390
Views
0
CrossRef citations to date
0
Altmetric
Review

Source, Sample Preparation, Analytical and Inhibition Methods of Polycyclic Aromatic Hydrocarbons in Food (Update since 2015)

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 427-451 | Received 05 May 2020, Accepted 23 Aug 2021, Published online: 24 Sep 2021

References

  • Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumié, M.; Courcot, D.; Garçon, G. Polycyclic Aromatic Hydrocarbon Derivatives in Airborne Particulate Matter: Sources, Analysis and Toxicity. Environ. Chem. Lett. 2018, 16, 439–475. DOI: 10.1007/s10311-017-0697-0.
  • Ohiozebau, E.; Tendler, B.; Codling, G.; Kelly, E.; Giesy, J. P.; Jones, P. D. Potential Health Risks Posed by Polycyclic Aromatic Hydrocarbons in Muscle Tissues of Fishes from the Athabasca and Slave Rivers, Canada. Environ. Geochem. Health. 2017, 39, 139–160. DOI: 10.1007/s10653-016-9815-3.
  • Inam, E.; Ibanga, F.; Essien, J. Bioaccumulation and Cancer Risk of Polycyclic Aromatic Hydrocarbons in Leafy Vegetables Grown in Soils within Automobile Repair Complex and Environ in Uyo, Nigeria. Environ. Monit. Assess. 2016, 188, 681–690. DOI: 10.1007/s10661-016-5695-3.
  • Fasano, E.; Yebra-Pimentel, I.; Martínez-Carballo, E.; Simal-Gándara, J. Profiling, Distribution and Levels of Carcinogenic Polycyclic Aromatic Hydrocarbons in Traditional Smoked Plant and Animal Foods. Food Control. 2016, 59, 581–590. DOI: 10.1016/j.foodcont.2015.06.036.
  • Molle, D. R. D.; Abballe, C.; Gomes, F. M. L.; Furlani, R. P. Z.; Tfouni, S. A. V. Polycyclic Aromatic Hydrocarbons in Canola, Sunflower and Corn Oils and Estimated Daily Intake. Food Control. 2017, 81, 96–100. DOI: 10.1016/j.foodcont.2017.05.045.
  • Singh, L.; Varshney, J. G.; Agarwal, T. Polycyclic Aromatic Hydrocarbons’formation and Occurrence in Processed Food. Food Chem. 2016, 199, 768–781. DOI: 10.1016/j.foodchem.2015.12.074.
  • European Commission. Commission Regulation (EU) No 836/2011 of 19 August 2011 Amending Regulation (EC) No 333/2007 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Lead, Cadmium, Mercury, Inorganic Tin, 3-MCPD and Benzo(a)pyrene in Foodstuffs, 2011b.
  • Plaza-Bolaños, P.; Frenich, A. G.; Vidal, J. L. M. Polycyclic Aromatic Hydrocarbons in Food and Beverages. Analytical Methods and Trends. J. Chromatogr. A. 2010, 1217, 6303–6326. DOI: 10.1016/j.chroma.2010.07.079.
  • Purcaro, G.; Moret, S.; Conte, L. S. Overview on Polycyclic Aromatic Hydrocarbons: Occurrence, Legislation and Innovative Determination in Foods. Talanta. 2013, 105, 292–305. DOI: 10.1016/j.talanta.2012.10.041.
  • Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A. M.; Quiterio De Souza, S. L.; Barbosa Rocha, H.; Raices, R. Polycyclic Aromatic Hydrocarbons in Milk and Dairy Products. Int. J. Dairy Technol. 2019, 72, 120–131. DOI: 10.1111/1471-0307.12567.
  • Paris, A.; Ledauphin, J.; Poinot, P.; Gaillard, J.-L. Polycyclic Aromatic Hydrocarbons in Fruits and Vegetables: Origin, Analysis, and Occurrence. Environ. Pollut. 2018, 234, 96–106. DOI: 10.1016/j.envpol.2017.11.028.
  • Lee, Y.-N.; Lee, S.; Kim, J.-S.; Kumar Patra, J.; Shin, H.-S. Chemical Analysis Techniques and Investigation of Polycyclic Aromatic Hydrocarbons in Fruit, Vegetables and Meats and Their Products. Food Chem. 2019, 277, 156–161. DOI: 10.1016/j.foodchem.2018.10.114.
  • Liu, X.-M.; Zhang, Y.; Zhou, Y.; Li, G.-H.; Zeng, B.-Q.; Zhang, J.-W.; Feng, X.-S. Progress in Pretreatment and Analysis of Fatty Acids in Foods: An Update since 2012. Sep. & Purif. Rev. 2019. DOI: 10.1080/15422119.2019.1673776.
  • Shariatifar, N.; Dadgar, M.; Fakhri, Y.; Shahsavari, S.; Moazzen, M.; Ahmadloo, M.; Kiani, A.; Aeenehvand, S.; Nazmara, S.; Mousavi Khanegah, A. Levels of Polycyclic Aromatic Hydrocarbons in Milk and Milk Powder Samples and Their Likely Risk Assessment in Iranian Population. J. Food Compos. Anal. 2020, 85, 103331. DOI: 10.1016/j.jfca.2019.103331.
  • Rawash, E.; Mohamed, G.; Souaya, E.; Khalil, L.; El-Chaghaby, G.; El-Gammal, M. Distribution and Health Hazards of Polycyclic Aromatic Hydrocarbons in Egyptian Milk and Dairy-Based Products. Beverages (Basel). 2018, 4(3), 63–73. DOI:10.3390/beverages4030063.
  • Han, J.; Kim, M.; Shin, H. Evaluation of Polycyclic Aromatic Hydrocarbon Contents and Risk Assessment for Infant Formula in Korea. J Korean Soc. Appl. Biol. Chem. 2014, 57, 173–179. DOI: 10.1007/s13765-013-4219-x.
  • Yousefi, M.; Shemshadi, G.; Khorshidian, N.; Ghasemzadeh-Mohammadi, V.; Fakhri, Y.; Hosseini, H.; Mousavi, K. A Polycyclic Aromatic Hydrocarbons (Pahs) Content of Edible Vegetable Oils in Iran: A Risk Assessment Study. Food Chem. Toxicol. 2018, 118, 480–489. DOI: 10.1016/j.fct.2018.05.063.
  • Molle, D.; Abballe, C.; Gomes, F.; Furlani, R.; Tfouni, S. Polycyclic Aromatic Hydrocarbons in Canola, Sunflower and Corn Oils and Estimated Daily Intake. Food Control. 2017, 81, 96–100. DOI: 10.1016/j.foodcont.2017.05.045.
  • Tornero, V.; Hanke, G. Chemical Contaminants Entering the Marine Environment from Sea-based Sources: A Review with A Focus on European Seas. Marine Pollut. Bull. 2016, 112, 17–38. DOI: 10.1016/j.marpolbul.2016.06.091.
  • Habibullah-Al-Mamun, M.; Ahmed, M.; Islam, M.; Tokumura, M.; Masunaga, S. Distribution of Polycyclic Aromatic Hydrocarbons (Pahs) in Commonly Consumed Seafood from Coastal Areas of Bangladesh and Associated Human Health Implications. Environ. Geochem. Health. 2019, 41, 1105–1121. DOI: 10.1007/s10653-018-0202-0.
  • Zachara, A.; Gałkowsk, D.; Juszczak, L. Contamination of Smoked Meat and Fish Products from Polish Market with Polycyclic Aromatic Hydrocarbons. Food Control. 2017, 80, 45–51. DOI: 10.1016/j.foodchem.2015.12.074.
  • Singh, L.; Varshney, J. G.; Agarwal, T. Contamination of Smoked Meat and Fish Products from Polish Market with Polycyclic Aromatic Hydrocarbons. Food Chem. 2016, 199, 768–781. DOI: 10.1016/j.foodcont.2017.04.024.
  • Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of Meat Products during Smoking by Polycyclic Aromatic Hydrocarbons: Processes and Prevention. Food Control. 2016, 60, 64–87. DOI: 10.1016/j.foodcont.2015.07.016.
  • Djinovic, J.; Popovic, A.; Jira, W. Polycyclic Aromatic Hydrocarbons (Pahs) in Different Types of Smoked Meat Products from Serbia. Meat Sci. 2008, 80, 449–456. DOI: 10.1016/j.meatsci.2008.01.008.
  • Onyango, A. A.; Lalah, J. O.; Wandiga, S. O. The Effect of Local Cooking Methods on Polycyclic Aromatic Hydrocarbons (Pahs) Contents in Beef, Goat Meat, and Pork as Potential Sources of Human Exposure in Kisumu City, Kenya. Polycycl. Aromat. Comp. 2012, 32, 656–668. DOI: 10.1080/10406638.2012.725195.
  • Janoszka, B.;. HPLC-fluorescence Analysis of Polycyclic Aromatic Hydrocarbons (Pahs) in Pork Meat and Its Gravy Fried without Additives and in the Presence of Onion and Garlic. Food Chem. 2011, 126, 1344–1353. DOI: 10.1016/j.foodchem.2010.11.097.
  • IARC. International Agency Research on Cancer Monographs on the Evaluation of Carcinogenic Risk to Humans: Some Naturally Occurring Aromatic Amines and Mycotoxins 56. International Agency for Research on Cancer (IARC), Lyon, France, 1993, 163–242.
  • Santos, C.; Gomes, A.; Roseiro, L. C. Polycyclic Aromatic Hydrocarbons Incidence in Portuguese Traditional Smoked Meat Products. Food Chem. Toxicol. 2011, 49, 2343–2347. DOI: 10.1016/j.fct.2011.06.036.
  • Zhou, H.; Wu, X.; Chen, D.; Zhu, H.; Fang, C.; Zhang, H.; Chen, W.; Zhan, B.; Song, C. Simultaneous Determination of 24 Polycyclic Aromatic Hydrocarbons in Oils by Gas Chromatography-Mass Spectrometry Using an Improved Clean-up Procedure. Food Anal. Methods. 2019, 12, 1957–1963. DOI: 10.1007/s12161-019-01545-0.
  • Zheng, H.; Ding, J.; Zheng, S.; Zhu, G.; Yuan, B.; Feng, Y. Facile Synthesis of Magnetic Carbon Nitride Nanosheets and Its Application in Magnetic Solid Phase Extraction for Polycyclic Aromatic Hydrocarbons in Edible Oil Samples. Talanta. 2016, 148, 46–53. DOI: 10.1016/j.talanta.2015.10.059.
  • Wang, Q.; Lian, J.; Hua, Z.; Yang, Y.; Li, Y.; Hao, X.; Cao, Y.; Zeng, X. Hybrid Nanomaterial Based on Magnetic Multiwalled Carbon Nanotube-octadecylphosphonic Acid Modified Zirconia for Magnetic Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons from Edible Oils. Anal. Methods. 2018, 1, 5516–5523. DOI: 10.1039/c8ay01902a.
  • Zhang, Y.; Zhou, H.; Zhang, Z.; Wu, X.; Chen, W.; Zhu, Y.; Fang, C.; Zhao, Y. Three-dimensional Ionic Liquid Functionalized Magnetic Graphene Oxide Nanocomposite for the Magnetic Dispersive Solid Phase Extraction of 16 Polycyclic Aromatic Hydrocarbons in Vegetable Oils. J. Chromatogr. A. 2017, 1489, 29–38. DOI: 10.1016/j.chroma.2017.02.010.
  • Shi, X.; Li, N.; Wu, D.; Hu, N.; Sun, J.; Zhou, X.; Suo, Y.; Li, G.; Wu, Y. Magnetic Covalent Organic Framework Material: Synthesisand Application as a Sorbent for Polycyclic Aromatic Hydrocarbons. Anal. Methods. 2018, 41, 5014–5024. DOI: 10.1039/C8AY01572D.
  • Boon, Y. H.; Mohamad, Z.; N. N., M.; Mohamad, S.; Osman, H.; Raoov, M. Magnetic poly(β-cyclodextrin-ionic Liquid) Nanocomposites for Micro-solid Phase Extraction of Selected Polycyclic Aromatic Hydrocarbons in Rice Samples Prior to GC-FID Analysis. Food Chem. 2019, 278, 322–332. DOI: 10.1016/j.foodchem.2018.10.145.
  • Li, N.; Wu, D.; Hu, N.; Fan, G.; Li, X.; Sun, J.; Chen, X.; Suo, Y.; Li, G.; Wu, Y. Effective Enrichment and Detection of Trace Polycyclic Aromatic Hydrocarbons in Food Samples Based on Magnetic Covalent Organic Framework Hybrid Microspheres. J. Agr. Food Chem. 2018, 66, 3572–3580. DOI: 10.1021/acs.jafc.8b00869.
  • Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of Polycyclic Aromatic Hydrocarbons in Coffee and Tea Samples by Magnetic Solid-phase Extraction Coupled with HPLC–FLD. Food Chem. 2016, 199, 75–80. DOI: 10.1016/j.foodchem.2015.11.137.
  • Zhou, D.; Sheng, X.; Han, F.; Hu, -Y.-Y.; Ding, L.; Lv, Y.-L.; Song, W.; Zheng, P. Magnetic Solid-phase Extraction Based on [60] Fullerene Functionalization of Magnetic Nanoparticles for the Determination of Sixteen Polycyclic Aromatic Hydrocarbons in Tea Samples. J. Chromatogr. A. 2018, 1578, 53–60. DOI: 10.1016/j.chroma.2018.10.010.
  • Ji, W.; Zhang, M.; Duan, W.; Wang, X.; Zhao, H.; Guo, L. Phytic Acid-stabilized Super-amphiphilic Fe3O4 Graphene Oxide for Extraction of Polycyclic Aromatic Hydrocarbons from Vegetable Oils. Food Chem. 2017, 235, 104–110. DOI: 10.1016/j.foodchem.2017.05.054.
  • Rocío-Bautista, P.; Pino, V.; Ayala, J. H.; Pasán, J.; Ruiz-Pérez, C.; Afonso, A. M. A Magnetic-based Dispersive Micro-solid-phase Extraction Method Using the Metal-organic Framework HKUST-1 and Ultra-high-performance Liquid Chromatography with Fluorescence Detection for Determining Polycyclic Aromatic Hydrocarbons in Waters and Fruit Tea Infusions. J. Chromatogr. A. 2016, 1436, 42–50. DOI: 10.1016/j.chroma.2016.01.067.
  • Gutiérrez-Valencia, T. M.; De Llasera, M. P. G. On-line MSPD-SPE-HPLC/FLD Analysis of Polycyclic Aromatic Hydrocarbons in Bovine Tissue. Food Chem. 2016, 233, 82–88. DOI: 10.1016/j.foodchem.2016.11.099.
  • Rivera-Vera, C.; Lasarte-Aragonés, G.; Bravo, M. A.; Muñoz-Lira, D.; Salazar, R.; Toledo-Neira, C. Ionic Liquids-based Dispersive Liquid-liquid Microextraction for Determination of Carcinogenic Polycyclic Aromatic Hydrocarbons in Tea Beverages Evaluation of Infusion Preparation on Pollutants Release. Food Control. 2019, 106, 106685. DOI: 10.1016/j.foodcont.2019.06.011.
  • Fazaieli, F.; Mogaddam, M. R. A.; Farajzadeh, M. A.; Feriduni, B.; Mohebbi, A. Development of Organic Solvents–free Mode of Solidification of Floating Organic Droplet–based Dispersive Liquid–liquid Microextraction for the Extraction of Polycyclic Aromatic Hydrocarbons from Honey Samples before Their Determination by Gas Chromatography–mass Spectrometry. J. Sep. Sci. 2020, 43, 2393–2400. DOI: 10.1002/jssc.202000136.
  • Cacho, J. I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Evaluation of the Contamination of Spirits by Polycyclic Aromatic Hydrocarbons Using Ultrasound-assisted Emulsification Microextraction Coupled to Gas Chromatography–mass Spectrometry. Food Chem. 2016, 190, 324–330. DOI: 10.1016/j.foodchem.2015.05.106.
  • Trujillo-Rodríguez, M. J.; Nacham, O.; Clark, K. D.; Pino, V.; Anderson, J. L.; Ayala, J. H.; Afonso, A. M. Magnetic Ionic Liquids as Non-conventional Extraction Solvents for the Determination of Polycyclic Aromatic Hydrocarbons. Anal. Chim. Acta. 2016, 934, 106–113. DOI: 10.1016/j.aca.2016.06.014.
  • Hui, B. Y.; Zain, N. N. M.; Mohamad, S.; Varanusupakul, P.; Osman, H.; Raoov, M. Poly (Cyclodextrin-ionic Liquid) Based Ferrofluid: A New Class of Magnetic Colloid for Dispersive Liquid Phase Microextraction of Polycyclic Aromatic Hydrocarbons from Food Samples Prior to GC-FID Analysis. Food Chem. 2020, 314, 126214. DOI: 10.1016/j.foodchem.2020.126214.
  • Paris, A.; Ledauphin, J.; Lopez, C.; Hennequin, D.; Gaillard, J.-L. Trace Amount Determination of Monocyclic and Polycyclic Aromatic Hydrocarbons in Fruits: Extraction and Analytical Approaches. J. Food Compos. Anal. 2018, 67, 110–118. DOI: 10.1016/j.jfca.2017.12.034.
  • Guiffard, I.; Thomas, G.; Bruno, V.; Philippe, M.; Pellouin-Grouhel, A.; Bizec, B. L.; Bichon, E. Quantification of Light Polycyclic Aromatic Hydrocarbons in Seafood Samples Using On-line Dynamic HeadSpace Extraction, ThermoDesorption, Gas Chromatography Tandem Mass Spectrometry, Based on an Isotope Dilution Approach. J. Chromatogr. A. 2020, 1619, 460906. DOI: 10.1016/j.chroma.2020.460906.
  • dos Santos, R. R.; Leal, L. D. V.; de Lourdes Cardeal, Z.; Menezes, H. C. Determination of Polycyclic Aromatic Hydrocarbons and Their Nitrated and Oxygenated Derivatives in Coffee Brews Using an Efficient Cold Fiber-solid Phase Microextraction and Gas Chromatography Mass Spectrometry Method. J. Chromatogr. A. 2019, 1584, 64–71. DOI: 10.1016/j.chroma.2018.11.046.
  • Yuan, Y.; Lin, X.; Li, T.; Pang, T.; Dong, Y.; Zhuo, R.; Wang, Q.; Cao, Y.; Gan, N. A Solid Phase Microextraction Arrow with Zirconium Metal–organic Framework/molybdenum Disulfide Coating Coupled with Gas Chromatography–mass Spectrometer for the Determination of Polycyclic Aromatic Hydrocarbons in Fish Samples. J. Chromatogr. A. 2019, 1592, 9–18. DOI: 10.1016/j.chroma.2019.01.066.
  • Wang, X.; Wang, J.; Du, T.; Kou, H.; Du, X.; Lu, X. Zn (Ii)-imidazole Derived Metal Azolate Framework as an Effective Adsorbent for Double Coated Solid-phase Microextraction of Sixteen Polycyclic Aromatic Hydrocarbons. Talanta. 2020, 214, 120866. DOI: 10.1016/j.talanta.2020.120866.
  • Guo, X.; Liang, Y.; Wang, X.; Wang, X.; Wang, L.; Liu, L. Bis(trifluoromethanesulfonyl)imide-based Ionic Liquids Grafted on Graphene Oxide-coated Solid-phase Microextraction Fiber for Extraction and Enrichment of Polycyclic Aromatic Hydrocarbons in Potatoes and Phthalate Esters in Food-wrap. Talanta. 2016, 153, 392–400. DOI: 10.1016/j.talanta.2016.03.034.
  • Ma, T.; Shen, X.; Yang, C.; Qian, H.; Pang, Y.; Yan, X. Covalent Immobilization of Covalent Organic Framework on Stainless Steel Wire for Solid-phase Microextraction GC-MS/MS Determination of Sixteen Polycyclic Aromatic Hydrocarbons in Grilled Meat Samples. Talanta. 2019, 201, 413–418. DOI: 10.1016/j.talanta.2019.04.031.
  • Pang, J.; Yuan, D.; Huang, X. On-line Combining Monolith-based In-tube Solid Phase Microextraction and High Performance Liquid Chromatography Fluorescence Detection for the Sensitive Monitoring of Polycyclic Aromatic Hydrocarbons in Complex Samples. J. Chromatogr. A. 2018, 1571, 29–37. DOI: 10.1016/j.chroma.2018.07.077.
  • Souza-Silva, É. A.; Gionfriddo, E.; Pawliszyn, J. A Critical Review of the State of the Art of Solid-phase Microextraction of Complex Matrices II. Food Analysis. Trend Anal. Chem. 2015, 71, 236–248. DOI: 10.1016/j.trac.2015.04.018.
  • Lin, W.; Wei, S.; Jiang, R.; Zhu, F.; Ouyang, G. Calibration of the Complex Matrix Effects on the Sampling of Polyaromatic Hydrocarbons in Milk Samples Using Solid Phase Microextraction. Anal. Chim. Acta. 2016, 934, 11–123. DOI: 10.1016/j.aca.2016.05.045.
  • Portolés, T.; Garlito, B.; Nácher-Mestre, J.; Berntssen, M. H. G.; Pérez-Sánchez, J. Multi-class Determination of Undesirables in Aquaculture Samples by Gas Chromatography/tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization: A Novel Approach for Polycyclic Aromatic Hydrocarbons. Talanta. 2017, 172, 109–119. DOI: 10.1016/j.talanta.2017.05.025.
  • Duedahl-Olesen, L.; Iversen, N. M.; Kelmo, C.; Jensen, L. K. Validation of QuEChERS for Screening of 4 Marker Polycyclic Aromatic Hydrocarbons in Fish and Malt. Food Control. 2020, 108, 106434. DOI: 10.1016/j.foodcont.2018.12.010.
  • Slámová, T.; Sadowska-Rociek, A.; Fraňková, A.; Surma, M.; Banout, J. Application of QuEChERS-EMR-Lipid-DLLME Method for the Determination of Polycyclic Aromatic Hydrocarbons in Smoked Food of Animal Origin. J. Food Compos. Anal. 2020, 87, 103420. DOI: 10.1016/j.jfca.2020.103420.
  • Petrarca, M. H.; Godoy, H. T. Gas Chromatography–mass Spectrometry Determination of Polycyclic Aromatic Hydrocarbons in Baby Food Using QuEChERS Combined with Low-density Solvent Dispersive Liquid–liquid Microextraction. Food Chem. 2018, 257, 44–52. DOI: 10.1016/j.foodchem.2018.02.135.
  • Pfannkoch, E. A.; Stuff, J. R.; Whitecavage, J. A.; Blevins, J. M.; Seely, K. A.; Moran, J. H. A. High Throughput Method for Measuring Polycyclic Aromatic Hydrocarbons in Seafood Using QuEChERS Extraction and SBSE. Int. J. Anal. Chem. 2015, 2015, 1–8. DOI: 10.1155/2015/359629.
  • Zelinkova, Z.; Wenzl, T. EU Marker Polycyclic Aromatic Hydrocarbons in Food Supplements: Analytical Approach and Occurrence. Food Addit. Contam. Part A. 2015, 32, 1914–1926. DOI: 10.1080/19440049.2015.1087059.
  • Shi, L.; Zheng, L.; Liu, R.; Chang, M.; Huang, J.; Jin, Q.; Wang, X. Quantification of Polycyclic Aromatic Hydrocarbons and Phthalic Acid Esters in Deodorizer Distillates Obtained from Soybean, Rapeseed, Corn and Rice Bran Oils. Food Chem. 2019, 275, 206–213. DOI: 10.1016/j.foodchem.2018.09.119.
  • Da Silva, M. C.; de Oliveira, M. L. G.; Augusti, R.; Faria, A. F. Simultaneous Extraction of Pesticides and Polycyclic Aromatic Hydrocarbons in Brazilian Cachaça Using a Modified QuEChERS Method Followed by Gas Chromatography Coupled to Tandem Mass Spectrometry Quantification. J. Agr. Food Chem. 2018, 67, 399–405. DOI: 10.1021/acs.jafc.8b04682.
  • Kacmaz, S.;. Polycyclic Aromatic Hydrocarbons in Cereal Products on the Turkish Market. Food Addit. Contam. Part B. 2016, 9, 191–197. DOI: 10.1080/19393210.2016.1164761.
  • Akdogan, A.; Gursoy, O. Determination of Four Priority Polycyclic Aromatic Hydrocarbons (4pahs) by GC-MS in Traditional Turkish Yoghurts. Food Addit. Contam. Part A. 2020, 37, 391–400. DOI: 10.1080/19440049.2019.1707293.
  • Giri, A.; Khummueng, W.; Mercier, F.; Kondjoyan, N.; Tournayre, P.; Meurillon, M.; Ratel, J.; Engel, E. Relevance of Two-dimensional Gas Chromatography and High Resolution Olfactometry for the Parallel Determination of Heat-induced Toxicants and Odorants in Cooked Food. J. Chromatogr. A. 2015, 1388, 217–226. DOI: 10.1016/j.chroma.2015.01.045.
  • Rascón, A. J.; Azzouz, A.; Ballesteros, E. Trace Level Determination of Polycyclic Aromatic Hydrocarbons in Raw and Processed Meat and Fish Products from European Markets by GC-MS. Food Control. 2019, 101, 198–208. DOI: 10.1016/j.foodcont.2019.02.037.
  • Ingenbleek, L.; Veyrand, B.; Adegboye, A.; Hossou, S. E.; Koné, A. Z.; Oyedele, A. D.; Kisito, C. S. K. J.; Dembélé, Y. K.; Eyangoh, S.; Verger, P.; et al. Polycyclic Aromatic Hydrocarbons in Foods from the First Regional Total Diet Study in Sub-Saharan Africa: Contamination Profile and Occurrence Data. Food Control. 2019, 103, 133–144. DOI: 10.1016/j.foodcont.2019.04.006.
  • Sannino, A. Polycyclic Aromatic Hydrocarbons in Italian Preserved Food Products in Oil. Food Addit. Contam. Part A. 2016, 9, 98–105. DOI: 10.1080/19393210.2016.1145148.
  • Nyiri, Z.; Novák, M.; Bodai, Z.; Petrovics, N.; Eke, Z. Determination of Polycyclic Aromatic Hydrocarbons in Infant Formula Using Solid State Urea Clathrate Formation with Gas Chromatography – Tandem Mass Spectrometry. Talanta. 2017, 174, 214–220. DOI: 10.1016/j.talanta.2017.05.065.
  • Jia, Y.; Zhao, Y.; Zhao, M.; Wang, Z.; Chen, X.; Wang, M. Core–shell Indium (III) Sulfide@metal-organic Framework Nanocomposite as an Adsorbent for the Dispersive Solid-phase Extraction of Nitro-polycyclic Aromatic Hydrocarbons. J. Chromatogr. A. 2018, 1551, 21–28. DOI: 10.1016/j.chroma.2018.04.005.
  • Urban, M.; Lesueur, C. Comparing d-SPE Sorbents of the QuEChERS Extraction Method and EMR-Lipid for the Determination of Polycyclic Aromatic Hydrocarbons (PAH4) in Food of Animal and Plant Origin. Food Anal. Method. 2017, 10, 2111–2124. DOI: 10.1007/s12161-016-0750-9.
  • Chen, H.; Gao, G.; Liu, P.; Pan, R.; Liu, X.; Lu, C. Determination of 16 Polycyclic Aromatic Hydrocarbons in Tea by Simultaneous Dispersive Solid-Phase Extraction and Liquid–Liquid Extraction Coupled with Gas Chromatography–Tandem Mass Spectrometry. Food Anal. Methods. 2016, 9, 2374–2384. DOI: 10.1007/s12161-016-0427-4.
  • Rozentale, I.; Zacs, D.; Perkons, I.; Bartkevics, V. A Comparison of Gas Chromatography Coupled to Tandem Quadrupole Mass Spectrometry and High-resolution Sector Mass Spectrometry for Sensitive Determination of Polycyclic Aromatic Hydrocarbons (Pahs) in Cereal Products. Food Chem. 2017, 221, 1291–1297. DOI: 10.1016/j.foodchem.2016.11.027.
  • Masuda, M.; Wang, Q.; Tokumura, M.; Miyake, Y.; Amagai, T. Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Chlorinated Derivatives in Grilled Foods. Ecotox. Environ. Safe. 2019, 178, 188–194. DOI: 10.1016/j.ecoenv.2019.04.046.
  • Ju, H.; Kim, B.; Kim, J.; Baek, S. Development of Candidate Reference Method for Accurate Determination of Four Polycyclic Aromatic Hydrocarbons in Olive Oil via Gas Chromatography/ High-resolution Mass Spectrometry Using 13C-labeled Internal Standards. Food Chem. 2020, 309, 125639. DOI: 10.1016/j.foodchem.2019.125639.
  • Wickrama-Arachchige, A. U. K.; Hirabayashi, T.; Imai, Y.; Guruge, K. S.; Dharmaratne, T. S.; Ohura, T. Accumulation of Halogenated Polycyclic Aromatic Hydrocarbons by Different Tuna Species, Determined by High-resolution Gas Chromatography Orbitrap Mass Spectrometry. Environ. Pollu. 2020, 256, 113487. DOI: 10.1016/j.envpol.2019.113487.
  • Zacs, D.; Rozentale, I.; Reinholds, I.; Bartkevics, V. Multi-Walled Carbon Nanotubes as Effective Sorbents for Rapid Analysis of Polycyclic Aromatic Hydrocarbons in Edible Oils Using Dispersive Solid-Phase Extraction (D-spe) and Gas Chromatography—Tandem Mass Spectrometry (GC-MS/MS). Food Anal. Methods. 2018, 11, 2508–2517. DOI: 10.1007/s12161-018-1240-z.
  • Chung, S. W. C.; Lau, J. S. Y. Single Laboratory Validation of an Environmentally Friendly Single Extraction and Cleanup Method for Quantitative Determination of Four Priority Polycyclic Aromatic Hydrocarbons in Edible Oils and Fats. Anal. Methods. 2015, 7, 7631–7638. DOI: 10.1039/C5AY01533B.
  • Koltsakidou, A.; Zacharis, C. K.; Fytianos, K. A Validated Liquid Chromatographic Method for the Determination of Polycyclic Aromatic Hydrocarbons in Honey after Homogeneous Liquid–liquid Extraction Using Hydrophilic Acetonitrile and Sodium Chloride as Mass Separating Agent. J. Chromatogr. A. 2015, 1377, 46–54. DOI: 10.1016/j.chroma.2014.12.039.
  • Da Silva, S. A.; Sampaio, G. R.; Da Silva Torres, E. A. F. Optimization and Validation of a Method Using UHPLC-fluorescence for the Analysis of Polycyclic Aromatic Hydrocarbons in Cold-pressed Vegetable Oils. Food Chem. 2017, 221, 809–814. DOI: 10.1016/j.foodchem.2016.11.098.
  • Taghvaee, Z.; Piravivanak, Z.; Rezaei, K.; Faraji, M. Determination of Polycyclic Aromatic Hydrocarbons (Pahs) in Olive and Refined Pomace Olive Oils with Modified Low Temperature and Ultrasound-Assisted Liquid–Liquid Extraction Method Followed by the HPLC/FLD. Food Anal. Methods. 2016, 9, 1220–1227. DOI: 10.1007/s12161-015-0297-1.
  • Zachara, A.; Gałkowska, D.; Juszczak, L. Method Validation and Determination of Polycyclic Aromatic Hydrocarbons in Vegetable Oils by HPLC-FLD. Food Anal. Methods. 2017, 10, 1078–1086. DOI: 10.1007/s12161-016-0673-5.
  • Zachara, A.; Gałkowska, D.; Juszczak, L. Contamination of Tea and Tea Infusion with Polycyclic Aromatic Hydrocarbons. Int. J. Env. Res. Pub. 2018, 15, 45. DOI: 10.3390/ijerph15010045.
  • Gul, O.; Dervisoglu, M.; Mortas, M.; Aydemir, O.; Ilhan, E.; Aksehir, K. Evaluation of Polycyclic Aromatic Hydrocarbons in Circassian Cheese by High-performance Liquid Chromatography with Fluorescence Detection. J. Food Compos. Anal. 2015, 37, 82–86. DOI: 10.1016/j.jfca.2014.07.004.
  • Gazioglu, I.; Zengin, O. S.; Tartaglia, A.; Locatelli, M.; Furton, K. G.; Kabir, A. Determination of Polycyclic Aromatic Hydrocarbons in Nutritional Supplements by Fabric Phase Sorptive Extraction (FPSE) with High-Performance Liquid Chromatography (HPLC) with Fluorescence Detection. Anal. Lett. 2020, 1–14. DOI: 10.1080/00032719.2020.1821209.
  • Environmental Protection Agency (EPA). Method 610-Polynuclear Aromatic 1000 Hydrocarbons, May 2010. http://www.epa.gov/waterscience/methodsmethod/organics/610.pdf1001S.
  • ISO 15302:1998. International Standardization Organization (ISO), Animal and vegetable fats and oils – determination of benzo[a]-pyrene content Reverse Phase High Performance Liquid Chromatography Method, 1998.
  • ISO Committee Draft ISO/FDIS 15753. Animal and Vegetable Fats and Oils—Determination of Polycyclic Aromatic Hydrocarbons, 2004.
  • ISO/AWI 22959. Animal and Vegetable Fats and Oils—Determination of Polycyclic Aromatic Hydrocarbons by on-line Donor Acceptor Comples Chromatography and HPLC with Fluorescence Detection, 2004.
  • Robb, D. B.; Covey, T. R.; Bruins, A. P. Atmospheric Pressure Photoionization: An Ionization Method for Liquid Chromatography−Mass Spectrometry. Anal. Chem. 2000, 72, 3653–3659. DOI: 10.1021/ac0001636.
  • Shi, L.; Liu, Y.; Liu, H.; Zhang, M. One-step Solvent Extraction Followed by Liquid Chromatography–atmospheric Pressure Photoionization Tandem Mass Spectrometry for the Determination of Polycyclic Aromatic Hydrocarbons in Edible Oils. Anal. Bioanal. Chem. 2015, 407, 3605–3616. DOI: 10.1007/s00216-015-8571-z.
  • Lübeck, J. S.; Malmquist, L. M. V.; Christensen, J. H. Supercritical Fluid Chromatography for the Analysis of Oxygenated Polycyclic Aromatic Compounds in Unconventional Oils. J. Chromatogr. A. 2019, 1589, 162–172. DOI: 10.1016/j.chroma.2018.12.056.
  • Yoshioka, T.; Nagatomi, Y.; Harayama, K.; Bamba, T. Development of an Analytical Method for Polycyclic Aromatic Hydrocarbons in Coffee Beverages and Dark Beer Using Novel High-sensitivity Technique of Supercritical Fluid Chromatography/mass Spectrometry. J. Biosci. Bioeng. 2018, 126, 126–130. DOI: 10.1016/j.jbiosc.2018.01.014.
  • Pena, E. A.; Ridley, L. M.; Murphy, W. R.; Sowa, J. R.; Bentivegna, C. S. Detection of Polycyclic Aromatic Hydrocarbons (Pahs) in Raw Menhaden Fish Oil Using Fluorescence Spectroscopy: Method Development. Environ. Toxicol. Chem. 2015, 34, 1946–1958. DOI: 10.1002/etc.3015.
  • Liu, Y.; Wu, P.; Liu, Q.; Luo, H.; Cao, S.; Lin, G.; Fu, D.; Zhong, X.; Li, Y. A Simple Fluorescence Spectroscopic Approach for Simultaneous and Rapid Detection of Four Polycyclic Aromatic Hydrocarbons (PAH4) in Vegetable Oils. Food Anal. Methods. 2016, 9, 3209–3217. DOI: 10.1007/s12161-016-0515-5.
  • Chen, J.; Huang, Y.; Zhao, Y. Detection of Polycyclic Aromatic Hydrocarbons from Cooking Oil Using Ultra-thin Layer Chromatography and Surface Enhanced Raman Spectroscopy. J. Mater. Chem. B. 2015, 3, 1898–1906. DOI: 10.1039/c4tb01632g.
  • Lee, J.; Kim, S.; Moon, J.; Kim, S.; Kang, D.; Yoon, H. Effects of Grilling Procedures on Levels of Polycyclic Aromatic Hydrocarbons in Grilled Meats. Food Chem. 2016, 199, 632–638. DOI: 10.1016/j.foodchem.2015.12.017.
  • Hwang, M.; Kang, S.; Kim, H.; Lee, K. Reduction of the Polycyclic Aromatic Hydrocarbon Levels in Dried Red Peppers (Capsicum Annuum L.) Using Heat Pump-assisted Drying. Food Chem. 2019, 297, 124977. DOI: 10.1016/j.foodchem.2019.124977.
  • Okenyi, A.; Ubani, C.; Oje, O.; Onwurah, I. Levels of Polycyclic Aromatic Hydrocarbon (PAH) in Fresh Water Fish Dried with Different Drying Regimes. J. Food Meas. Charact. 2016, 10, 405–410. DOI: 10.1007/s11694-016-9319-y.
  • Babic, J.; Kartalovic, B.; Skaljac, S.; Vidakovic, S.; Ljubojevic, D.; Petrovic, J.; Cirkovic, M.; Teodorovic, V. Reduction of Polycyclic Aromatic Hydrocarbons in Common Carp Meat Smoked in Traditional Conditions. Food Addit. Contam. Part B Surveill. 2018, 11, 208–213. DOI: 10.1080/19393210.2018.1484821.
  • Ahmad, K.; Selamat, J.; Sanny, M. Simultaneous Formation of Polycyclic Aromatic Hydrocarbons (Pahs) and Heterocyclic Aromatic Amines (Hcas) in Gas-grilled Beef Satay at Different Temperatures. Food Addit. Contam. Part A Chem. Anal Control Expo. Risk Assess. 2018, 35, 848–869. DOI: 10.1080/19440049.2018.1425553.
  • Liu, R.; Zhang, Y.; Wang, J.; Pan, Q.; Luo, Y.; Sun, Y.; Jin, Q.; Wang, X. Assessment of Contamination Source and Quality Control Approach for Polycyclic Aromatic Hydrocarbons in Wood-pressed Rapeseed Oil. Food Addit. Contam. Part A Chem. Anal Control Expo. Risk Assess. 2018, 35, 1155–1163. DOI: 10.1080/19440049.2018.1451000.
  • Gong, G.; Zhao, X.; Wu, S. Effect of Natural Antioxidants on Inhibition of Parent and Oxygenated Polycyclic Aromatic Hydrocarbons in Chinese Fried Bread Youtiao. Food Control. 2018, 87, 117–125. DOI: 10.1016/j.foodcont.2017.12.012.
  • Wang, C.; Xie, Y.; Qi, J.; Yu, Y.; Bai, Y.; Dai, C.; Li, C.; Xu, X.; Zhou, G. Effect of Tea Marinades on the Formation of Polycyclic Aromatic Hydrocarbons in Charcoal-grilled Chicken Wings. Food Control. 2018, 93, 325–333. DOI: 10.1016/j.foodcont.2017.12.010.
  • Cordeiro, T.; Viegas, O.; Silva, M.; Martins, Z.; Fernandes, I.; Ferreira, I.; Pinho, O.; Mateus, N.; Calhau, C. Inhibitory Effect of Vinegars on the Formation of Polycyclic Aromatic Hydrocarbons in Charcoal-grilled Pork. Meat Sci. 2020, 167, 108083. DOI: 10.1016/j.meatsci.2020.108083.
  • Lu, F.; Kuhnle, G.; Cheng, Q. The Effect of Common Spices and Meat Type on the Formation of Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Deep-fried Meatballs. Food Control. 2018, 92, 399–411. DOI: 10.1016/j.foodcont.2018.05.018.
  • Xiong, G.; Zhang, Y.; Duan, Y.; Cai, C.; Wang, X.; Li, J.; Tao, S.; Liu, W. Uptake of PAHs by Cabbage Root and Leaf in Vegetable Plots near a Large Coking Manufacturer and Associations with PAHs in Cabbage Core. Environ. Sci. Pollut. Res. Int. 2017, 24, 18953–18965. DOI: 10.1007/s11356-017-9548-6.
  • Grova, N.; Feidt, C.; Crépineau, C.; Laurent, C.; Lafargue, P. E.; Hachimi, A.; Rychen, G. Detection of Polycyclic Aromatic Hydrocarbon Levels in Milk Collected near Potential Contamination Sources. J. Agr. Food Chem. 2002, 50, 4640–4642. DOI: 10.1021/jf0201071.
  • Abdel-Shafy, H.; Mansour, M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Int. Egypt. J. Pet. 2016, 25, 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
  • SCF. Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food. 2002.http://www.sciencedaily.com/releases/2012/01/120113102058.htm
  • Abou-Arab, A.; Abou-Donia, M.; El-Dars, F.; Ali, O.; Goda, H. Levels of Polycyclic Aromatic Hydrocarbons (PAHS) in Some Egyptian Vegetables and Fruits and Their Influences by Some Treatments. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 277–293.
  • Zohair, A.;. Levels of Polyaromatic Hydrocarbons in Egyptian Vegetables and Their Behavior during Soaking in Oxidizing Agent Solutions. World J. Agr. Sci. 2006, 2, 90–94.
  • Keshavarzifard, M.; Zakaria, M.; Keshavarzifard, S. Evaluation of Polycyclic Aromatic Hydrocarbons Contamination in the Sediments of the Johor Strait, Peninsular Malaysia. Polycycl. Aromat. Comp. 2016, 39, 44–59. DOI: 10.1080/10406638.2016.1257997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.