278
Views
1
CrossRef citations to date
0
Altmetric
Review

An Overview on Development of Membranes Incorporating Branched Macromolecules for Water Treatment

ORCID Icon, , , &
Pages 1-23 | Received 21 Aug 2021, Accepted 15 Nov 2021, Published online: 24 Jan 2022

References

  • Li, S.; Li, Z. Reverse Osmosis and Forward Osmosis in Desalination Membrane Systems. In Current Trends and Future Developments on (Bio-) Membranes. Reverse and Forward Osmosis: Principles, Applications, Advances; Basile, A., Cassano, A., Rastogi, N., Eds. Elsevier: Amsterdam, 2020; pp 281–303. DOI: 10.1016/C2018-0-00834-8.
  • Yu, H.; Li, X.; Chang, H.; Zhou, Z.; Zhang, T.; Yang, Y.; Li, G.; Ji, H.; Cai, C.; Liang, H. Performance of Hollow Fiber Ultrafiltration Membrane in A Full-scale Drinking Water Treatment Plant in China: A Systematic Evaluation during 7-year Operation. J. Membr. Sci. 2020, 613, 118469. DOI: 10.1016/j.memsci.2020.118469.
  • Ye, W.; Liu, R.; Lin, F.; Ye, K.; Lin, J.; Zhao, S.; de Bruggen, B. V. Elevated Nanofiltration Performance via Mussel-inspired Co-deposition for Sustainable Resource Extraction from Landfill Leachate Concentrate. Chem. Eng. J. 2020, 388, 124200. DOI: 10.1016/j.cej.2020.124200.
  • Jun, B.; Al-hamadani, Y. A. J.; Son, A.; Park, C. M.; Jang, A.; Kim, N. C.; Yoon, Y. Applications of Metal-organic Framework Based Membranes in Water Purification: A Review. Sep. Purif. Technol. 2020, 247, 116947. DOI: 10.1016/j.seppur.2020.116947.
  • Hailemariam, R. H.; Woo, Y. C.; Damtie, M. M.; Kim, B. C.; Park, K. D.; Choi, J. S. Reverse Osmosis Membrane Fabrication and Modification Technologies and Future Trends: A Review. Adv. Colloid Interface Sci. 2020, 276, 102100. DOI: 10.1016/j.cis.2019.102100.
  • Gohil, J. M.; Ray, P. A Review on Semi-aromatic Polyamide TFC Membranes Prepared by Interfacial Polymerization: Potential for Water Treatment and Desalination. Sep. Purif. Technol. 2017, 181, 159–182. DOI: 10.1016/j.seppur.2017.03.020.
  • Bassyouni, M.; Abdel-Aziz, M. H.; Zoromba, M. S.; Abdel-Hamid, S. M. S.; Drioli, E. A Review of Polymeric Nanocomposite Membranes for Water Purification. J. Ind. Eng. Chem. 2019, 73, 19–46. DOI: 10.1016/j.jiec.2019.01.045.
  • Wu, W.; Shi, Y.; Liu, G.; Fan, X.; Yu, Y. Recent Development of Graphene Oxide Based Forward Osmosis Membrane for Water Treatment: A Critical Review. Desalination. 2020, 491, 114452. DOI: 10.1016/j.desal.2020.114452.
  • Wan, W. N. S.; Ang, W. L.; Mohammad, A. W. Role of Graphene Oxide in Support Layer Modification of Thin Film Composite (TFC) Membrane for Forward Osmosis Application. J. Kejuruteraan. 2019, 31, 327–334.
  • Mahmoudi, E.; Ng, L. Y.; Ang, W. L.; Teow, Y. H.; Mohammad, A. W. Improving Membrane Bioreactor Performance through the Synergistic Effect of Silver-decorated Graphene Oxide in Composite Membranes. J. Water Process Eng. 2020, 34, 101169. DOI: 10.1016/j.jwpe.2020.101169.
  • Dube, S. T.; Moutloali, R. M.; Malinga, S. P. Hyperbranched Polyethyleneimine/multi-walled Carbon Nanotubes Polyethersulfone Membrane Incorporated with Fe-Cu Bimetallic Nanoparticles for Water Treatment. J. Environ. Chem. Eng. 2020, 8(4), 103962. DOI: 10.1016/j.jece.2020.103962.
  • Oulad, F.; Zinadini, S.; Zinatizadeh, A. A.; Derakhshan, A. A. Preparation and Characterization of Loose Antifouling Nanofiltration Membrane Using Branched Aniline Oligomers Grafted onto Polyether Sulfone and Application for Real Algal Dye Removal. Chem. Eng. J. 2020, 401, 125861. DOI: 10.1016/j.cej.2020.125861.
  • Wenten, I. G.; Khoiruddin, K.; Wardani, A. K.; Aryanti, P. T. P.; Astuti, D. I.; Komaladewi, A. A. I. A. S. Preparation of Antifouling polypropylene/ZnO Composite Hollow Fiber Membrane by Dip-coating Method for Peat Water Treatment. J. Water Process Eng. 2020, 34, 101158. DOI: 10.1016/j.jwpe.2020.101158.
  • Diallo, M. S.; Christie, S.; Swaminathan, P.; Johnson, J. H.; Goddard, W. A. Dendrimer Enhanced Ultrafiltration. 1. Recovery of Cu(II) from Aqueous Solutions Using PAMAM Dendrimers with Ethylene Diamine Core and Terminal NH 2 Groups. Environ. Sci. Technol. 2005, 39(5), 1366–1377. DOI: 10.1021/es048961r.
  • Diallo, M. S. Water Treatment by Dendrimer-enhanced Filtration, 2005. https://patents.google.com/patent/US7758755B2/en (accessed October 1, 2021).
  • Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination. 2015, 356, 226–254. DOI: 10.1016/j.desal.2014.10.043.
  • Esfahani, M. R.; Aktij, S. A.; Dabaghian, Z.; Firouzjaei, M. D.; Rahimpour, A.; Eke, J.; Escobar, I. C.; Abolhassani, M.; Greenlee, L. F.; Esfahani, A., et al. Nanocomposite Membranes for Water Separation and Purification: Fabrication, Modification, and Applications. Sep. Purif. Technol. 2019, 213, 465–499. DOI: 10.1016/j.seppur.2018.12.050.
  • Warsinger, D. M.; Chakraborty, S.; Tow, E. W.; Plumlee, M. H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A. M.; Achilli, A.; Ghassemi, A., et al. A Review of Polymeric Membranes and Processes for Potable Water Reuse. Prog. Polym. Sci. 2018, 81, 209–237. DOI: 10.1016/j.progpolymsci.2018.01.004.
  • Oatley-Radcliffe, D. L.; Walters, M.; Ainscough, T. J.; Williams, P. M.; Mohammad, A. W.; Hilal, N. Nanofiltration Membranes and Processes: A Review of Research Trends over the past Decade. J. Water Process Eng. 2017, 19, 164–171. DOI: 10.1016/j.jwpe.2017.07.026.
  • Saleem, H.; Trabzon, L.; Kilic, A.; Zaidi, S. J. Recent Advances in Nanofibrous Membranes: Production and Applications in Water Treatment and Desalination. Desalination. 2020, 478, 114178. DOI: 10.1016/j.desal.2019.114178.
  • Li, D.; Yan, Y.; Wang, H. Recent Advances in Polymer and Polymer Composite Membranes for Reverse and Forward Osmosis Processes. Prog. Polym. Sci. 2016, 61, 104–155. DOI: 10.1016/j.progpolymsci.2016.03.003.
  • Zazouli, M. A.; Kalankesh, L. R. Removal of Precursors and Disinfection By-products (Dbps) by Membrane Filtration from Water; a Review. J. Environ. Health Sci. Eng. 2017, 15(1), 25. DOI: 10.1186/s40201-017-0285-z.
  • Thamaraiselvan, C.; Noel, M. Membrane Processes for Dye Wastewater Treatment: Recent Progress in Fouling Control. Crit. Rev. Environ. Sci. Technol. 2015, 45(10), 1007–1040. DOI: 10.1080/10643389.2014.900242.
  • Amirilargani, M.; Sadrzadeh, M.; Sudhölter, E. J. R.; de Smet, L. C. P. M. Surface Modification Methods of Organic Solvent Nanofiltration Membranes. Chem. Eng. J. 2016, 289, 562–582. DOI: 10.1016/j.cej.2015.12.062.
  • Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for Next-generation Desalination and Water Purification Membranes. Nat. Rev. Mater. 2016, 1(5), 16018. DOI: 10.1038/natrevmats.2016.18.
  • Ji, Y.; Qian, W.; Yu, Y.; An, Q.; Liu, L.; Zhou, Y.; Gao, C. Recent Developments in Nanofiltration Membranes Based on Nanomaterials. Chin. J. Chem. Eng. 2017, 25(11), 1639–1652. DOI: 10.1016/j.cjche.2017.04.014.
  • Sianipar, M.; Kim, S. H.; Khoiruddin,; Iskandar, F.; Wenten, I. G.; Khoiruddin, K. Functionalized Carbon Nanotube (CNT) Membrane: Progress and Challenges. RSC Adv. 2017, 7(81), 51175–51198. DOI: 10.1039/C7RA08570B.
  • Nagandran, S.; Goh, P. S.; Ismail, A. F.; Wong, T. W.; Dagang, W. R. Z. B. W. The Recent Progress in Modification of Polymeric Membranes Using Organic Macromolecules for Water Treatment. Symmetry. 2020, 12(2), 239. DOI: 10.3390/sym12020239.
  • Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched Polymers: Advances from Synthesis to Applications. Chem. Soc. Rev. 2015, 44(12), 4091–4130. DOI: 10.1039/c4cs00528g.
  • Jeon, S.; Park, C. H.; Park, S.-H.; Shin, M. G.; Kim, H.-J.; Baek, K.-Y.; Chan, E. P.; Bang, J.; Lee, J.-H. Star Polymer-assembled Thin Film Composite Membranes with High Separation Performance and Low Fouling. J. Membr. Sci. 2018, 555, 369–378. DOI: 10.1016/j.memsci.2018.03.075.
  • Ma, Y.; Mou, Q.; Wang, D.; Zhu, X.; Yan, D. Dendritic Polymers for Theranostics. Theranostics. 2016, 6(7), 930–947. DOI: 10.7150/thno.14855.
  • Maziya, K.; Dlamini, B. C.; Malinga, S. P. Hyperbranched Polymer Nanofibrous Membrane Grafted with Silver Nanoparticles for Dual Antifouling and Antibacterial Properties against Escherichia Coli, Staphylococcus Aureus and Pseudomonas Aeruginosa. React. Funct. Polym. 2020, 148, 104494. DOI: 10.1016/j.reactfunctpolym.2020.104494.
  • Qiu, Z.-L.; Kong, X.; Yuan, -J.-J.; Shen, Y.-J.; Zhu, B.-K.; Zhu, L.-P.; Yao, Z.-K.; Tang, C. Y. Cross-linked PVC/hyperbranched Polyester Composite Hollow Fiber Membranes for Dye Removal. React. Funct. Polym. 2018, 122, 51–59. DOI: 10.1016/j.reactfunctpolym.2017.10.012.
  • Bao, X.; Wu, Q.; Shi, W.; Wang, W.; Zhu, Z.; Zhang, Z.; Zhang, R.; Zhang, B.; Guo, Y.; Cui, F. Dendritic Amine Sheltered Membrane for Simultaneous Ammonia Selection and Fouling Mitigation in Forward Osmosis. J. Membr. Sci. 2019, 584, 9–19. DOI: 10.1016/j.memsci.2019.04.063.
  • Abbina, S.; Vappala, S.; Kumar, P.; Siren, E. M. J.; La, C. C.; Abbasi, U.; Brooks, D. E.; Kizhakkedathu, J. N. Hyperbranched Polyglycerols: Recent Advances in Synthesis, Biocompatibility and Biomedical Applications. J. Mater. Chem. B. 2017, 5(47), 9249–9277. DOI: 10.1039/c7tb02515g.
  • Büning, J.; Frost, I.; Okuyama, H.; Lempke, L.; Ulbricht, M. β-Cyclodextrin-based Star Polymers for Membrane Surface Functionalization: Covalent Grafting via “Click” Chemistry and Enhancement of Ultrafiltration Properties. J. Membr. Sci. 2020, 596, 117610. DOI: 10.1016/j.memsci.2019.117610.
  • Byun, S.-H.; Chung, J. W.; Kwak, S.-Y. Thermally Regenerable Multi-functional Membrane for Heavy-metal Detection and Removal. J. Water Process Eng. 2019, 29, 100757. DOI: 10.1016/j.jwpe.2019.01.018.
  • Zhu, W.-P.; Gao, J.; Sun, S.-P.; Zhang, S.; Chung, T.-S. Poly(amidoamine) Dendrimer (PAMAM) Grafted on Thin Film Composite (TFC) Nanofiltration (NF) Hollow Fiber Membranes for Heavy Metal Removal. J. Membr. Sci. 2015, 487, 117–126. DOI: 10.1016/j.memsci.2015.03.033.
  • Xu, G.-R.; Wang, J.-N.; Li, C.-J. Strategies for Improving the Performance of the Polyamide Thin Film Composite (PA-TFC) Reverse Osmosis (RO) Membranes: Surface Modifications and Nanoparticles Incorporations. Desalination. 2013, 328, 83–100. DOI: 10.1016/j.desal.2013.08.022.
  • An, X.; Zhang, K.; Wang, Z.; Ly, Q. V.; Hu, Y.; Liu, C. Improving the Water Permeability and Antifouling Property of the Nanofiltration Membrane Grafted with Hyperbranched Polyglycerol. J. Membr. Sci. 2020, 612, 118417. DOI: 10.1016/j.memsci.2020.118417.
  • Liu, Z.; An, X.; Dong, C.; Zheng, S.; Mi, B.; Hu, Y. Modification of Thin Film Composite Polyamide Membranes with 3D Hyperbranched Polyglycerol for Simultaneous Improvement in Their Filtration Performance and Antifouling Properties. J. Mater. Chem. A. 2017, 5(44), 23190–23197. DOI: 10.1039/c7ta07335f.
  • Sarkar, A.; Carver, P. I.; Zhang, T.; Merrington, A.; Bruza, K. J.; Rousseau, J. L.; Keinath, S. E.; Dvornic, P. R. Dendrimer-based Coatings for Surface Modification of Polyamide Reverse Osmosis Membranes. J. Membr. Sci. 2010, 349(1–2), 421–428. DOI: 10.1016/j.memsci.2009.12.005.
  • Zhang, S.; Qiu, G.; Ting, Y. P.; Chung, T.-S. Silver–PEGylated Dendrimer Nanocomposite Coating for Anti-fouling Thin Film Composite Membranes for Water Treatment. Colloids Surf. A. 2013, 436, 207–214. DOI: 10.1016/j.colsurfa.2013.06.027.
  • Vatanpour, V.; Sanadgol, A. Surface Modification of Reverse Osmosis Membranes by Grafting of Polyamidoamine Dendrimer Containing Graphene Oxide Nanosheets for Desalination Improvement. Desalination. 2020, 491, 114442. DOI: 10.1016/j.desal.2020.114442.
  • Bao, X.; Wu, Q.; Shi, W.; Wang, W.; Yu, H.; Zhu, Z.; Zhang, X.; Zhang, Z.; Zhang, R.; Cui, F. Polyamidoamine Dendrimer Grafted Forward Osmosis Membrane with Superior Ammonia Selectivity and Robust Antifouling Capacity for Domestic Wastewater Concentration. Water Res. 2019, 153, 1–10. DOI: 10.1016/j.watres.2018.12.067.
  • Bao, X.; Wu, Q.; Shi, W.; Wang, W.; Zhu, Z.; Zhang, Z.; Zhang, R.; Zhang, X.; Zhang, B.; Guo, Y., et al. Insights into Simultaneous Ammonia-selective and Anti-fouling Mechanism over Forward Osmosis Membrane for Resource Recovery from Domestic Wastewater. J. Membr. Sci. 2019, 573, 135–144. DOI: 10.1016/j.memsci.2018.11.072.
  • Li, M.; Lv, Z.; Zheng, J.; Hu, J.; Jiang, C.; Ueda, M.; Zhang, X.; Wang, L. Positively Charged Nanofiltration Membrane with Dendritic Surface for Toxic Element Removal. ACS Sustainable Chem. Eng. 2017, 5(1), 784–792. DOI: 10.1021/acssuschemeng.6b02119.
  • Li, X.; Cai, T.; Chung, T.-S. Anti-Fouling Behavior of Hyperbranched Polyglycerol-grafted Poly(ether Sulfone) Hollow Fiber Membranes for Osmotic Power Generation. Environ. Sci. Technol. 2014, 48(16), 9898–9907. DOI: 10.1021/es5017262.
  • Li, X.; Cai, T.; Chen, C.; Chung, T.-S. Negatively Charged Hyperbranched Polyglycerol Grafted Membranes for Osmotic Power Generation from Municipal Wastewater. Water Res. 2016, 89, 50–58. DOI: 10.1016/j.watres.2015.11.032.
  • Park, S. Y.; Kim, Y. J.; Kwak, S.-Y. Versatile Surface Charge-mediated Anti-fouling UF/MF Membrane Comprising Charged Hyperbranched Polyglycerols (Hpgs) and PVDF Membranes. RSC Adv. 2016, 6(92), 88959–88966. DOI: 10.1039/c6ra19020k.
  • Sun, S. P.; Hatton, T. A.; Chung, T.-S. Hyperbranched Polyethyleneimine Induced Cross-Linking of Polyamide−imide Nanofiltration Hollow Fiber Membranes for Effective Removal of Ciprofloxacin. Environ. Sci. Technol. 2011, 45(9), 4003–4009. DOI: 10.1021/es200345q.
  • Li, G.; Shen, L.; Luo, Y.; Zhang, S. The Effect of silver-PAMAM Dendrimer Nanocomposites on the Performance of PVDF Membranes. Desalination. 2014, 338, 115–120. DOI: 10.1016/j.desal.2014.02.001.
  • Algarra, M.; Vázquez, M. I.; Alonso, B.; Casado, C. M.; Casado, J.; Benavente, J. Characterization of an Engineered Cellulose Based Membrane by Thiol Dendrimer for Heavy Metals Removal. Chem. Eng. J. 2014, 253, 472–477. DOI: 10.1016/j.cej.2014.05.082.
  • Algarra, M.; Campos, B. B.; Alonso, B.; Casado, C. M.; Esteves Da Silva, J. C. G.; Benavente, J. Inclusion of Thiol DAB dendrimer/CdSe Quantum Dots Based in a Membrane Structure: Surface and Bulk Membrane Modification. Electrochim. Acta. 2013, 89, 652–659. DOI: 10.1016/j.electacta.2012.10.143.
  • Zhao, Y.-H.; Zhu, B.-K.; Ma, X.-T.; Xu, -Y.-Y. Porous Membranes Modified by Hyperbranched polymersI. Preparation and Characterization of PVDF Membrane Using Hyperbranched Polyglycerol as Additive. J. Membr. Sci. 2007, 290(1–2), 222–229. DOI: 10.1016/j.memsci.2006.12.037.
  • Zhao, Y.-H.; Qian, Y.-L.; Pang, D.-X.; Zhu, B.-K.; Xu, -Y.-Y. Porous Membranes Modified by Hyperbranched Polymers II. Effect of the Arm Length of Amphiphilic Hyperbranched-star Polymers on the Hydrophilicity and Protein Resistance of Poly(vinylidene Fluoride) Membranes. J. Membr. Sci. 2007, 304(1–2), 138–147. DOI: 10.1016/j.memsci.2007.07.029.
  • Jiang, L.; Yun, J.; Wang, Y.; Yang, H.; Xu, Z.; Xu, Z.-L. High-flux, Anti-fouling Dendrimer Grafted PAN Membrane: Fabrication, Performance and Mechanisms. J. Membr. Sci. 2020, 596, 117743. DOI: 10.1016/j.memsci.2019.117743.
  • Peydayesh, M.; Mohammadi, T.; Bakhtiari, O. Water Desalination via Novel Positively Charged Hybrid Nanofiltration Membranes Filled with Hyperbranched Polyethyleneimine Modified MWCNT. J. Ind. Eng. Chem. 2019, 69, 127–140. DOI: 10.1016/j.jiec.2018.09.007.
  • Meng, M.; Bai, M.; Da, Z.; Cui, Y.; Li, B.; Pan, J. Selective Recognition of Salicylic Acid Employing New Fluorescent Imprinted Membrane Functionalized with Poly(amidoamine) (Pamam)-encapsulated Eu(TTA)3phen. J. Lumin. 2019, 208, 24–32. DOI: 10.1016/j.jlumin.2018.12.026.
  • Kebria, M. R. S.; Rahimpour, A.; Salestan, S. K.; Seyedpour, S. F.; Jafari, A.; Banisheykholeslami, F.; Kiadeh, N. T. H. Hyper-branched Dendritic Structure Modified PVDF Electrospun Membranes for Air Gap Membrane Distillation. Desalination. 2020, 479, 114307. DOI: 10.1016/j.desal.2019.114307.
  • Karimipour, H.; Shahbazi, A.; Vatanpour, V. Fouling Decline and Retention Increase of Polyethersulfone Membrane by Incorporating Melamine-based Dendrimer Amine Functionalized Graphene Oxide Nanosheets (GO/MDA). J. Environ. Chem. Eng. 2021, 9(1), 104849. DOI: 10.1016/j.jece.2020.104849.
  • Han, K. N.; Yu, B. Y.; Kwak, S.-Y. Hyperbranched Poly(amidoamine)/polysulfone Composite Membranes for Cd(II) Removal from Water. J. Membr. Sci. 2012, 396, 83–91. DOI: 10.1016/j.memsci.2011.12.048.
  • Zhang, N.; Song, X.; Jiang, H.; Tang, C. Y. Advanced Thin-film Nanocomposite Membranes Embedded with Organic-based Nanomaterials for Water and Organic Solvent Purification: A Review. Sep. Purif. Technol. 2021, 269, 118719. DOI: 10.1016/j.seppur.2021.118719.
  • Chong, W. C.; Koo, C. H.; Lau, W. J. Mixed-matrix Membranes Incorporated with Functionalized Nanomaterials for Water Applications. In Handbook of Functionalized Nanomaterials for Industrial Applications;; Hussain, C. M., Ed. Elsevier: Amsterdam, 2020; pp 15–51. DOI: 10.1016/B978-0-12-816787-8.00002-8.
  • Xu, -X.-X.; Zhou, C.-L.; Zeng, B.-R.; Xia, H.-P.; Lan, W.-G.; He, X.-M. Structure and Properties of Polyamidoamine/polyacrylonitrile Composite Nanofiltration Membrane Prepared by Interfacial Polymerization. Sep. Purif. Technol. 2012, 96, 229–236. DOI: 10.1016/j.seppur.2012.05.033.
  • Mansourpanah, Y.; Jafari, Z. Efficacy of Different Generations and Concentrations of PAMAM–NH2 on the Performance and Structure of TFC Membranes. React. Funct. Polym. 2015, 93, 178–189. DOI: 10.1016/j.reactfunctpolym.2015.04.010.
  • Kong, X.; Zhang, Y.; Zeng, S.-Y.; Zhu, B.-K.; Zhu, L.-P.; Fang, L.-F.; Matsuyama, H. Incorporating Hyperbranched Polyester into Cross-linked Polyamide Layer to Enhance Both Permeability and Selectivity of Nanofiltration Membrane. J. Membr. Sci. 2016, 518, 141–149. DOI: 10.1016/j.memsci.2016.07.037.
  • Cai, J.; Cao, X.-L.; Zhao, Y.; Zhou, F.-Y.; Cui, Z.; Wang, Y.; Sun, S.-P. The Establishment of High-performance Anti-fouling Nanofiltration Membranes via Cooperation of Annular Supramolecular Cucurbit[6]uril and Dendritic Polyamidoamine. J. Membr. Sci. 2020, 600, 117863. DOI: 10.1016/j.memsci.2020.117863.
  • Ambre, J. P.; Dhopte, K. B.; Nemade, P. R.; Dalvi, V. H. High Flux Hyperbranched Starch-graphene Oxide Piperazinamide Composite Nanofiltration Membrane. J. Environ. Chem. Eng. 2019, 7(6), 103300. DOI: 10.1016/j.jece.2019.103300.
  • Zhang, X.; Chen, T.-H.; Chen, -F.-F.; Wu, H.; Yu, C.-Y.; Liu, L.-F.; Gao, C.-J. Structure Adjustment for Enhancing the Water Permeability and Separation Selectivity of the Thin Film Composite Nanofiltration Membrane Based on a Dendritic Hyperbranched Polymer. J. Membr. Sci. 2021, 618, 118455. DOI: 10.1016/j.memsci.2020.118455.
  • Mosikatsi, B. E.; Mabuba, N.; Malinga, S. P. Thin Film Composite Membranes Consisting of Hyperbranched Polyethylenimine (Hpei)-cysteamine Layer for Cadmium Removal in Water. J. Water Process Eng. 2019, 30, 100686. DOI: 10.1016/j.jwpe.2018.10.004.
  • Vlotman, D. E.; Ngila, J. C.; Ndlovu, T.; Doyle, B.; Carleschi, E.; Malinga, S. P. Hyperbranched Polymer Membrane for Catalytic Degradation of Polychlorinated Biphenyl-153 (PCB-153) in Water. React. Funct. Polym. 2019, 136, 44–57. DOI: 10.1016/j.reactfunctpolym.2018.12.019.
  • Kong, X.; Qiu, Z.-L.; Lin, C.-E.; Song, Y.-Z.; Zhu, B.-K.; Zhu, L.-P.; Wei, X.-Z. High permselectivity Hyperbranched Polyester/polyamide Ultrathin Films with Nanoscale Heterogeneity. J. Mater. Chem. A. 2017, 5(17), 7876–7884. DOI: 10.1039/c7ta00246g.
  • Qin, J.; Lin, S.; Song, S.; Zhang, L.; Chen, H. 4-Dimethylaminopyridine Promoted Interfacial Polymerization between Hyperbranched Polyesteramide and Trimesoyl Chloride for Preparing Ultralow-pressure Reverse Osmosis Composite Membrane. ACS Appl. Mater. Interfaces. 2013, 5(14), 6649–6656. DOI: 10.1021/am401345y.
  • Jeon, S.; Park, C. H.; Shin, S. S.; Lee, J.-H. Fabrication and Structural Tailoring of Reverse Osmosis Membranes Using β-cyclodextrin-cored Star Polymers. J. Membr. Sci. 2020, 611, 118415. DOI: 10.1016/j.memsci.2020.118415.
  • Xie, Q.; Zhang, S.; Ma, H.; Shao, W.; Gong, X.; Hong, Z. A Novel Thin-film Nanocomposite Nanofiltration Membrane by Incorporating 3D Hyperbranched Polymer Functionalized 2D Graphene Oxide. Polymers. 2018, 10(11), 1–17. DOI: 10.3390/polym10111253.
  • Asempour, F.; Akbari, S.; Kanani-Jazi, M. H.; Atashgar, A.; Matsuura, T.; Kruczek, B. Chlorine-resistant TFN RO Membranes Containing Modified Poly(amidoamine) Dendrimer-functionalized Halloysite Nanotubes. J. Membr. Sci. 2021, 623, 119039. DOI: 10.1016/j.memsci.2020.119039.
  • Lianchao, L.; Baoguo, W.; Huimin, T.; Tianlu, C.; Jiping, X. A Novel Nanofiltration Membrane Prepared with PAMAM and TMC by in Situ Interfacial Polymerization on PEK-C Ultrafiltration Membrane. J. Membr. Sci. 2006, 269(1–2), 84–93. DOI: 10.1016/j.memsci.2005.06.021.
  • Sum, J. Y.; Ahmad, A. L.; Ooi, B. S. Synthesis of Thin Film Composite Membrane Using Mixed Dendritic Poly(amidoamine) and Void Filling Piperazine Monomers. J. Membr. Sci. 2014, 466, 183–191. DOI: 10.1016/j.memsci.2014.04.040.
  • Zhou, C.; Shi, Y.; Sun, C.; Yu, S.; Liu, M.; Gao, C. Thin-film Composite Membranes Formed by Interfacial Polymerization with Natural Material Sericin and Trimesoyl Chloride for Nanofiltration. J. Membr. Sci. 2014, 471, 381–391. DOI: 10.1016/j.memsci.2014.08.033.
  • Zhang, Y.; Su, Y.; Peng, J.; Zhao, X.; Liu, J.; Zhao, J.; Jiang, Z. Composite Nanofiltration Membranes Prepared by Interfacial Polymerization with Natural Material Tannic Acid and Trimesoyl Chloride. J. Membr. Sci. 2013, 429, 235–242. DOI: 10.1016/j.memsci.2012.11.059.
  • Yoo, H.; Kwak, S.-Y. Surface Functionalization of PTFE Membranes with Hyperbranched Poly(amidoamine) for the Removal of Cu2+ Ions from Aqueous Solution. J. Membr. Sci. 2013, 448, 125–134. DOI: 10.1016/j.memsci.2013.07.052.
  • Zhang, Q.; Wang, N.; Zhao, L.; Xu, T.; Cheng, Y. Polyamidoamine Dendronized Hollow Fiber Membranes in the Recovery of Heavy Metal Ions. ACS Appl. Mater. Interfaces. 2013, 5(6), 1907–1912. DOI: 10.1021/am400155b.
  • Sun, H.; Zhang, X.; He, Y.; Zhang, D.; Feng, X.; Zhao, Y.; Chen, L. Preparation of PVDF-g-polyacrylic acid-PAMAM Membrane for Efficient Removal of Copper Ions. Chem. Eng. Sci. 2019, 209, 115186. DOI: 10.1016/j.ces.2019.115186.
  • Amariei, G.; Santiago-morales, J.; Boltes, K.; Letón, P.; Iriepa, I.; Moraleda, I.; Fernandez-Alba, A. R.; Rosal, R. Dendrimer-functionalized Electrospun Nano Fibres as Dual-action Water Treatment Membranes. Sci. Total Environ. 2017, 601–602, 732–740. DOI: 10.1016/j.scitotenv.2017.05.243.
  • Gratzl, G.; Walkner, S.; Hild, S.; Hassel, A. W.; Weber, H. K.; Paulik, C. Mechanistic Approaches on the Antibacterial Activity of Poly(acrylic Acid) Copolymers. Colloids Surf. B. 2015, 126, 98–105. DOI: 10.1016/j.colsurfb.2014.12.016.
  • Santiago-Morales, J.; Amariei, G.; Letón, P.; Rosal, R. Antimicrobial Activity of Poly(vinyl Alcohol)-poly(acrylic Acid) Electrospun Nanofibers. Colloids Surf. B. 2016, 146, 144–151. DOI: 10.1016/j.colsurfb.2016.04.052.
  • Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano–bio Interface. Nat. Mater. 2009, 8(7), 543–557. DOI: 10.1038/nmat2442.
  • Stasko, N. A.; Johnson, C. B.; Schoenfisch, M. H.; Johnson, T. A.; Holmuhamedov, E. L. Cytotoxicity of Polypropylenimine Dendrimer Conjugates on Cultured Endothelial Cells. Biomacromolecules. 2007, 8(12), 3853–3859. DOI: 10.1021/bm7008203.
  • Suriyanarayanan, S.; Lee, -H.-H.; Liedberg, B.; Aastrup, T.; Nicholls, I. A. Protein-resistant Hyperbranched Polyethyleneimine Brush Surfaces. J. Colloid Interface Sci. 2013, 396, 307–315. DOI: 10.1016/j.jcis.2012.12.076.
  • Wei, X.; Kong, X.; Yang, J.; Zhang, G.; Chen, J.; Wang, J. Structure Influence of Hyperbranched Polyester on Structure and Properties of Synthesized Nanofiltration Membranes. J. Membr. Sci. 2013, 440, 67–76. DOI: 10.1016/j.memsci.2013.03.034.
  • Wei, X.-Z.; Zhu, L.-P.; Deng, H.-Y.; Xu, -Y.-Y.; Zhu, B.-K.; Huang, Z.-M. New Type of Nanofiltration Membrane Based on Crosslinked Hyperbranched Polymers. J. Membr. Sci. 2008, 323(2), 278–287. DOI: 10.1016/j.memsci.2008.06.014.
  • Cheng, S.; Oatley, D. L.; Williams, P. M.; Wright, C. J. Positively Charged Nanofiltration Membranes: Review of Current Fabrication Methods and Introduction of a Novel Approach. Adv. Colloid Interface Sci. 2011, 164(1–2), 12–20. DOI: 10.1016/j.cis.2010.12.010.
  • Ding, J.; Wu, H.; Wu, P. Preparation of Highly Permeable Loose Nanofiltration Membranes Using Sulfonated Polyethylenimine for Effective Dye/salt Fractionation. Chem. Eng. J. 2020, 396, 125199. DOI: 10.1016/j.cej.2020.125199.
  • Das, R.; Vecitis, C. D.; Schulze, A.; Cao, B.; Ismail, A. F.; Lu, X.; Chen, J.; Ramakrishna, S. Recent Advances in Nanomaterials for Water Protection and Monitoring. Chem. Soc. Rev. 2017, 46(22), 6946–7020. DOI: 10.1039/C6CS00921B.
  • Li, N.; Chen, J.; Shi, Y. P. Magnetic Polyethyleneimine Functionalized Reduced Graphene Oxide as a Novel Magnetic Solid-phase Extraction Adsorbent for the Determination of Polar Acidic Herbicides in Rice. Anal. Chim. Acta. 2017, 949, 23–34. DOI: 10.1016/j.aca.2016.11.016.
  • Arkas, M.; Tsiourvas, D. Organic/inorganic Hybrid Nanospheres Based on Hyperbranched Poly(ethylene Imine) Encapsulated into Silica for the Sorption of Toxic Metal Ions and Polycyclic Aromatic Hydrocarbons from Water. J. Hazard. Mater. 2009, 170(1), 35–42. DOI: 10.1016/j.jhazmat.2009.05.031.
  • Zhang, D.; Wang, L.; Zeng, H.; Rhimi, B.; Wang, C. Novel Polyethyleneimine Functionalized Chitosan–lignin Composite Sponge with Nanowall-network Structures for Fast and Efficient Removal of Hg(ii) Ions from Aqueous Solution. Environ. Sci. Nano.2020, 7(3), 793–802. DOI: 10.1039/C9EN01368G.
  • Hadavifar, M.; Bahramifar, N.; Younesi, H.; Rastakhiz, M.; Li, Q.; Yu, J.; Eftekhari, E. Removal of mercury(II) and cadmium(II) Ions from Synthetic Wastewater by a Newly Synthesized Amino and Thiolated Multi-walled Carbon Nanotubes. J. Taiwan Inst. Chem. Eng. 2016, 67, 397–405. DOI: 10.1016/j.jtice.2016.08.029.
  • Asadollahi, M.; Bastani, D.; Musavi, S. A. Enhancement of Surface Properties and Performance of Reverse Osmosis Membranes after Surface Modification: A Review. Desalination. 2017, 420, 330–383. DOI: 10.1016/j.desal.2017.05.027.
  • Ling, D.; Japip, S.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T. Emerging Thin-film Nanocomposite (TFN) Membranes for Reverse Osmosis: A Review. Water Res. 2020, 173, 115557. DOI: 10.1016/j.watres.2020.115557.
  • Chae, H.-R.; Lee, J.; Lee, C.-H.; Kim, I.-C.; Park, P.-K. Graphene Oxide-embedded Thin-film Composite Reverse Osmosis Membrane with High Flux, Anti-biofouling, and Chlorine Resistance. J. Membr. Sci. 2015, 483, 128–135. DOI: 10.1016/j.memsci.2015.02.045.
  • Kim, S. G.; Hyeon, D. H.; Chun, J. H.; Chun, B.-H.; Kim, S. H. Novel Thin Nanocomposite RO Membranes for Chlorine Resistance. Desalination Water Treat. 2013, 51(31–33), 6338–6345. DOI: 10.1080/19443994.2013.780994.
  • Choi, W.; Choi, J.; Bang, J.; Lee, J. Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications. ACS Appl. Mater. Interfaces. 2013, 5(23), 12510–12519. DOI: 10.1021/am403790s.
  • Ang, W. L.; Mohammad, A. W.; Johnson, D.; Hilal, N. Forward Osmosis Research Trends in Desalination and Wastewater Treatment: A Review of Research Trends over the past Decade. J. Water Process Eng. 2019, 31, 100886. DOI: 10.1016/j.jwpe.2019.100886.
  • Ang, W. L.; Mohammad, A. W.; Johnson, D.; Hilal, N. Unlocking the Application Potential of Forward Osmosis through Integrated/hybrid Process. Sci. Total Environ. 2020, 706, 136047. DOI: 10.1016/j.scitotenv.2019.136047.
  • Ansari, A. J.; Hai, F. I.; Price, W. E.; Ngo, H. H.; Guo, W.; Nghiem, L. D. Assessing the Integration of Forward Osmosis and Anaerobic Digestion for Simultaneous Wastewater Treatment and Resource Recovery. Bioresour. Technol. 2018, 260, 221–226. DOI: 10.1016/j.biortech.2018.03.120.
  • Vinardell, S.; Astals, S.; Mata-Alvarez, J.; Dosta, J. Techno-economic Analysis of Combining Forward Osmosis-reverse Osmosis and Anaerobic Membrane Bioreactor Technologies for Municipal Wastewater Treatment and Water Production. Bioresour. Technol. 2020, 297, 122395. DOI: 10.1016/j.biortech.2019.122395.
  • Hou, D.; Lu, L.; Sun, D.; Ge, Z.; Huang, X.; Cath, T. Y.; Ren, Z. J. Microbial Electrochemical Nutrient Recovery in Anaerobic Osmotic Membrane Bioreactors. Water Res. 2017, 114, 181–188. DOI: 10.1016/j.watres.2017.02.034.
  • Gu, Y.; Chen, L.; Ng, J. W.; Lee, C.; Chang, V. W. C.; Tang, C. Y. Development of Anaerobic Osmotic Membrane Bioreactor for Low-strength Wastewater Treatment at Mesophilic Condition. J. Membr. Sci. 2015, 490, 197–208. DOI: 10.1016/j.memsci.2015.04.032.
  • Ansari, A. J.; Hai, F. I.; Price, W. E.; Drewes, J. E.; Nghiem, L. D. Forward Osmosis as A Platform for Resource Recovery from Municipal Wastewater - A Critical Assessment of the Literature. J. Membr. Sci. 2017, 529, 195–206. DOI: 10.1016/j.memsci.2017.01.054.
  • Wahid, A. R.; Ang, W. L.; Mohammad, A. W.; Johnson, D. J.; Hilal, N. Evaluating Fertilizer-Drawn Forward Osmosis Performance in Treating Anaerobic Palm Oil Mill Effluent. Membranes. 2021, 11(8), 566. DOI: 10.3390/membranes11080566.
  • Luo, W.; Hai, F. I.; Price, W. E.; Guo, W.; Ngo, H. H.; Yamamoto, K.; Nghiem, L. D. Phosphorus and Water Recovery by a Novel Osmotic Membrane Bioreactor–reverse Osmosis System. Bioresour. Technol. 2016, 200, 297–304. DOI: 10.1016/j.biortech.2015.10.029.
  • Chekli, L.; Phuntsho, S.; Kim, J. E.; Kim, J.; Choi, J. Y.; Choi, J.-S.; Kim, S.; Kim, J. H.; Hong, S.; Sohn, J., et al. A Comprehensive Review of Hybrid Forward Osmosis Systems: Performance, Applications and Future Prospects. J. Membr. Sci. 2016, 497, 430–449. DOI: 10.1016/j.memsci.2015.09.041.
  • Zhao, S.; Zou, L.; Tang, C. Y.; Mulcahy, D. Recent Developments in Forward Osmosis: Opportunities and Challenges. J. Membr. Sci. 2012, 396, 1–21. DOI: 10.1016/j.memsci.2011.12.023.
  • Guadie, A.; Xia, S.; Jiang, W.; Zhou, L.; Zhang, Z.; Hermanowicz, S. W.; Xu, X.; Shen, S. Enhanced Struvite Recovery from Wastewater Using a Novel Cone-inserted Fluidized Bed Reactor. J Environ. Sci. 2014, 26(4), 765–774. DOI: 10.1016/S1001-0742(13)60469-6.
  • Shen, L.; Zhang, X.; Zuo, J.; Wang, Y. Performance Enhancement of TFC FO Membranes with Polyethyleneimine Modification and Post-treatment. J. Membr. Sci. 2017, 534, 46–58. DOI: 10.1016/j.memsci.2017.04.008.
  • Lee, C.; Chae, S. H.; Yang, E.; Kim, S.; Kim, J. H.; Kim, I. S. A Comprehensive Review of the Feasibility of Pressure Retarded Osmosis: Recent Technological Advances and Industrial Efforts Towards Commercialization. Desalination. 2020, 491, 114501. DOI: 10.1016/j.desal.2020.114501.
  • Pedziwiatr-Werbicka, E.; Milowska, K.; Dzmitruk, V.; Ionov, M.; Shcharbin, D.; Bryszewska, M. Dendrimers and Hyperbranched Structures for Biomedical Applications. Eur. Polym. J. 2019, 119, 61–73. DOI: 10.1016/j.eurpolymj.2019.07.013.
  • Naha, P. C.; Mukherjee, S. P.; Byrne, H. J. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. Int. J. Environ. Res. Public Health. 2018, 15(2), 338. DOI: 10.3390/ijerph15020338.
  • Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y. Polymeric Nanocomposite Membranes for Water Treatment: A Review. Environ. Chem. Lett. 2019, 17(4), 1539–1551. DOI: 10.1007/s10311-019-00895-9.
  • Staneva, D.; Yordanova, S.; Vasileva-Tonkova, E.; Stoyanov, S.; Grabchev, I. Synthesis of a New Fluorescent Poly(propylene Imine) Dendrimer Modified with 4-nitrobenzofurazan. Sensor and Antimicrobial Activity. J. Photochem. Photobiol. A Chem. 2020, 395, 112506. DOI: 10.1016/j.jphotochem.2020.112506.
  • Merck, K. Hyperbranched Polyester 2021. https://www.sigmaaldrich.com/MY/en/search/hyperbranched-polyester?focus=products&page=1&perPage=30&sort=relevance&term=hyperbranchedpolyester&type=product (accessed October 1, 2021).
  • Merck, K. PAMAM Dendrimer 2021. https://www.sigmaaldrich.com/MY/en/search/pamam?focus=products&page=1&perPage=30&sort=relevance&term=PAMAM&type=product_name (accessed October 1, 2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.