric. Food. Chem. 2013, 61, 76–83. DOI: 10.1021/jf303840q.
  • Marsol-Vall, A.; Balcells, M.; Eras, J.; Canela-Garayoa, R. Dispersive Liquid-liquid Microextraction and Injection-port Derivatization for the Determination of Free Lipophilic Compounds in Fruit Juices by Gas Chromatography-mass Spectrometry. J. Chromatogr. A. 2017, 1495, 12–21. DOI: 10.1016/j.chroma.2017.03.027.
  • Sadeghi, S.; Mollahosseini, A. Electrospun Polydimethylsiloxane/polyacrylonitrile/titanium Dioxide Nanofibers as a New Coating for Determination of Alpha-linolenic Acid in Milk by Direct Immersion-solid Phase Nanoextraction. J. Chromatogr. B. 2018, 1073, 43–50. DOI: 10.1016/j.jchromb.2017.11.042.
  • Cruz-Hernandez, C.; Goeuriot, S.; Giuffrida, F.; Thakkar, S. K.; Destaillats, F. Direct Quantification of Fatty Acids in Human Milk by Gas Chromatography. J. Chromatogr. A. 2013, 1284, 174–179. DOI: 10.1016/j.chroma.2013.01.094.
  • Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Joudu, I. Fatty Acid Profile of Milk from Saanen and Swedish Landrace Goats. Food. Chem. 2018, 254, 326–332. DOI: 10.1016/j.foodchem.2018.02.041.
  • Lashkari, S.; Jensen, S. K. Quantitative Determination of Conjugated Linoleic Acid and Polyunsaturated Fatty Acids in Milk with C17:0 as Internal Marker - Evaluation of Different Methylation Procedures. Data. Brief. 2017, 15, 106–110. DOI: 10.1016/j.dib.2017.09.022.
  • Shrestha, R.; Miura, Y.; Hirano, K. I.; Chen, Z.; Okabe, H.; Chiba, H.; Hui, S. P. Microwave-assisted Derivatization of Fatty Acids for Its Measurement in Milk Using High-Performance Liquid Chromatography. Anal. Sci. 2018, 34, 575–582. DOI: 10.2116/analsci.17P557.
  • Bhunia, R. K.; Chakraborty, A.; Kaur, R.; Gayatri, T.; Bhat, K. V.; Basu, A.; Maiti, M. K.; Sen, S. K. Analysis of Fatty Acid and Lignan Composition of Indian Germplasm of Sesame to Evaluate Their Nutritional Merits. J. Am. Oil. Chem. Soc. 2014, 92, 65–76. DOI: 10.1007/s11746-014-2566-3.
  • Tang, Y.; Li, X.; Chen, P.-X.; Zhang, B.; Hernandez, M.; Zhang, H.; Marcone, M. F.; Liu, R.; Tsao, R. Characterisation of Fatty Acid, Carotenoid, Tocopherol/tocotrienol Compositions and Antioxidant Activities in Seeds of Three Chenopodium Quinoa Willd. Genotypes. Food. Chem. 2015, 174, 502–508. DOI: 10.1016/j.foodchem.2014.11.040.
  • Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional Composition and Fatty Acids Profile in Cocoa Beans and Chocolates with Different Geographical Origin and Processing Conditions. Food. Chem. 2015, 166, 125–132. DOI: 10.1016/j.foodchem.2014.05.141.
  • Wang, Y.; Niu, Y.; Zhao, X.; Wang, B.; Jiang, Q.; Liu, J.; Fatty Acid, S. Y. Phytochemical Compositions of Plantago Seed Oils and Their Functionalities. J. Am. Oil. Chem. Soc. 2017, 94, 905–912. DOI: 10.1007/s11746-017-3003-1.
  • Caprioli, G.; Giusti, F.; Ballini, R.; Sagratini, G.; Vila-Donat, P.; Vittori, S.; Fiorini, D. Lipid Nutritional Value of Legumes: Evaluation of Different Extraction Methods and Determination of Fatty Acid Composition. Food. Chem. 2016, 192, 965–971. DOI: 10.1016/j.foodchem.2015.07.102.
  • Zhang, Z.-S.; Liu, Y.-L.; Che, L.-M. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia Ulmoides Seed Oil and Quality Evaluation of the Oil. J. Oleo. Sci. 2018, 67, 255–263. DOI: 10.5650/jos.ess17153.
  • Gao, F.; Yang, S.; Birch, J. Physicochemical Characteristics, Fatty Acid Positional Distribution and Triglyceride Composition in Oil Extracted from Carrot Seeds Using Supercritical CO2. J. Food. Compos. Anal. 2016, 45, 26–33. DOI: 10.1016/j.jfca.2015.09.004.
  • Peng, D.; Bi, Y.; Ren, X.; Yang, G.; Sun, S.; Wang, X. Detection and Quantification of Adulteration of Sesame Oils with Vegetable Oils Using Gas Chromatography and Multivariate Data Analysis. Food. Chem. 2015, 188, 415–421. DOI: 10.1016/j.foodchem.2015.05.001.
  • Kim, N. S.; Lee, J. H.; Han, K. M.; Kim, J. W.; Cho, S.; Kim, J. Discrimination of Commercial Cheeses from Fatty Acid Profiles and Phytosterol Contents Obtained by GC and PCA. Food. Chem. 2014, 143, 40–47. DOI: 10.1016/j.foodchem.2013.07.083.
  • Wei, G.-L.; Zeng, E.-Y. Gas Chromatography-Mass Spectrometry and High-performance Liquid Chromatography-tandem Mass Spectrometry in Quantifying Fatty Acids. TrAC- Trend. Anal. Chem. 2011, 30, 1429–1436. DOI: 10.1016/j.trac.2011.05.005.
  • Yurchenko, S.; Sats, A.; Poikalainen, V.; Karus, A. Method for Determination of Fatty Acids in Bovine Colostrum Using GC-FID. Food. Chem. 2016, 212, 117–122. DOI: 10.1016/j.foodchem.2016.05.103.
  • Saba, A.; Mazzini, F.; Raffaelli, A.; Mattei, A.; Salvadori, P. Identification of 9(E),11(E)-18:2 Fatty Acid Methyl Ester at Trace Level in Thermal Stressed Olive Oils by GC Coupled to Acetonitrile CI-MS and CI-MS/MS, a Possible Marker for Adulteration by Addition of Deodorized Olive Oil. J. Agric. Food. Chem. 2005, 53, 4867–4872. DOI: 10.1021/jf050274b.
  • Mondello, L.; Tranchida, P. Q.; Dugo, P.; Dugo, G. Rapid, Micro-scale Preparation and Very Fast Gas Chromatographic Separation of Cod Liver Oil Fatty Acid Methyl Esters. J. Pharm. Biomed. Anal. 2006, 41, 1566–1570. DOI: 10.1016/j.jpba.2006.01.027.
  • Delmonte, P.; Fardin-Kia, A. R.; Rader, J. I. Separation of Fatty Acid Methyl Esters by GC-online Hydrogenation X GC. Anal. Chem. 2013, 85, 1517–1524. DOI: 10.1021/ac302707z.
  • González Álvarez, J.; Blanco Gomis, D.; Arias Abrodo, P.; Diaz Llorente, D.; Busto, E.; Rios Lombardia, N.; Gotor Fernandez, V.; Gutierrez Alvarez, M. D. Evaluation of New Ionic Liquids as High Stability Selective Stationary Phases in Gas Chromatography. Anal. Bioanal. Chem. 2011, 400, 1209–1216. DOI: 10.1007/s00216-010-4587-6.
  • Pacheco-Fernández, I.; Trujillo-Rodríguez, M. J.; Kuroda, K.; Holen, A. L.; Jensen, M. B.; Anderson, J. L. Zwitterionic Polymeric Ionic Liquid-based Sorbent Coatings in Solid Phase Microextraction for the Determination of Short Chain Free Fatty Acids. Talanta. 2019, 200, 415–423. DOI: 10.1016/j.talanta.2019.03.073.
  • Waktola, H. D.; Mjos, S. A. Chromatographic Efficiency of Polar Capillary Columns Applied for the Analysis of Fatty Acid Methyl Esters by Gas Chromatography. J. Sep. Sci. 2018, 41, 1582–1592. DOI: 10.1002/jssc.201700908.
  • Poole, C. F.; Lenca, N. Gas Chromatography on Wall-coated Open-tubular Columns with Ionic Liquid Stationary Phases. J. Chromatogr. A. 2014, 1357, 87–109. DOI: 10.1016/j.chroma.2014.03.029.
  • Lenca, N.; Poole, C. F. System Map for the Ionic Liquid Stationary Phase Tri (tripropylphosphoniumhexanamido)triethylamine Bis(trifluoromethylsulfonyl)imide for Gas Chromatography. J. Chromatogr. A. 2017, 1524, 210–214. DOI: 10.1016/j.chroma.2017.09.064.
  • Zeng, A. X.; Chin, S. T.; Nolvachai, Y.; Kulsing, C.; Sidisky, L. M.; Marriott, P. J. Characterisation of Capillary Ionic Liquid Columns for Gas Chromatography–Mass Spectrometry Analysis of Fatty Acid Methyl Esters. Anal. Chim. Acta. 2013, 803, 166–173. DOI: 10.1016/j.aca.2013.07.002.
  • Gómez-Cortés, P.; Rodríguez-Pino, V.; Juárez, M.; de la Fuente, M. A. Optimization of Milk Odd and Branched-chain Fatty Acids Analysis by Gas Chromatography Using an Extremely Polar Stationary Phase. Food. Chem. 2017, 231, 11–18. DOI: 10.1016/j.foodchem.2017.03.052.
  • Fardin-Kia, A. R.; Delmonte, P.; Kramer, J. K.; Jahreis, G.; Kuhnt, K.; Santercole, V.; Rader, J. I. Separation of the Fatty Acids in Menhaden Oil as Methyl Esters with a Highly Polar Ionic Liquid Gas Chromatographic Column and Identification by Time of Flight Mass Spectrometry. Lipids. 2013, 48, 1279–1295. DOI: 10.1007/s11745-013-3830-2.
  • Pojjanapornpun, S.; Nolvachai, Y.; Aryusuk, K.; Kulsing, C.; Krisnangkura, K.; Marriott, P. J. Ionic Liquid Phases with Comprehensive Two-dimensional Gas Chromatography of Fatty Acid Methyl Esters. Anal. Bioanal. Chem. 2018, 410, 4669–4677. DOI: 10.1007/s00216-018-0944-7.
  • Fanali, C.; Micalizzi, G.; Dugo, P.; Mondello, L. Ionic Liquids as Stationary Phases for Fatty Acid Analysis by Gas Chromatography. Analyst. 2017, 142, 4601–4612. DOI: 10.1039/c7an01338h.
  • Dettmer, K. Assessment of Ionic Liquid Stationary Phases for the GC Analysis of Fatty Acid Methyl Esters. Anal. Bioanal. Chem. 2014, 406, 4931–4939. DOI: 10.1007/s00216-014-7919-0.
  • Weatherly, C. A.; Zhang, Y.; Smuts, J. P.; Fan, H.; Xu, C.; Schug, K. A.; Lang, J. C.; Armstrong, D. W. Analysis of Long-Chain Unsaturated Fatty Acids by Ionic Liquid Gas Chromatography. J. Agric. Food. Chem. 2016, 64, 1422–1432. DOI: 10.1021/acs.jafc.5b05988.
  • Mendoza, L. G.; Gonzalez-Alvarez, J.; Gonzalo, C. F.; Arias-Abrodo, P.; Altava, B.; Luis, S. V.; Burguete, M. I.; Gutierrez-Alvarez, M. D. Gas Chromatographic Analysis of Fatty Acid Methyl Esters of Milk Fat by an Ionic Liquid Derived from L-phenylalanine as the Stationary Phase. Talanta. 2015, 143, 212–218. DOI: 10.1016/j.talanta.2015.05.036.
  • Talebi, M.; Patil, R. A.; Sidisky, L. M.; Berthod, A.; Armstrong, D. W. Branched-chain Dicationic Ionic Liquids for Fatty Acid Methyl Ester Assessment by Gas Chromatography. Anal. Bioanal. Chem. 2017, 410, 4633–4643. DOI: 10.1007/s00216-017-0722-y.
  • Nan, H.; Zhang, C.; O’Brien, R. A.; Benchea, A.; Davis, J. H., Jr; Anderson, J. L. Lipidic Ionic Liquid Stationary Phases for the Separation of Aliphatic Hydrocarbons by Comprehensive Two-dimensional Gas Chromatography. J. Chromatogr. A. 2017, 1481, 127–136. DOI: 10.1016/j.chroma.2016.12.032.
  • Guo, Q.; Jiang, F.; Jin, J.; Li, Q.; Wang, F.; Wang, Q.; Ha, Y. Highly Sensitive Method for the Quantification of Trans-linolenic Acid Isomers in Trilinolenin of Edible Oils Using an Ionic Liquid Capillary Column. J. Sci. Food. Agric. 2017, 97, 4697–4703. DOI: 10.1002/jsfa.8337.
  • Franck, M.; Nabila, I.; Octave, S.; Nicaud, J. M.; Thomasset, B. A Gas Chromatography Full Scan High Resolution Orbitrap Mass Spectrometry Method for Separation and Characterization of 3-hydroxymethyl Pyridine Ester of Fatty Acids at Low Levels. J. Chromatogr. A. 2018, 1575, 72–79. DOI: 10.1016/j.chroma.2018.09.010.
  • Delmonte, P. Evaluation of Poly (90% Biscyanopropyl/10% Cyanopropylphenyl Siloxane) Capillary Columns for the Gas Chromatographic Quantification of Trans Fatty Acids in Non-hydrogenated Vegetable Oils. J. Chromatogr. A. 2016, 1460, 160–172. DOI: 10.1016/j.chroma.2016.07.019.
  • Kamatou, G. P. P.; Viljoen, A. M. Comparison of Fatty Acid Methyl Esters of Palm and Palmist Oils Determined by GCxGC–ToF–MS and GC–MS/FID. S. Afr. J. Bot. 2017, 112, 483–488. DOI: 10.1016/j.sajb.2017.06.032.
  • Tranchida, P. Q.; Franchina, F. A.; Dugo, P.; Mondello, L. A Flow-modulated Comprehensive Gas Chromatography-mass Spectrometry Method for the Analysis of Fatty Acid Profiles in Marine and Biological Samples. J. Chromatogr. A. 2012, 1255, 171–176. DOI: 10.1016/j.chroma.2012.02.016.
  • Nosheen, A.; Mitrevski, B.; Bano, A.; Marriott, P. J. Fast Comprehensive Two-dimensional Gas Chromatography Method for Fatty Acid Methyl Ester Separation and Quantification Using Dual Ionic Liquid Columns. J. Chromatogr. A. 2013, 1312, 118–123. DOI: 10.1016/j.chroma.2013.08.099.
  • Sun, X.; Zhang, L.; Li, P.; Xu, B.; Ma, F.; Zhang, Q.; Zhang, W. Fatty Acid Profiles Based Adulteration Detection for Flaxseed Oil by Gas Chromatography Mass Spectrometry. LWT – Food. Sci. Technol. 2015, 63, 430–436. DOI: 10.1016/j.lwt.2015.02.023.
  • Walczak, J.; Bocian, S.; Kowalkowski, T.; Trziszka, T.; Buszewski, B. Determination of Omega Fatty Acid Profiles in Egg Yolk by HILIC-LC-MS and GC-MS. Food. Anal. Method. 2016, 10, 1264–1272. DOI: 10.1007/s12161-016-0655-7.
  • Vetter, W.; Laure, S.; Wendlinger, C.; Mattes, A.; Smith, A. W. T.; Knight, D. W. Determination of Furan Fatty Acids in Food Samples. J. Am. Oil. Chem. Soc. 2012, 89, 1501–1508. DOI: 10.1007/s11746-012-2038-6.
  • Gómez-Cortés, P.; Brenna, J. T.; Lawrence, P.; de la Fuente, M. A. Novel Characterisation of Minor Alpha-linolenic Acid Isomers in Linseed Oil by Gas Chromatography and Covalent Adduct Chemical Ionisation Tandem Mass Spectrometry. Food. Chem. 2016, 200, 141–145. DOI: 10.1016/j.foodchem.2016.01.023.
  • Jiang, J.; Jia, X. Profiling of Fatty Acids Composition in Suet Oil Based on GC-EI-qMS and Chemometrics Analysis. Int. J. Mol. Sci. 2015, 16, 2864–2878. DOI: 10.3390/ijms16022864.
  • Xia, W.; Budge, S. M. Simultaneous Quantification of Epoxy and Hydroxy Fatty Acids as Oxidation Products of Triacylglycerols in Edible Oils. J. Chromatogr. A. 2018, 1537, 83–90. DOI: 10.1016/j.chroma.2017.12.066.
  • Kaffarnik, S.; Preuss, S.; Vetter, W. Direct Determination of Flavor Relevant and Further Branched-chain Fatty Acids from Sheep Subcutaneous Adipose Tissue by Gas Chromatography with Mass Spectrometry. J. Chromatogr. A. 2014, 1350, 92–101. DOI: 10.1016/j.chroma.2014.05.034.
  • Fournier, V.; Juanéda, P.; Destaillats, F.; Dionisi, F.; Lambelet, P.; Sébédio, J. L.; Berdeaux, O. Analysis of Eicosapentaenoic and Docosahexaenoic Acid Geometrical Isomers Formed during Fish Oil Deodorization. J. Chromatogr. A. 2006, 1129, 21–28. DOI: 10.1016/j.chroma.2006.06.089.
  • Giua, L.; Blasi, F.; Simonetti, M. S.; Cossignani, L. Oxidative Modifications of Conjugated and Unconjugated Linoleic Acid during Heating. Food. Chem. 2013, 140, 680–685. DOI: 10.1016/j.foodchem.2012.09.067.
  • Della Corte, A.; Chitarrini, G.; Di Gangi, I. M.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovsek, U. A Rapid LC-MS/MS Method for Quantitative Profiling of Fatty Acids, Sterols, Glycerolipids, Glycerophospholipids and Sphingolipids in Grapes. Talanta. 2015, 140, 52–61. DOI: 10.1016/j.talanta.2015.03.003.
  • La Nasa, J.; Degano, I.; Brandolini, L.; Modugno, F.; Bonaduce, I. A Novel HPLC-ESI-Q-ToF Approach for the Determination of Fatty Acids and Acylglycerols in Food Samples. Anal. Chim. Acta. 2018, 1013, 98–109. DOI: 10.1016/j.aca.2017.12.047.
  • Leung, K.; Galano, J.-M.; Durand, T.; Lee, J. Profiling of Omega-Polyunsaturated Fatty Acids and Their Oxidized Products in Salmon after Different Cooking Methods. Antioxidants. 2018, 7, 96. DOI: 10.3390/antiox7080096.
  • Song, H.; Wu, H.; Geng, Z.; Sun, C.; Ren, S.; Wang, D.; Zhang, M.; Liu, F.; Xu, W. Simultaneous Determination of 13-HODE, 9,10-DHODE, and 9,10,13-THODE in Cured Meat Products by LC-MS/MS. Food. Anal. Method. 2016, 9, 2832–2841. DOI: 10.1007/s12161-016-0470-1.
  • Schlotterbeck, J.; Cebo, M.; Kolb, A.; Lämmerhofer, M. Quantitative Analysis of Chemoresistance-inducing Fatty Acid in Food Supplements Using UHPLC–ESI-MS/MS. Anal. Bioanal. Chem. 2019, 411, 479–491. DOI: 10.1007/s00216-018-1468-x.
  • Uchida, H.; Itabashi, Y.; Watanabe, R.; Matsushima, R.; Oikawa, H.; Suzuki, T.; Hosokawa, M.; Tsutsumi, N.; Ura, K.; Romanazzi, D.; et al. Detection and Identification of Furan Fatty Acids from Fish Lipids by High-performance Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-flight Mass Spectrometry. Food. Chem. 2018, 252, 84–91. DOI: 10.1016/j.foodchem.2018.01.044.
  • Schulze, C.; Merdivan, S.; Felten, L.; Mundt, S. Quantification of Fatty Acid Methyl Esters in Various Biological Matrices by LC-DAD and LC-MS after One-Step Transesterification. Food. Anal. Method. 2018, 11, 2244–2251. DOI: 10.1007/s12161-018-1184-3.
  • Wabaidur, S. M.; AlAmmari, A.; Aqel, A.; Al-Tamrah, S. A.; Alothman, Z. A.; Ahmed, A. Determination of Free Fatty Acids in Olive Oils by UPHLC-MS. J. Chromatogr. B. 2016, 1031, 109–115. DOI: 10.1016/j.jchromb.2016.07.040.
  • Yu, D.; Rupasinghe, T. W. T.; Boughton, B. A.; Natera, S. H. A.; Hill, C. B.; Tarazona, P.; Feussner, I.; Roessner, U. A High-resolution HPLC-QqTOF Platform Using Parallel Reaction Monitoring for In-depth Lipid Discovery and Rapid Profiling. Anal. Chim. Acta. 2018, 1026, 87–100. DOI: 10.1016/j.aca.2018.03.062.
  • Carvalho, M. S.; Mendonça, M. A.; Pinho, D. M. M.; Resck Inês, S.; Suarez, P. A. Z. Chromatographic Analyses of Fatty Acid Methyl Esters by HPLC-UV and GC-FID. J. Brazil. Chem. Soc. 2012, 23, 763–769. DOI: 10.1590/S0103-50532012000400023.
  • Li, G.; You, J.; Suo, Y.; Song, C.; Sun, Z.; Xia, L.; Zhao, X.; Shi, J. A Developed Pre-column Derivatization Method for the Determination of Free Fatty Acids in Edible Oils by Reversed-phase HPLC with Fluorescence Detection and Its Application to Lycium Barbarum Seed Oil. Food. Chem. 2011, 125, 1365–1372. DOI: 10.1016/j.foodchem.2010.10.007.
  • Chen, W.; Zhang, S.; You, J.; Chen, Z.; Yue, M. Analysis of Fatty Acids in Trichosanthes Kirilowii Maxim by MSPD and Fluorescence Derivatization. J. Chromatogr. Sci. 2018, 56, 941–947. DOI: 10.1093/chromsci/bmy071.
  • Delmonte, P.; Milani, A.; Structural Determination, B. S. Occurrence in Ahiflower Oil of Stearidonic Acid Trans Fatty Acids. Lipids. 2018, 53, 255–266. DOI: 10.1002/lipd.12009.
  • Czajkowska-Mysłek, A.; Siekierko, U.; Gajewska, M. Application of Silver Ion High-Performance Liquid Chromatography for Quantitative Analysis of Selected N-3 and N-6 PUFA in Oil Supplements. Lipids. 2016, 51, 413–421. DOI: 10.1007/s11745-016-4133-1.
  • Hubert, F.; Loiseau, C.; Ergan, F.; Pencréac’h, G.; Poisson, L. Fast Fatty Acid Analysis by Core-Shell Reversed-Phase Liquid Chromatography Coupled to Evaporative Light-Scattering Detector. Food. Nutr. Sci. 2017, 8, 1051–1062. DOI: 10.4236/fns.2017.812077.
  • Guo, H.; Hu, C.; Qian, J.; Wu, D. Determination of Underivatized Long Chain Fatty Acids Using HPLC with an Evaporative Light-Scattering Detector. J. Am. Oil. Chem. Soc. 2011, 89, 183–187. DOI: 10.1007/s11746-011-1898-5.
  • Fardin-Kia, A. R. Preparation, Isolation and Identification of Non-conjugated C18:2 Fatty Acid Isomers. Chem. Phys. Lipids. 2016, 201, 50–58. DOI: 10.1016/j.chemphyslip.2016.10.003.
  • Núñez-Sánchez, N.; Martinez-Marin, A. L.; Polvillo, O.; Fernandez-Cabanas, V. M.; Carrizosa, J.; Urrutia, B.; Serradilla, J. M. Near Infrared Spectroscopy (NIRS) for the Determination of the Milk Fat Fatty Acid Profile of Goats. Food. Chem. 2016, 190, 244–252. DOI: 10.1016/j.foodchem.2015.05.083.
  • Azizian, H.; Kramer, J. K. G.; Mossoba, M. M. Evaluating the Transferability of FT-NIR Calibration Models for Fatty Acid Determination of Edible Fats and Oils among Five Same-make Spectrometers Using Transmission or Transflection Modes with Different Pathlengths. J. Am. Oil. Chem. Soc. 2012, 89, 2143–2154. DOI: 10.1007/s11746-012-2116-9.
  • De Marchi, M.; Manuelian, C. L.; Ton, S.; Cassandro, M.; Penasa, M. Feasibility of near Infrared Transmittance Spectroscopy to Predict Fatty Acid Composition of Commercial Processed Meat. J. Sci. Food. Agric. 2018, 98, 64–73. DOI: 10.1002/jsfa.8438.
  • Riovanto, R.; De Marchi, M.; Cassandro, M.; Penasa, M. Use of near Infrared Transmittance Spectroscopy to Predict Fatty Acid Composition of Chicken Meat. Food. Chem. 2012, 134, 2459–2464. DOI: 10.1016/j.foodchem.2012.04.038.
  • Zhou, L.-J.; Wu, H.; Li, J.-T.; Wang, Z.-Y.; Zhang, L.-Y. Determination of Fatty Acids in Broiler Breast Meat by Near-infrared Reflectance Spectroscopy. Meat. Sci. 2012, 90, 658–664. DOI: 10.1016/j.meatsci.2011.10.010.
  • Vongsvivut, J.; Miller, M. R.; McNaughton, D.; Heraud, P.; Barrow, C. J.; Discrimination, R. Determination of Polyunsaturated Fatty Acid Composition in Marine Oils by FTIR Spectroscopy and Multivariate Data Analysis. Food. Bioprocess. Tech. 2014, 7, 2410–2422. DOI: 10.1007/s11947-013-1251-0.
  • Hernández-Martínez, M.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; Almaraz-Abarca, N.; Ponce-Mendoza, A.; Vásquez-Murrieta, M. S. Prediction of Total Fat, Fatty Acid Composition and Nutritional Parameters in Fish Fillets Using MID-FTIR Spectroscopy and Chemometrics. LWT – Food. Sci. Technol. 2013, 52, 12–20. DOI: 10.1016/j.lwt.2013.01.001.
  • Filho, D. C. Developing a Rapid and Sensitive Method for Determination of Trans-fatty Acids in Edible Oils Using Middle-infrared Spectroscopy. Food. Chem. 2014, 158, 1–7. DOI: 10.1016/j.foodchem.2014.02.084.
  • Teixeira, A. M.; Sousa, C. A Review on the Application of Vibrational Spectroscopy to the Chemistry of Nuts. Food. Chem. 2018, 277, 713–724. DOI: 10.1016/j.foodchem.2018.11.030.
  • Saeys, W.; Mouazen, A. M.; Ramon, H. Potential for Onsite and Online Analysis of Pig Manure Using Visible and near Infrared Reflectance Spectroscopy. Biosyst. Eng. 2005, 91, 393–402. DOI: 10.1016/j.biosystemseng.2005.05.001.
  • Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with ChemometricsA Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure−Quality Relationships − A Review. Chem. Rev. 2010, 110, 6144–6168. DOI: 10.1021/cr100090k.
  • Vicente, J.; de Carvalho, M. G.; Garcia-Rojas, E. E. Fatty Acids Profile of Sacha Inchi Oil and Blends by 1H NMR and GC-FID. Food. Chem. 2015, 181, 215–221. DOI: 10.1016/j.foodchem.2015.02.092.
  • Siciliano, C.; Belsito, E.; De Marco, R.; Di Gioia, M. L.; Leggio, A.; Liguori, A. Quantitative Determination of Fatty Acid Chain Composition in Pork Meat Products by High Resolution 1H NMR Spectroscopy. Food. Chem. 2013, 136, 546–554. DOI: 10.1016/j.foodchem.2012.08.058.
  • Kucha, C. T.; Liu, L.; Ngadi, M. O. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors. 2018, 18, E377. DOI: 10.3390/s18020377.
  • Camin, F.; Pavone, A.; Bontempo, L.; Wehrens, R.; Paolini, M.; Faberi, A.; Marianella, R. M.; Capitani, D.; Vista, S.; Mannina, L. The Use of IRMS, 1H NMR and Chemical Analysis to Characterise Italian and Imported Tunisian Olive Oils. Food Chem. 2016, 196, 98–105. DOI: 10.1016/j.foodchem.2015.08.132.
  • Castejón, D.; Fricke, P.; Cambero, M. I.; Automatic, H. A. 1H-NMR Screening of Fatty Acid Composition in Edible Oils. Nutrients. 2016, 8, 93. DOI: 10.3390/nu8020093.
  • Lolli, V.; Marseglia, A.; Palla, G.; Zanardi, E.; Caligiani, A. Determination of Cyclopropane Fatty Acids in Food of Animal Origin by 1H NMR. J. Anal. Methods. Chem. 2018, 2018, 1–8. DOI: 10.1155/2018/8034042.
  • Prema, D.; Jensen, J.; Pilfold, J. L.; Turner, T. D.; Donkor, K. K.; Cinel, B.; Church, J. S.; Navabi, A. Rapid Determination of N-6 and N-3 Fatty Acid Ratios in Cereal Grains and Forages by 1H NMR Spectroscopy. Can. J. Plant. Sci. 2016, 96, 730–733. DOI: 10.1139/cjps-2015-0302.
  • de Oliveira Mendes, T.; Porto, B. L. S.; Bell, M. J. V.; Perrone, I. T.; de Oliveira, M. A. L. Capillary Zone Electrophoresis for Fatty Acids with Chemometrics for the Determination of Milk Adulteration by Whey Addition. Food. Chem. 2016, 213, 647–653. DOI: 10.1016/j.foodchem.2016.07.035.
  • Böckel, W. J.; Da Silva, Y. P.; Mendonça, C. R. B.; Simó-Alfonso, E. F.; Ramis-Ramos, G.; Piatnicki, C. M. S. Direct Determination of Oleic Acid in Soybean Oil by Capacitively Coupled Contactless Conductivity Detection Capillary Electrophoresis in an Oil-Miscible KOH/1-Propanol/Methanol Medium. J. Braz. Chem. Soc. 2014, 25, 1662–1666. DOI: 10.5935/0103-5053.20140155.
  • Soliman, L. C.; Donkor, K. K.; Church, J. S.; Cinel, B.; Prema, D.; Dugan, M. E. Separation of Dietary Omega-3 and Omega-6 Fatty Acids in Food by Capillary Electrophoresis. J. Sep. Sci. 2013, 36, 3440–3448. DOI: 10.1002/jssc.201300738.
  • Lee, J. H.; Kim, S. J.; Lee, S.; Rhee, J. K.; Lee, S. Y.; Na, Y. C. Saturated Fatty Acid Determination Method Using Paired Ion Electrospray Ionization Mass Spectrometry Coupled with Capillary Electrophoresis. Anal. Chim. Acta. 2017, 984, 223–231. DOI: 10.1016/j.aca.2017.06.052.
  • Mirabelli, M. F.; Coviello, G.; Volmer, D. A. Determining Fatty Acids by Desorption/ionization Mass Spectrometry Using Thin-layer Chromatography Substrates. Anal. Bioanal. Chem. 2015, 407, 4513–4522. DOI: 10.1007/s00216-015-8630-5.
  • Qu, S.; Du, Z.; Zhang, Y. Direct Detection of Free Fatty Acids in Edible Oils Using Supercritical Fluid Chromatography Coupled with Mass Spectrometry. Food. Chem. 2015, 170, 463–469. DOI: 10.1016/j.foodchem.2014.08.043.
  • Ashraf-Khorassani, M.; Isaac, G.; Rainville, P.; Fountain, K.; Taylor, L. T. Study of UltraHigh Performance Supercritical Fluid Chromatography toreturn imgPath_final; Measure Free Fatty Acids with Out Fatty Acid Ester Preparation. J. Chromatogr. B. 2015, 997, 45–55. DOI: 10.1016/j.jchromb.2015.05.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.