337
Views
0
CrossRef citations to date
0
Altmetric
Review

Rapid Prototyping for the Formulation of Monolith and Membrane for CO2 Removal

ORCID Icon, , , &
Pages 503-520 | Received 12 Apr 2020, Accepted 23 Oct 2021, Published online: 21 Dec 2021

References

  • Agency. U.S.E.P. Sources of Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#:~:text=Carbon%20dioxide%20(CO2)%20makes,natural%20gas%2C%20to%20produce%20electricity
  • Choi, Y.-S.; Nesic, S.; Young, D. Effect of Impurities on the Corrosion Behavior of CO2 Transmission Pipeline Steel in Supercritical CO2− Water Environments. Environ. Sci. Technol. 2010, 44(23), 9233–9238. DOI: 10.1021/es102578c.
  • Barker, R.; Hua, Y.; Neville, A. Internal Corrosion of Carbon Steel Pipelines for Dense-phase CO2 Transport in Carbon Capture and Storage (Ccs)–a Review. Int. Mater. Rev. 2017, 62(1), 1–31. DOI: 10.1080/09506608.2016.1176306.
  • Bari, S. Effect of Carbon Dioxide on the Performance of Biogas/diesel Duel-fuel Engine. Renewable Energy. 1996, 9(1–4), 1007–1010. DOI: 10.1016/0960-1481(96)88450-3.
  • Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Pre-combustion, Post-combustion and Oxy-combustion in Thermal Power Plant for CO2 Capture. Appl. Therm. Eng. 2010, 30(1), 53–62. DOI: 10.1016/j.applthermaleng.2009.05.005.
  • Mazzotti, M.; Baciocchi, R.; Desmond, M. J.; Socolow, R. H. Direct Air Capture of CO 2 with Chemicals: Optimization of a Two-loop Hydroxide Carbonate System Using a Countercurrent Air-liquid Contactor. Clim. Change. 2013, 118(1), 119–135. DOI: 10.1007/s10584-012-0679-y.
  • Darunte, L. A.; Oetomo, A. D.; Walton, K. S.; Sholl, D. S.; Jones, C. W. Direct Air Capture of CO2 Using Amine Functionalized MIL-101 (Cr). ACS Sustainable Chem. Eng. 2016, 4(10), 5761–5768. DOI: 10.1021/acssuschemeng.6b01692.
  • Kumar, A.; Madden, D. G.; Lusi, M.; Chen, K. J.; Daniels, E. A.; Curtin, T.; Perry, J. J., IV; Zaworotko, M. J. Direct Air Capture of CO2 by Physisorbent Materials. Angew. Chem. Int. Ed. 2015, 54(48), 14372–14377. DOI: 10.1002/anie.201506952.
  • Kleij, A. W.; North, M.; Urakawa, A. CO2 Catalysis. ChemSusChem. 2017, 10(6), 1036–1038. DOI: 10.1002/cssc.201700218.
  • Yu, W.; Lashgari, H. R.; Wu, K.; Sepehrnoori, K. CO2 Injection for Enhanced Oil Recovery in Bakken Tight Oil Reservoirs. Fuel. 2015, 159, 354–363. DOI: 10.1016/j.fuel.2015.06.092.
  • Custelcean, R.; Garrabrant, K. A.; Williams, N.; Holguin, E.; Brethomé, F. M.; Tsouris, C. Energy-Efficient CO2 Capture from Flue Gas by Absorption with Amino Acids and Crystallization with a Bis-Iminoguanidine. The title of journal is : Industrial & Engineering Chemistry Research. 2019. DOI: 10.1021/acs.iecr.9b00954.
  • Liu, J.; Baeyens, J.; Deng, Y.; Tan, T.; Zhang, H. The Chemical CO2 Capture by Carbonation-decarbonation Cycles. J. Environ. Manage. 2020, 260, 110054. DOI: 10.1016/j.jenvman.2019.110054.
  • Machida, H.; Esaki, T.; Oba, K.; Tomikawa, T.; Yamaguchi, T.; Horizoe, H. Phase Separation Solvent for CO2 Capture. Energy Procedia. 2017, 114, 823–826. DOI: 10.1016/j.egypro.2017.03.1224.
  • Knapik, E.; Kosowski, P.; Stopa, J. Cryogenic Liquefaction and Separation of CO2 Using Nitrogen Removal Unit Cold Energy. Chemical Engineering Research and Design. 2018, 131, 66–79. DOI: 10.1016/j.cherd.2017.12.027.
  • Chen, S.; Tao, Z.; Fu, Y.; Zhu, M.; Li, W.; Li, X. CO2 Separation from Offshore Natural Gas in Quiescent and Flowing States Using 13X Zeolite. Appl. Energy. 2017, 205, 1435–1446. DOI: 10.1016/j.apenergy.2017.09.084.
  • Deng, Y.; Seville, J. P. K.; Bell, S. D.; Ingram, A.; Zhang, H.; Sweygers, N.; Dewil, R.; Baeyens, J.; Appels, L. Reviewing Fundamental CO2 Adsorption Characteristics of Zeolite and Activated Carbon by In-situ Measurements with Radioactively Labelled CO2. Sep. Purif. Rev. 2021, 1–12. DOI: 10.1080/15422119.2021.1934699.
  • Al Mesfer, M. K.; Danish, M. Breakthrough Adsorption Study of Activated Carbons for CO2 Separation from Flue Gas. J. Environ. Chem. Eng. 2018, 6(4), 4514–4524. DOI: 10.1016/j.jece.2018.06.042.
  • Li, L.; Wang, J.; Zhang, Z.; Yang, Q.; Yang, Y.; Su, B.; Bao, Z.; Ren, Q. Inverse Adsorption Separation of CO2/C2H2 Mixture in Cyclodextrin-based Metal–organic Frameworks. ACS Appl. Mater. Interfaces. 2018, 11(2), 2543–2550. DOI: 10.1021/acsami.8b19590.
  • Rezakazemi, M.; Darabi, M.; Soroush, E.; Mesbah, M. CO2 Absorption Enhancement by Water-based Nanofluids of CNT and SiO2 Using Hollow-fiber Membrane Contactor. Sep. Purif. Technol. 2019, 210, 920–926. DOI: 10.1016/j.seppur.2018.09.005.
  • Chen, T.; Wang, Z.; Das, S.; Liu, L.; Li, Y.; Kawi, S.; Lin, Y. A Novel Study of Sulfur-resistance for CO2 Separation through Asymmetric Ceramic-carbonate Dual-phase Membrane at High Temperature. J. Membr. Sci. 2019, 581, 72–81. DOI: 10.1016/j.memsci.2019.03.021.
  • Cerón, M. R.; Lai, L. S.; Amiri, A.; Monte, M.; Katta, S.; Kelly, J. C.; Worsley, M. A.; Merrill, M. D.; Kim, S.; Campbell, P. G. Surpassing the Conventional Limitations of CO2 Separation Membranes with Hydroxide/ceramic Dual-phase Membranes. J. Membr. Sci. 2018, 567, 191–198. DOI: 10.1016/j.memsci.2018.09.028.
  • Jia, M.; Feng, Y.; Qiu, J.; Zhang, X.-F.; Yao, J. Amine-functionalized MOFs@ GO as Filler in Mixed Matrix Membrane for Selective CO2 Separation. Sep. Purif. Technol. 2019, 213, 63–69. DOI: 10.1016/j.seppur.2018.12.029.
  • Zhang, X.; Zhang, T.; Wang, Y.; Li, J.; Liu, C.; Li, N.; Liao, J. Mixed-matrix Membranes Based on Zn/Ni-ZIF-8-PEBA for High Performance CO2 Separation. J. Membr. Sci. 2018, 560, 38–46. DOI: 10.1016/j.memsci.2018.05.004.
  • Chao, C.; Deng, Y.; Dewil, R.; Baeyens, J.; Fan, X. Post-combustion Carbon Capture. Renewable Sustainable Energy Rev. 2021, 138, 110490. DOI: 10.1016/j.rser.2020.110490.
  • Song, C.; Sun, Y.; Fan, Z.; Liu, Q.; Ji, N.; Kitamura, Y. Parametric Study of a Novel Cryogenic-membrane Hybrid System for Efficient CO2 Separation. Int. J. Greenhouse Gas Con. 2018, 72, 74–81. DOI: 10.1016/j.ijggc.2018.03.009.
  • Dai, Z.; Noble, R. D.; Gin, D. L.; Zhang, X.; Deng, L. Combination of Ionic Liquids with Membrane Technology: A New Approach for CO2 Separation. J. Membr. Sci. 2016, 497, 1–20. DOI: 10.1016/j.memsci.2015.08.060.
  • Rezakazemi, M.; Heydari, I.; Zhang, Z. Hybrid Systems: Combining Membrane and Absorption Technologies Leads to More Efficient Acid Gases (CO2 and H2S) Removal from Natural Gas. J. CO2 Util. 2017, 18, 362–369. DOI: 10.1016/j.jcou.2017.02.006.
  • Debnath, B.; Mukherjee, A.; Mullick, A.; Ghoshdastidar, S.; Ganguly, S.; Kargupta, K. Desublimation Based Separation of CO2 inside a Cryogenic Packed Bed: Performance Mapping with the Spatiotemporal Evolution of CO2 Frost. Chemical Engineering Research and Design. 2019, 146, 166–181. DOI: 10.1016/j.cherd.2019.03.024.
  • Tay, W. H.; Lau, K. K.; Lai, L. S.; Shariff, A. M.; Wang, T. Current Development and Challenges in the Intensified Absorption Technology for Natural Gas Purification at Offshore Condition. J. Nat. Gas Sci. Eng. 2019, 71, 102977. DOI: 10.1016/j.jngse.2019.102977.
  • Scott, K. Gas Separations. In Handbook of Industrial Membranes; Elsevier Science: Amsterdam, 1995; pp 271–305.
  • Rezaei, F.; Webley, P. Optimum Structured Adsorbents for Gas Separation Processes. Chem. Eng. Sci. 2009, 64(24), 5182–5191. DOI: 10.1016/j.ces.2009.08.029.
  • Rezaei, F.; Webley, P. Structured Adsorbents in Gas Separation Processes. Sep. Purif. Technol. 2010, 70(3), 243–256. DOI: 10.1016/j.seppur.2009.10.004.
  • Thakkar, H.; Lawson, S.; Rownaghi, A. A.; Rezaei, F. Development of 3D-printed Polymer-zeolite Composite Monoliths for Gas Separation. Chem. Eng. J. 2018, 348, 109–116. DOI: 10.1016/j.cej.2018.04.178.
  • Darunte, L. A.; Terada, Y.; Murdock, C. R.; Walton, K. S.; Sholl, D. S.; Jones, C. W. Monolith-supported Amine-functionalized Mg2 (Dobpdc) Adsorbents for CO2 Capture. ACS Appl. Mater. Interfaces. 2017, 9(20), 17042–17050. DOI: 10.1021/acsami.7b02035.
  • Zhu, W.; Hrabanek, P.; Gora, L.; Kapteijn, F.; Moulijn, J. A. Role of Adsorption in the Permeation of CH4 and CO2 through a Silicalite-1 Membrane. Ind. Eng. Chem. Res. 2006, 45(2), 767–776. DOI: 10.1021/ie0507427.
  • Venna, S. R. Molecular Engineering Design of the SAPO-34 and ZIF-8 Membranes for CO2 Separation from CH4 and N2; University of Louisville: Louisville, Kentucky, 2010.
  • Baker, R. W. Membrane Technology and Applications; Newark, California: John Wiley & Sons, 2012. Editor Ed.^Eds.
  • Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I. Progress in Carbon Dioxide Separation and Capture: A Review. J Environ Sci. 2008, 20(1), 14–27. DOI: 10.1016/S1001-0742(08)60002-9.
  • Khakpay, A.; Rahmani, F.; Nouranian, S.; Scovazzo, P. Molecular Insights on the CH4/CO2 Separation in Nanoporous Graphene and Graphene Oxide Separation Platforms: Adsorbents versus Membranes. J. Phys. Chem. C. 2017, 121(22), 12308–12320. DOI: 10.1021/acs.jpcc.7b03728.
  • Wang, L.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Fundamental Transport Mechanisms, Fabrication and Potential Applications of Nanoporous Atomically Thin Membranes. Nat. Nanotechnol. 2017, 12(6), 509–522. DOI: 10.1038/nnano.2017.72.
  • Wijmans, J. G.; Baker, R. W. The Solution-diffusion Model: A Review. J. Membr. Sci. 1995, 107(1–2), 1–21. DOI: 10.1016/0376-7388(95)00102-I.
  • Xie, K.; Fu, Q.; Qiao, G. G.; Webley, P. A. Recent Progress on Fabrication Methods of Polymeric Thin Film Gas Separation Membranes for CO2 Capture. J. Membr. Sci. 2019, 572, 38–60. DOI: 10.1016/j.memsci.2018.10.049.
  • Powell, C. E.; Qiao, G. G. Polymeric CO2/N2 Gas Separation Membranes for the Capture of Carbon Dioxide from Power Plant Flue Gases. J. Membr. Sci. 2006, 279(1–49), 1–49. DOI: 10.1016/j.memsci.2005.12.062.
  • Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances. Bioactive Mater. 2018, 3(2), 144–156. DOI: 10.1016/j.bioactmat.2017.11.008.
  • Bertana, V.; Catania, F.; Cocuzza, M.; Ferrero, S.; Scaltrito, L.; Pirri, C. F. Chapter 11 - Medical and Biomedical Applications of 3D and 4D Printed Polymer Nanocomposites. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K. K., Deshmukh, K., Almaadeed, M. A., Eds.; Elsevier, 2020; pp 325–366.
  • Bachtiar, E. O.; Erol, O.; Millrod, M.; Tao, R.; Gracias, D. H.; Romer, L. H.; Kang, S. H. 3D Printing and Characterization of a Soft and Biostable Elastomer with High Flexibility and Strength for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2020, 104, 103649. DOI: 10.1016/j.jmbbm.2020.103649.
  • Li, J.; Wu, C.; Chu, P. K.; Gelinsky, M. 3D Printing of Hydrogels: Rational Design Strategies and Emerging Biomedical Applications. Mater. Sci. Eng. R Rep. 2020, 140, 100543. DOI: 10.1016/j.mser.2020.100543.
  • Liu, Z.; Zhang, M.; Bhandari, B.; Wang, Y. 3D Printing: Printing Precision and Application in Food Sector. Trends Food Sci. Technol. 2017, 69, 83–94. DOI: 10.1016/j.tifs.2017.08.018.
  • Derossi, A.; Caporizzi, R.; Azzollini, D.; Severini, C. Application of 3D Printing for Customized Food. A Case on the Development of A Fruit-based Snack for Children. J. Food Eng. 2018, 220, 65–75. DOI: 10.1016/j.jfoodeng.2017.05.015.
  • Kim, H. S.; Hong, S.-G.; Yang, J.; Ju, Y.; Ok, J.; Kwon, S.-J.; Yeon, K.-M.; Dordick, J. S.; Kim, J. 3D-Printed Interfacial Devices for Biocatalytic CO2 Conversion at Gas-liquid Interface. J. CO2 Util. 2020, 38, 291–298. DOI: 10.1016/j.jcou.2020.02.005.
  • Bolton, S.; Kasturi, A.; Palko, S.; Lai, C.; Love, L.; Parks, J.; Xin, S.; Tsouris, C. 3D Printed Structures for Optimized Carbon Capture Technology in Packed Bed Columns. Sep. Sci. Technol. 2019, 54(13), 2047–2058. DOI: 10.1080/01496395.2019.1622566.
  • Raoufi, M. A.; Razavi Bazaz, S.; Niazmand, H.; Rouhi, O.; Asadnia, M.; Razmjou, A.; Ebrahimi Warkiani, M. Fabrication of Unconventional Inertial Microfluidic Channels Using Wax 3D Printing. Soft Matter. 2020, 16(10), 2448–2459. DOI: 10.1039/C9SM02067E.
  • Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C. 3D Printed Microfluidic Devices: Enablers and Barriers. Lab Chip. 2016, 16(11), 1993–2013. DOI: 10.1039/C6LC00284F.
  • Low, Z.-X.; Chua, Y. T.; Ray, B. M.; Mattia, D.; Metcalfe, I. S.; Patterson, D. A. Perspective on 3D Printing of Separation Membranes and Comparison to Related Unconventional Fabrication Techniques. J. Membr. Sci. 2017, 523, 596–613. DOI: 10.1016/j.memsci.2016.10.006.
  • Lee, J.-Y.; Tan, W. S.; An, J.; Chua, C. K.; Tang, C. Y.; Fane, A. G.; Chong, T. H. The Potential to Enhance Membrane Module Design with 3D Printing Technology. J. Membr. Sci. 2016, 499, 480–490. DOI: 10.1016/j.memsci.2015.11.008.
  • Liu, J.; Iranshahi, A.; Lou, Y.; Lipscomb, G. Static Mixing Spacers for Spiral Wound Modules. J. Membr. Sci. 2013, 442, 140–148. DOI: 10.1016/j.memsci.2013.03.063.
  • Fritzmann, C.; Hausmann, M.; Wiese, M.; Wessling, M.; Melin, T. Microstructured Spacers for Submerged Membrane Filtration Systems. J. Membr. Sci. 2013, 446, 189–200. DOI: 10.1016/j.memsci.2013.06.033.
  • Shrivastava, A.; Kumar, S.; Cussler, E. L. Predicting the Effect of Membrane Spacers on Mass Transfer. J. Membr. Sci. 2008, 323(2), 247–256. DOI: 10.1016/j.memsci.2008.05.060.
  • Li, F.; Meindersma, W.; de Haan, A. B.; Reith, T. Novel Spacers for Mass Transfer Enhancement in Membrane Separations. J. Membr. Sci. 2005, 253(1), 1–12. DOI: 10.1016/j.memsci.2004.12.019.
  • Craveiroa, F.; Duartec, J. P.; Bartoloa, H.; Bartolod, P. J. Additive Manufacturing as an Enabling Technology for Digital Construction: A Perspective on Construction 4.0. Sustain. Dev. 2019, 4(6). DOI: 10.1016/j.autcon.2019.03.011.
  • Femmer, T.; Steinseifer, U.; Wessling, M. Rapid Prototyping of Membranes and Membrane Devices; Germany: Universitätsbibliothek der RWTH Aachen, 2016.
  • Tijing, L. D.; Dizon, J. R. C.; Ibrahim, I.; Nisay, A. R. N.; Shon, H. K.; Advincula, R. C. 3D Printing for Membrane Separation, Desalination and Water Treatment. Appl. Mater. Today. 2020, 18, 100486. DOI: 10.1016/j.apmt.2019.100486.
  • Hasan, F. A.; Xiao, P.; Singh, R. K.; Webley, P. A. Zeolite Monoliths with Hierarchical Designed Pore Network Structure: Synthesis and Performance. Chem. Eng. J. 2013, 223, 48–58. DOI: 10.1016/j.cej.2013.02.100.
  • Couck, S.; Lefevere, J.; Mullens, S.; Protasova, L.; Meynen, V.; Desmet, G.; Baron, G. V.; Denayer, J. F. M. CO2, CH4 and N2 Separation with a 3DFD-printed ZSM-5 Monolith. Chem. Eng. J. 2017, 308, 719–726. DOI: 10.1016/j.cej.2016.09.046.
  • Avila, P.; Montes, M.; Miró, E. E. Monolithic Reactors for Environmental Applications: A Review on Preparation Technologies. Chem. Eng. J. 2005, 109(1), 11–36. DOI: 10.1016/j.cej.2005.02.025.
  • Zamaniyan, A.; Mortazavi, Y.; Khodadadi, A. A.; Manafi, H. Tube Fitted Bulk Monolithic Catalyst as Novel Structured Reactor for Gas–solid Reactions. Appl. Catal., A. 2010, 385(1), 214–223. DOI: 10.1016/j.apcata.2010.07.014.
  • Lefevere, J.; Protasova, L.; Mullens, S.; Meynen, V. 3D-printing of Hierarchical Porous ZSM-5: The Importance of the Binder System. Mater. Des. 2017, 134, 331–341. DOI: 10.1016/j.matdes.2017.08.044.
  • Thakkar, H.; Eastman, S.; Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. 3D-Printed Metal–Organic Framework Monoliths for Gas Adsorption Processes. ACS Appl. Mater. Interfaces. 2017, 9(41), 35908–35916. DOI: 10.1021/acsami.7b11626.
  • Couck, S.; Cousin-Saint-Remi, J.; Van der Perre, S.; Baron, G. V.; Minas, C.; Ruch, P.; Denayer, J. F. M. 3D-printed SAPO-34 Monoliths for Gas Separation. Microporous Mesoporous Mater. 2018, 255, 185–191. DOI: 10.1016/j.micromeso.2017.07.014.
  • Middelkoop, V.; Coenen, K.; Schalck, J.; Van Sint Annaland, M.; Gallucci, F. 3D Printed versus Spherical Adsorbents for Gas Sweetening. Chem. Eng. J. 2019, 357, 309–319. DOI: 10.1016/j.cej.2018.09.130.
  • Lawson, S.; Al-Naddaf, Q.; Krishnamurthy, A.; Amour, M. S.; Griffin, C.; Rownaghi, A. A.; Knox, J. C.; Rezaei, F. UTSA-16 Growth within 3D-Printed Co-Kaolin Monoliths with High Selectivity for CO2/CH4, CO2/N2, and CO2/H2 Separation. ACS Appl. Mater. Interfaces. 2018, 10(22), 19076–19086. DOI: 10.1021/acsami.8b05192.
  • Dhainaut, J.; Bonneau, M.; Ueoka, R.; Kanamori, K.; Furukawa, S. Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation. ACS Appl. Mater. Interfaces. 2020, 12(9), 10983–10992. DOI: 10.1021/acsami.9b22257.
  • Mu, X.; Bertron, T.; Dunn, C.; Qiao, H.; Wu, J.; Zhao, Z.; Saldana, C.; Qi, H. J. Porous Polymeric Materials by 3D Printing of Photocurable Resin. Mater. Horiz. 2017, 4(3), 442–449. DOI: 10.1039/C7MH00084G.
  • Liska, R.; Schwager, F.; Maier, C.; Cano-Vives, R.; Stampfl, J. Water-soluble Photopolymers for Rapid Prototyping of Cellular Materials. J. Appl. Polym. Sci. 2005, 97(6), 2286–2298. DOI: 10.1002/app.22025.
  • Femmer, T.; Kuehne, A. J. C.; Wessling, M. Print Your Own Membrane: Direct Rapid Prototyping of Polydimethylsiloxane. Lab Chip. 2014, 14(15), 2610–2613. DOI: 10.1039/C4LC00320A.
  • Femmer, T.; Kuehne, A. J. C.; Torres-Rendon, J.; Walther, A.; Wessling, M. Print Your Membrane: Rapid Prototyping of Complex 3D-PDMS Membranes via a Sacrificial Resist. J. Membr. Sci. 2015, 478, 12–18. DOI: 10.1016/j.memsci.2014.12.040.
  • Stern, S. A.; Shah, V. M.; Hardy, B. J. Structure-permeability Relationships in Silicone Polymers. J. Polym. Sci. B Polym. Phys. 1987, 25(6), 1263–1298. DOI: 10.1002/polb.1987.090250607.
  • Femmer, T.; Kuehne, A. J. C.; Wessling, M. Estimation of the Structure Dependent Performance of 3-D Rapid Prototyped Membranes. Chem. Eng. J. 2015, 273, 438–445. DOI: 10.1016/j.cej.2015.03.029.
  • Zhang, X.-F.; Feng, Y.; Wang, Z.; Jia, M.; Yao, J. Fabrication of Cellulose nanofibrils/UiO-66-NH2 Composite Membrane for CO2/N2 Separation. J. Membr. Sci. 2018, 568, 10–16. DOI: 10.1016/j.memsci.2018.09.055.
  • Shen, Y.-J.; Fang, L.-F.; Yan, Y.; Yuan, -J.-J.; Gan, Z.-Q.; Wei, X.-Z.; Zhu, B.-K. Metal-organic Composite Membrane with Sub-2 Nm Pores Fabricated via Interfacial Coordination. J. Membr. Sci. 2019, 587, 117146. DOI: 10.1016/j.memsci.2019.05.070.
  • Gao, H.; Yang, Y.; Akampumuza, O.; Hou, J.; Zhang, H.; Qin, X. A Low Filtration Resistance Three-dimensional Composite Membrane Fabricated via Free Surface Electrospinning for Effective PM 2.5 Capture. Environ. Sci.: Nano. 2017, 4(4), 864–875.
  • Sun, J.; Li, Q.; Chen, G.; Duan, J.; Liu, G.; Jin, W. MOF-801 Incorporated PEBA Mixed-matrix Composite Membranes for CO2 Capture. Sep. Purif. Technol. 2019, 217, 229–239. DOI: 10.1016/j.seppur.2019.02.036.
  • Al-Shimmery, A.; Mazinani, S.; Ji, J.; Chew, Y. M. J.; Mattia, D. 3D Printed Composite Membranes with Enhanced Anti-fouling Behaviour. J. Membr. Sci. 2019, 574, 76–85. DOI: 10.1016/j.memsci.2018.12.058.
  • Li, X.; Shan, H.; Zhang, W.; Li, B. 3D Printed Robust Superhydrophilic and Underwater Superoleophobic Composite Membrane for High Efficient Oil/water Separation. Sep. Purif. Technol. 2020, 237, 116324. DOI: 10.1016/j.seppur.2019.116324.
  • Al-Shimmery, A.; Mazinani, S.; Flynn, J.; Chew, J.; Mattia, D. 3D Printed Porous Contactors for Enhanced Oil Droplet Coalescence. J. Membr. Sci. 2019, 590, 117274. DOI: 10.1016/j.memsci.2019.117274.
  • Gandy, P. J. F.; Bardhan, S.; Mackay, A. L.; Klinowski, J. Nodal Surface Approximations to the P,G,D and I-WP Triply Periodic Minimal Surfaces. Chem. Phys. Lett. 2001, 336(3), 187–195. DOI: 10.1016/S0009-2614(00)01418-4.
  • Wang, Y. Periodic Surface Modeling for Computer Aided Nano Design. Comput. Aided Des. 2007, 39(3), 179–189. DOI: 10.1016/j.cad.2006.09.005.
  • Montazerian, H.; Mohamed, M. G. A.; Montazeri, M. M.; Kheiri, S.; Milani, A. S.; Kim, K.; Hoorfar, M. Permeability and Mechanical Properties of Gradient Porous PDMS Scaffolds Fabricated by 3D-printed Sacrificial Templates Designed with Minimal Surfaces. Acta Biomater. 2019, 96, 149–160. DOI: 10.1016/j.actbio.2019.06.040.
  • Maskery, I.; Sturm, L.; Aremu, A. O.; Panesar, A.; Williams, C. B.; Tuck, C. J.; Wildman, R. D.; Ashcroft, I. A.; Hague, R. J. M. Insights into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing. Polymer. 2018, 152, 62–71. DOI: 10.1016/j.polymer.2017.11.049.
  • Sreedhar, N.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Hernandez, H. H.; Abu Al-Rub, R. K.; Arafat, H. A. Mass Transfer Analysis of Ultrafiltration Using Spacers Based on Triply Periodic Minimal Surfaces: Effects of Spacer Design, Directionality and Voidage. J. Membr. Sci. 2018, 561, 89–98. DOI: 10.1016/j.memsci.2018.05.028.
  • Castillo, E. H. C.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R. K.; Nghiem, L. D.; Vigneswaran, S.; Arafat, H. A.; Naidu, G. 3D Printed Spacers for Organic Fouling Mitigation in Membrane Distillation. J. Membr. Sci. 2019, 581, 331–343. DOI: 10.1016/j.memsci.2019.03.040.
  • Thomas, N.; Sreedhar, N.; Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R. K.; Arafat, H. 3D Printed Spacers Based on TPMS Architectures for Scaling Control in Membrane Distillation. J. Membr. Sci. 2019, 581, 38–49. DOI: 10.1016/j.memsci.2019.03.039.
  • Dias, M. R.; Fernandes, P. R.; Guedes, J. M.; Hollister, S. J. Permeability Analysis of Scaffolds for Bone Tissue Engineering. J. Biomech. 2012, 45(6), 938–944. DOI: 10.1016/j.jbiomech.2012.01.019.
  • Blanquer, S. B. G.; Werner, M.; Hannula, M.; Sharifi, S.; Lajoinie, G. P. R.; Eglin, D.; Hyttinen, J.; Poot, A. A.; Grijpma, D. W. Surface Curvature in Triply-periodic Minimal Surface Architectures as a Distinct Design Parameter in Preparing Advanced Tissue Engineering Scaffolds. Biofabrication. 2017, 9(2), 025001. DOI: 10.1088/1758-5090/aa6553.
  • Montazerian, H.; Zhianmanesh, M.; Davoodi, E.; Milani, A. S.; Hoorfar, M. Longitudinal and Radial Permeability Analysis of Additively Manufactured Porous Scaffolds: Effect of Pore Shape and Porosity. Mater. Des. 2017, 122, 146–156. DOI: 10.1016/j.matdes.2017.03.006.
  • Coimbra, J. C.; Martins, M. A.; Oliveira, P. S.; Minim, L. A. The Potential Use of a Gyroid Structure to Represent Monolithic Matrices for Bioseparation Purposes: Fluid Dynamics and Mass Transfer Analysis via CFD. Sep. Purif. Technol. 2021, 254, 117594. DOI: 10.1016/j.seppur.2020.117594.
  • Soliman, A.; AlAmoodi, N.; Karanikolos, G. N.; Doumanidis, C. C.; Polychronopoulou, K. A Review on New 3-D Printed Materials’ Geometries for Catalysis and Adsorption: Paradigms from Reforming Reactions and CO(2) Capture. Nanomater. (Basel). 2020, 10(11), 2198. DOI: 10.3390/nano10112198.
  • Abueidda, D. W.; Bakir, M.; Abu Al-Rub, R. K.; Bergström, J. S.; Sobh, N. A.; Jasiuk, I. Mechanical Properties of 3D Printed Polymeric Cellular Materials with Triply Periodic Minimal Surface Architectures. Mater. Des. 2017, 122, 255–267. DOI: 10.1016/j.matdes.2017.03.018.
  • Duan, C.; Zou, W.; Du, Z.; Li, H.; Zhang, C. Fabrication of Micro-mesopores in Macroporous Poly (Formaldehyde-melamine) Monoliths via Reaction-induced Phase Separation in High Internal Phase Emulsion Template. Polymer. 2019, 167, 78–84. DOI: 10.1016/j.polymer.2019.01.068.
  • Zhou, C.; Yu, S.; Ma, K.; Liang, B.; Tang, S.; Liu, C.; Yue, H. Amine-functionalized Mesoporous Monolithic Adsorbents for Post-combustion Carbon Dioxide Capture. Chem. Eng. J. 2021, 413, 127675. DOI: 10.1016/j.cej.2020.127675.
  • Yuan, X.; Xu, S.; Lü, J.; Yan, X.; Hu, L.; Xue, Q. Facile Synthesis of Ordered Mesoporous γ-alumina Monoliths via Polymerization-based Gel-casting. Microporous Mesoporous Mater. 2011, 138(1), 40–44. DOI: 10.1016/j.micromeso.2010.09.033.
  • Usón, L.; Colmenares, M. G.; Hueso, J. L.; Sebastián, V.; Balas, F.; Arruebo, M.; Santamaría, J. VOCs Abatement Using Thick Eggshell Pt/SBA-15 Pellets with Hierarchical Porosity. Catal. Today. 2014, 227, 179–186. DOI: 10.1016/j.cattod.2013.08.014.
  • Lawson, S.; Hajari, A.; Rownaghi, A. A.; Rezaei, F. MOF Immobilization on the Surface of Polymer-cordierite Composite Monoliths through In-situ Crystal Growth. Sep. Purif. Technol. 2017, 183, 173–180. DOI: 10.1016/j.seppur.2017.03.072.
  • Li, G.; Knozowska, K.; Kujawa, J.; Tonkonogovas, A.; Stankevičius, A.; Kujawski, W. Fabrication of Polydimethysiloxane (PDMS) Dense Layer on Polyetherimide (PEI) Hollow Fiber Support for the Efficient CO2/N2 Separation Membranes. Polymers. 2021, 13(5). DOI: 10.3390/polym13050756.
  • Si, Z.; Li, J.; Ma, L.; Cai, D.; Li, S.; Baeyens, J.; Degrève, J.; Nie, J.; Tan, T.; Qin, P. The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultraviolet‐Induced Polymerization. Angewandte Chemie. 2019, 131(48), 17335–17339. DOI: 10.1002/ange.201908386.
  • Kujawska, A.; Knozowska, K.; Kujawa, J.; Li, G.; Kujawski, W. Fabrication of PDMS Based Membranes with Improved Separation Efficiency in Hydrophobic Pervaporation. Sep. Purif. Technol. 2020, 234, 116092. DOI: 10.1016/j.seppur.2019.116092.
  • Khalil, A.; Ahmed, F. E.; Hilal, N. The Emerging Role of 3D Printing in Water Desalination. Sci. Total Environ. 2021, 790, 148238. DOI: 10.1016/j.scitotenv.2021.148238.
  • Size, E.O.M. Share & Trends Analysis Report By Application (Cleaning & Home, Medical, Food & Beverages, Spa & Relaxation), By Product, By Sales Channel, And Segment Forecasts, 2019-2025. Report ID, 2019; pp. 971–978. https://www.grandviewresearch.com/industry-analysis/rapid-prototyping-material-market

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.