578
Views
1
CrossRef citations to date
0
Altmetric
Review

Insights into Surface Ion-imprinted Materials for Heavy Metal Ion Treatment: Challenges and Opportunities

, , , , , , , , , , & show all

References

  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 2016(45), 2137–2211. DOI: 10.1039/c6cs00061d.
  • Chen, L.; Xu, S.; Li, J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011, 40(5), 2922–2942. DOI: 10.1039/c0cs00084a.
  • Çimen, D.; Topçu, A. A.; Özbek, M. A.; Bereli, N.; Denizli, A. Chapter 4: Molecular Imprinted Sensors for Ion-Sensing. In the Book of Molecular Imprinting for Nanosensors and Other Sensing Applications. Elsevier Inc. 2021, 69–92. DOI: 10.1016/B978-0-12-822117-4.00004-6.
  • Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X. T.; Li, J. H.; Ma, J. P.; Chen, L. X. Hydrophilic Molecularly Imprinted Nanospheres for the Extraction of Rhodamine B Followed by HPLC Analysis: A Green Approach and Hazardous Waste Elimination. Talanta. 2020, 215, 120933. DOI: 10.1016/j.talanta.2020.120933.
  • Ostovan, A.; Ghaedi, M.; Arabi, M.; Yang, Q.; Li, J. H.; Chen, L. X. Hydrophilic Multitemplate Molecularly Imprinted Biopolymers Based on a Green Synthesis Strategy for Determination of B-family Vitamins. ACS Appl. Mater. Interfaces. 2018, 10, 4140–4150. DOI: 10.1021/acsami.7b17500.
  • Zhang, Z.; Cao, X. L.; Zhang, Z.; Yin, J. G.; Wang, D. N.; Xu, Y. N.; Zhang, W.; Li, X. Y.; Zhang, Q. S.; Liu, L. W. Synthesis of Dummy-template Molecularly Imprinted Polymer Adsorbents for Solid Phase Extraction of Aminoglycosides Antibiotics from Environmental Water Samples. Talanta. 2020, 208, 120385. DOI: 10.1016/j.talanta.2019.120385.
  • Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X.; Chen, L. Strategies of Molecular Imprinting-based Solid-phase Extraction Prior to Chromatographic Analysis. Trends. Analyt. Chem. 2020, 128, 115923. DOI: 10.1016/j.trac.2020.115923.
  • Sagiv, J. Organized Monolayers by Adsorption. III. Irreversible Adsorption and Memory Effects in Skeletonized Silane Monolayers. Israel. J. Chem. 1979, 18, 346–353. DOI: 10.1002/ijch.197900053.
  • Kusumkar, V. V.; Galambo, M.; Viglaová, E.; Daňo, M.; Melková, J. Ion-imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. Materials. 2021, 14(5), 1083–1111. DOI: 10.3390/ma14051083.
  • Jakavula, S.; Biata, N. R.; Dimpe, K. M.; Pakade, V. E.; Nomngongo, P. N. A Critical Review on the Synthesis and Application of Ion-imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Anal. Chem. 2020, 1–14. DOI: 10.1080/10408347.2020.1798210.
  • Wang, L. Y.; Li, J. H.; Wang, J. N.; Guo, X. T.; Wang, X. Y.; Choo, J.; Chen, L. X. Green Multi-functional Monomer Based Ion Imprinted Polymers for Selective Removal of Copper Ions from Aqueous Solution. J. Colloid Interfaces Sci. 2019, 541, 376–386. DOI: 10.1016/j.jcis.2019.01.081.
  • An, F. Q.; Gao, B. J. Adsorption Characteristics of Cr(III) Ionic Imprinting Polyamine on Silica Gel Surface. Desalination. 2009, 249, 1390–1396. DOI: 10.1016/j.desal.2009.04.004.
  • Fu, J. Q.; Chen, L. X.; Li, J. H.; Zhang, Z. Current Status and Challenges of Ion Imprinting. J. Mater. Chem. A. 2015, 3, 13598–13627. DOI: 10.1039/c5ta02421h.
  • Lu, J.; Qin, Y. Y.; Wu, Y. L.; Meng, M. J.; Yan, Y. S.; Li, C. X. Recent Advances in Ion-imprinted Membranes: Separation and Detection via Ion-selective Recognition. Environ. Sci. Wat. Res. 2019, 5, 1626–1653. DOI: 10.1039/c9ew00465c.
  • Yu, T.; Qiao, X.; Lu, X.; Fan, X. Selective Adsorption of Zn(II) on Surface Ion-imprinted Polymer. Desalin. Water Treat. 2015. DOI: 10.1080/19443994.2015.1074115.
  • Zhu, C.; Hu, T. J.; Tang, L.; Zeng, G. M.; Deng, Y. C.; Lu, Y.; Fang, S. Y.; Wang, J. J.; Liu, Y.; Yu, J. F. Highly Efficient Extraction of Lead Ions from Smelting Wastewater, Slag and Contaminated Soil by Two-dimensional Montmorillonite-based Surface Ion Imprinted Polymer Absorbent. Chemosphere. 2018, 209, 246–257. DOI: 10.1016/j.chemosphere.2018.06.105.
  • Msaadi, R.; Ammar, S.; Chehimi, M. M.; Yagci, Y. Diazonium-based Ion-imprinted Polymer/clay Nanocomposite for the Selective Extraction of Lead (II) Ions in Aqueous Media. Eur. Polym. J. 2017, 89, 367–380. DOI: 10.1016/j.eurpolymj.2017.02.029.
  • Kang, C. C.; Li, W. M.; Tan, L.; Li, H.; Wei, C. H.; Tang, Y. W. Highly Ordered Metal Ion Imprinted Mesoporous Silica Particles Exhibiting Specific Recognition and Fast Adsorption Kinetics. J. Mater. Chem. A. 2013, 1, 7147–7153. DOI: 10.1039/c3ta10761b.
  • Hong, M.; Xiu, W.; You, W.; Zhuang, Z.; Yan, Y. Adsorbents Based on Crown Ether Functionalized Composite Mesoporous Silica for Selective Extraction of Trace Silver. Chem. Eng. J. 2016, 1278–1287. DOI: 10.1016/j.cej.2016.11.030.
  • Mishra, S.; Verma, N. Surface Ion Imprinting-mediated Carbon Nanofiber-grafted Highly Porous Polymeric Beads: Synthesis and Application Towards Selective Removal of Aqueous Pb(II). Chem. Eng. J. 2016, 1142–1151. DOI: 10.1016/j.cej.2016.11.006.
  • Sebastian, M.; Mathew, B. Ion Imprinting Approach for the Fabrication of an Electrochemical Sensor and Sorbent for Lead Ions in Real Samples Using Modified Multiwalled Carbon Nanotubes. J. Mater. Sci. 2018, 53, 3557–3572. DOI: 10.1007/s10853-017-1787-x.
  • Qiang, L.; Su, H.; Tan, T. Synthesis of Ion-imprinted chitosan-TiO2 Adsorbent and Its Multi-functional Performances. Biochem. Eng. J. 2008, 38, 212–218. DOI: 10.1016/j.bej.2007.07.007.
  • Najafi, E.; Aboufazeli, F.; Zhad, H. R.; Sadeghi, O.; Amani, V. A Novel Magnetic Ion Imprinted Nano-polymer for Selective Separation and Determination of Low Levels of mercury(II) Ions in Fish Samples. Food Chem. 2013, 141, 4040–4045. DOI: 10.1016/j.foodchem.2013.06.118.
  • Ebrahimzadeh, H.; Asgharinezhad, A. A.; Moazzen, E.; Amini, M. M.; Sadeghi, O. A Magnetic Ion-imprinted Polymer for lead(II) Determination: A Study on the Adsorption of lead(II) by Beverages. J. Food Compos. Anal. 2015, 41, 74–80. DOI: 10.1016/j.jfca.2015.02.001.
  • Fu, X. C.; Wu, J.; Nie, L.; Xie, C. G.; Liu, J. H.; Huang, X. J. Electropolymerized Surface Ion Imprinting Films on a Gold Nanoparticles/single-wall Carbon Nanotube Nanohybrids Modified Glassy Carbon Electrode for Electrochemical Detection of Trace mercury(II) in Water. Anal. Chim. Acta. 2012, 720, 29–37. DOI: 10.1016/j.aca.2011.12.071.
  • Gao, B.; Du, J.; Zhang, Y. Preparation of Arsenate Anion Surface-imprinted Material IIP-PDMC/SiO2 and Study on Its Ion Recognition Property. Ind. Eng. Chem. Res. 2013, 52, 7651–7659. DOI: 10.1021/ie400440k.
  • Kiani, A.; Ghorbani, M. Synthesis of Core–shell Magnetic Ion-imprinted Polymer Nanospheres for Selective Solid-phase Extraction of Pb(II) from Biological, Food, and Wastewater Samples. J. Disper. Sci. Technol. 2016, 38, 1041–1048. DOI: 10.1080/01932691.2016.1219666.
  • Liu, Y.; Meng, X. G.; Luo, M.; Meng, M. J.; Ni, L.; Qiu, J.; Hu, Z. Y.; Liu, F. F.; Zhong, G. X.; Liu, Z. C., et al. Synthesis of Hydrophilic Surface Ion-imprinted Polymer Based on Graphene Oxide for Removal of Strontium from Aqueous Solution. J. Mater. Chem. A. 2015, 3, 1287–1297. DOI: 10.1039/c4ta04908j.
  • Huang, R. J.; Shao, N.; Hou, L.; Zhu, X. L. Fabrication of an Efficient Surface Ion-imprinted Polymer Based on Sandwich-like Graphene Oxide Composite Materials for Fast and Selective Removal of Lead Ions. Colloid. Surface. A. 2019, 566, 218–228. DOI: 10.1016/j.colsurfa.2019.01.011.
  • Sun, J. F.; Wu, L. S.; Li, Y. H. Removal of Lead Ions from Polyether sulfone/Pb(II)-imprinted Multi-walled Carbon Nanotubes Mixed Matrix Membrane. J. Taiwan Inst. Chem. Eng. 2017, 78, 219–229. DOI: 10.1016/j.jtice.2017.06.003.
  • Turan, K.; Canlidinc, R. S.; Kalfa, O. M. Selective Preconcentration of Trace Amounts of Cu(II) with Surface-imprinted Multiwalled Carbon Nanotubes. Clean-Soil Air Water. 2018, 46, 1700580. DOI: 10.1002/clen.201700580.
  • Liu, B.; Chen, W.; Peng, X.; Cao, Q.; Wang, Q.; Wang, D.; Meng, X.; Yu, G. Biosorption of Lead from Aqueous Solutions by Ion-imprinted Tetraethylenepentamine Modified Chitosan Beads. Int. J. Biol. Macromol. 2016, 86, 562–569. DOI: 10.1016/j.ijbiomac.2016.01.100.
  • Wei, P. J.; Li, Z. H.; Zhao, X. L.; Song, R. M.; Zhu, Z. G. Fe3O4/SiO2/CS Surface Ion-imprinted Polymer Modified Glassy Carbon Electrode for Highly Sensitivity and Selectivity Detection of Toxic Metal ions[J]. J. Taiwan Inst. Chem. E. 2020, 113, 107–113. DOI: 10.1016/j.jtice.2020.08.035.
  • Monier, M.; Abdel-Latif, A. Synthesis and Characterization of Ion-imprinted Chelating Fibers Based on PET for Selective Removal of Hg(II). Chem. Eng. J. 2013, 221, 452–460. DOI: 10.1016/j.cej.2013.02.003.
  • Cai, X. Q.; Li, J. H.; Zhang, Z.; Yang, F. F.; Dong, R. C.; Chen, L. X. Novel Pb(II) Ion Imprinted Polymers Based on Ionic Interaction via Synergy of Dual Functional Monomers for Selective Solid-phase Extraction of Pb(II) in Water Samples. ACS Appl. Mater. Interfaces. 2014, 6, 305–313. DOI: 10.1021/am4042405.
  • Fu, J. Q.; Wang, X. Y.; Li, J. H.; Ding, Y. J.; Chen, L. X. Synthesis of Multi-ion Imprinted Polymers Based on Dithizone Chelation for Simultaneous Removal of Hg(II), Cd(II), Ni(II) and Cu(II) from Aqueous Solutions. RSC Adv. 2016, 6, 44087–44095. DOI: 10.1039/c6ra07785d.
  • Hande, P. E.; Samui, A. B.; Kulkarni, P. S. Highly Selective Monitoring of Metals by Using Ion-imprinted Polymers. Environ. Sci. Pollut. Res. 2015, 22, 7375–7404. DOI: 10.1007/s11356-014-3937-x.
  • Yang, S.; Xu, M. Y.; Yin, J.; Zhao, T. X.; Li, C. Q.; Hua, D. B. Thermal-responsive Ion-imprinted Magnetic Microspheres for Selective Separation and Controllable Release of Uranium from Highly Saline Radioactive Effluents. Sep. Purif. Technol. 2020, 246, 116917. DOI: 10.1016/j.seppur.2020.116917.
  • Sadani, M.; Rasolevandi, T.; Azarpira, H.; Mahvi, A. H.; Ghaderpoori, M.; Mohseni, S. M.; Atamaleki, A. Arsenic Selective Adsorption Using a Nanomagnetic Ion Imprinted Polymer: Optimization, Equilibrium, and Regeneration Studies. J. Mol. Liq. 2020, 317, 114246. DOI: 10.1016/j.molliq.2020.114246.
  • Chen, A. W.; Zeng, G. M.; Chen, G. Q.; Hu, X. J.; Yan, M.; Guan, S.; Shang, C.; Lu, L. H.; Zou, Z. J.; Xie, G. X. Novel Thiourea-modified Magnetic Ion-imprinted chitosan/TiO2 Composite for Simultaneous Removal of Cadmium and 2,4-dichlorophenol. Chem. Eng. J. 2012, 191, 85–94. DOI: 10.1016/j.cej.2012.02.071.
  • Yuan, Z. C.; Zhu, Y. K.; Lan, Y.; Chen, D. J. Preparation of Cu(II)-imprinted Smart Microgels for Selective Separation of Copper Ions. Sep. Sci. Technol. 2015, 50, 1480–1486. DOI: 10.1080/01496395.2014.976879.
  • Mafu, L. D.; Msagati, T. A.; Mamba, B. B. Ion-imprinted Polymers for Environmental Monitoring of Inorganic Pollutants: Synthesis, Characterization, and Applications. Environ. Sci. Pollut. Res. Int. 2013, 20, 790–802. DOI: 10.1007/s11356-012-1215-3.
  • Afanas’ev, B. N.; Polozhentseva, Y. A.; Timonov, A. M. The Adsorption of Monomers (Metal Complexes with Schiff Bases) and the Structure and Properties of Polymeric Films Formed on the Surface of Graphite. Russ. J. Phys. Chem. A. 2010, 84, 2148–2153. DOI: 10.1134/S0036024410120241.
  • Tang, S. R.; Liu, E.; Liu, Q., and Tao, Z. Preparation and Recognition Performance of Pb(II)-Imprinted Polymers with Surface-imprinting Technique. Adv. Mater. Res. 2014, 955-959, 1245–1249.
  • Xu, F. F.; Duan, Y.; Zhang, H.; Qin, Y.; Haile, M. A.; Yan, Y. Advance in Surface Molecularly Imprinted Carriers. Chem. Ind. Eng. Prog. 2011, 6(4), 507–514. DOI:10.1007/s11460-011-0118-2.
  • Fan, H. T.; Fan, X. L.; Li, J.; Guo, M. M.; Zhang, D. S.; Yan, F.; Sun, T. Selective Removal of arsenic(V) from Aqueous Solution Using a Surface-ion-imprinted Amine-functionalized Silica Gel Sorbent. Ind. Eng. Chem. Res. 2012, 51, 5216–5223. DOI: 10.1021/ie202655x.
  • Li, Z. H.; Kou, W.; Wu, S., and Wu, L. Solid-phase Extraction of chromium(III) with an Ion-imprinted Functionalized Attapulgite Sorbent Prepared by a Surface Imprinting Technique. Anal. Methods UK. 2017, 9, 3221–3229. DOI: 10.1039/c7ay00346c.
  • Pan, J. M.; Zou, X. H.; Li, C. X.; Liu, Y.; Yan, Y. S.; Han, J. A. Synthesis and Applications of Ce(III)-imprinted Polymer Based on Attapulgite as the Sacrificial Support Material for Selective Separation of cerium(III) Ions. Microchim. Acta. 2010, 171, 151–160. DOI: 10.1007/s00604-010-0416-z.
  • Chang, X.; Na, J.; Hong, Z.; He, Q.; Hu, Z.; Zhai, Y.; Cui, Y. Solid-phase Extraction of iron(III) with an Ion-imprinted Functionalized Silica Gel Sorbent Prepared by a Surface Imprinting Technique. Talanta. 2007, 71, 38–43. DOI: 10.1016/j.talanta.2006.03.012.
  • Wang, Z. Q.; Wu, G. H.; He, C. Y. Ion-imprinted Thiol-functionalized Silica Gel Sorbent for Selective Separation of Mercury Ions. Microchim. Acta. 2009, 165, 151–157. DOI: 10.1007/s00604-008-0113-3.
  • Fan, H. T.; Li, J.; Li, Z. C.; Sun, T. An Ion-imprinted Amino-functionalized Silica Gel Sorbent Prepared by Hydrothermal Assisted Surface Imprinting Technique for Selective Removal of Cadmium (II) from Aqueous Solution. Appl. Surf. Sci. 2012, 258, 3815–3822. DOI: 10.1016/j.apsusc.2011.12.035.
  • Angeletti, E.; Canepa, C.; Martinetti, G.; Venturello, P. Silica Gel Functionalized with Amino Groups as a New Catalyst for Knoevenagel Condensation under Heterogeneous Catalysis Conditions. Tetrahedron Lett. 1988, 29(18), 2261–2264. DOI: 10.1016/S0040-4039(00)86727-1.
  • Zhu, J.; Liu, Q.; Liu, J.; Chen, R.; Zhang, H.; Yu, J.; Zhang, M.; Li, R.; Wang, J. Novel Ion-imprinted Carbon Material Induced by Hyperaccumulation Pathway for the Selective Capture of Uranium. ACS Appl. Mater. Interfaces. 2018, 10, 28877–28886. DOI: 10.1021/acsami.8b09022.
  • Lin, C. R.; Wang, H. Q.; Wang, Y. Y.; Cheng, Z. Q. Selective Solid-phase Extraction of Trace thorium(IV) Using Surface-grafted Th(IV)-imprinted Polymers with Pyrazole Derivative. Talanta. 2010, 81, 30–36. DOI: 10.1016/j.talanta.2009.11.032.
  • Liu, W. F.; Qin, L.; An, Z. L.; Chen, L.; Liu, X. G.; Yang, Y. Z.; Xu, B. S. Thermo-responsive Ion Imprinted Polymer on the Surface of Magnetic Carbon Microspheres for Identification and Removal of Low-concentrations of Cu(II). Environ. Chem. 2018, 15, 306–316. DOI: 10.1071/En18046.
  • Liang, Q.; Zhang, E. H.; Yan, G.; Yang, Y. Z.; Liu, X. G. A Lithium Ion-imprinted Adsorbent Using Magnetic Carbon Nanospheres as A Support for the Selective Recovery of Lithium Ions. Carbon. 2021, 176–651. DOI: 10.1016/j.carbon.2021.02.030.
  • Wang, J. Y.; Hu, J. F.; Hu, S. W.; Gao, G. W.; Song, Y. A Novel Electrochemical Sensor Based on Electropolymerized Ion Imprinted PoPD/ERGO Composite for Trace Cd(II) Determination in Water. Sensors. 2020, 20, 1004. DOI: 10.3390/s20041004.
  • Wang, Z. M.; Wang, L.; Zhou, C.; Sun, C. Y. Determination of Cesium Ions in Environmental Water Samples with a Magnetic Multi-walled Carbon Nanotube Imprinted Potentiometric Sensor. RSC Adv. 2021, 11, 10075–10082. DOI: 10.1039/D0RA09659H.
  • Hu, J. F.; Sedki, M.; Shen, Y.; Mulchandani, A.; Gao, G. W. Chemiresistor Sensor Based on Ion-imprinted Polymer (Iip)-functionalized rGO for Cd(II) Ions in Water. Sensors. Actuat. B. Chem. 2021, 346, 130474. DOI: 10.1016/j.snb.2021.130474.
  • Zeng, J.; Chen, H.; Yuan, X.; Guo, Q.; Yu, X. A Ion-imprinted chitosan/Al2O3 Composite Material for Selective Separation of copper(II). Desalin. Water Treat. 2015, 55, 1229–1239. DOI: 10.1080/19443994.2014.923332.
  • Li, C.; Gao, J.; Pan, J.; Zhang, Z.; Yan, Y. Synthesis, Characterization, and Adsorption Performance of Pb(II)-imprinted Polymer in nano-TiO2 Matrix. J. Environ. Sci. 2009, 21, 1722–1729. DOI: 10.1016/s1001-0742(08)62479-1.
  • Yu, G. T.; Hao, G.; Yan, Q. X.; Lian, B. Y.; Qi, J. W. Pb(II)-Imprinted Chitosan/TiO2 Hybrid Film for High Selectivity of Adsorption Lead Ion in Aqueous Solution. Adv. Mat. Res. 2010, 152–153, 484–488.
  • Zhang, H. X.; Dou, Q.; Jin, X. H.; Sun, D. X.; Wang, D.; Yang, T. R. Magnetic Pb(II) Ion-imprinted Polymer Prepared by Surface Imprinting Technique and Its Adsorption Properties. Sep. Sci. Technol. 2015, 50, 901–910. DOI: 10.1080/01496395.2014.978462.
  • Monier, M.; Abdel-Latif, D. A.; Abou El-Reash, Y. G. Ion-imprinted Modified Chitosan Resin for Selective Removal of Pd(II) Ions. J. Colloid Interfaces Sci. 2016, 469, 344–354. DOI: 10.1016/j.jcis.2016.01.074.
  • Di Bello, M. P.; Lazzoi, M. R.; Mele, G.; Scorrano, S.; Mergola, L.; Del Sole, R. A New Ion-imprinted Chitosan-based Membrane with an Azo-derivative Ligand for the Efficient Removal of Pd(II). Materials. 2017, 10, 1133. DOI: 10.3390/ma10101133.
  • Tang, X.; Gan, L.; Duan, Y.; Sun, Y.; Zhang, Y.; Zhang, Z. A Novel Cd(II)-imprinted Chitosan-based Composite Membrane for Cd(II) Removal from Aqueous Solution. Mater. Lett. 2017, 198, 121–123. DOI: 10.1016/j.matlet.2017.04.006.
  • Popuri, S. R.; Vijaya, Y.; Boddu, V. M.; Abburi, K. Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads. Bioresour. Technol. 2009, 100, 194–199. DOI: 10.1016/j.biortech.2008.05.041.
  • Kyzas, G. Z.; Siafaka, P. I.; Lambropoulou, D. A.; Lazaridis, N. K.; Bikiaris, D. N. Poly(itaconic Acid)-grafted Chitosan Adsorbents with Different Cross-linking for Pb(II) and Cd(II) Uptake. Langmuir. 2014, 30, 120–131. DOI: 10.1021/la402778x.
  • Luo, Y.; Li, H.; Wu, M.; Wang, W.; Wang, L. Selective Adsorption and Separation of Cr(VI) by Surface-imprinted Microsphere Based on Thiosemicarbazide-functionalized Sodium Alginate. Environ. Technol. 2020, 1–12. DOI: 10.1080/09593330.2020.1818834.
  • Monier, M.; Abdel-Latif, D. A. Synthesis and Characterization of Ion-imprinted Resin Based on Carboxymethyl Cellulose for Selective Removal of UO22+. Carbohyd. Polym. 2013, 97, 743–752. DOI: 10.1016/j.carbpol.2013.05.062.
  • Elik, A.; Tuzen, M.; Hazer, B.; Kaya, S.; Altunay, N.; Altunay, N. Development of Sensitive and Accurate Solid-phase Microextraction Procedure for Preconcentration of As(III) Ions in Real Samples. Sci. Rep. 2021, 11, 5481. DOI: 10.1038/s41598-021-84819-0.
  • Xu, Y.; Liang, X. F.; Xu, Y. M.; Qin, X.; Huang, Q. Q.; Wang, L.; Sun, Y. B. Remediation of Heavy Metal-polluted Agricultural Soils Using Clay Minerals: A Review. Pedosphere. 2017, 27, 193–204. DOI: 10.1016/S1002-0160(17)60310-2.
  • KarAbÖRk, M.; Ersöz, A.; Denizli, A.; Say, R. Polymer Clay Nanocomposite Iron Traps Based on Intersurface Ion-Imprinting. Ind. Eng. Chem. Res. 2008, 47(7), 2258–2264. DOI: 10.1021/ie070885o.
  • Karabörk, M.; Aliye, G. Ö. A Novel Ion-imprinted Nanocomposite for Selective Separation of Pb(II) Ions. J. Macromol. Sci. A. 2018, 55(1), 90–97. DOI: 10.1080/10601325.2017.1387494.
  • Lee, H. K.; Choi, J. W.; Choi, S. J. Magnetic Ion-imprinted Polymer Based on Mesoporous Silica for Selective Removal of Co(II) from Radioactive Wastewater. Sep. Sci. Technol. 2020, 11, 1842–1852. DOI: 10.1080/01496395.2020.1797798.
  • Fang, G. Z.; Tan, J.; Yan, X. P. An Ion-imprinted Functionalized Silica Gel Sorbent Prepared by a Surface Imprinting Technique Combined with a Sol-gel Process for Selective Solid-phase Extraction of cadmium(II). Anal. Chem. 2005, 77, 1734–1739. DOI: 10.1021/ac048570v.
  • Mojtaba, S.; Javad, F.; Khadijeh, A. Grafting of Ion-imprinted Polymers on the Surface of Silica Gel Particles through Covalently Surface-bound Initiators: A Selective Sorbent for Uranyl Ion. Anal. Chem. 2007, 79, 7116–7123. DOI: 10.1021/ac070968e.
  • Dey, R. K.; Jha, U.; Patnaik, T.; Singh, A. C.; Singh, V. K. Removal of Toxic/heavy Metal Ions Using Ion-imprinted Aminofunctionalized Silica Gel. Sep. Sci. Technol. 2009, 44, 1829–1850. DOI: 10.1080/01496390902880115.
  • Zhang, Z. L.; Xu, X. H.; Yan, Y. S. Kinetic and Thermodynamic Analysis of Selective Adsorption of Cs(I) by a Novel Surface Whisker-supported Ion-imprinted Polymer. Desalination. 2010, 263, 97–106. DOI: 10.1016/j.desal.2010.06.044.
  • Essawy, H. A.; Mohamed, M. F.; Ammar, N. S.; Ibrahim, H. S. The Promise of a Specially-designed Graft Copolymer of Acrylic Acid onto Cellulose as Selective Sorbent for Heavy Metal Ions. Int. J. Biol. Macromol. 2017, 103, 261–267. DOI: 10.1016/j.ijbiomac.2017.05.052.
  • Özkütük, E. B.; Karabörk, M. Fe3+-Imprinted Polymeric Systems. Hacettepe J. Biol. & Chem. 2007, 35(3), 195–202.
  • Peralta, M. E.; Nistico, R.; Franzoso, F.; Magnacca, G.; Fernandez, L.; Parolo, M. E.; Leon, E. G.; Carlos, L. Highly Efficient Removal of Heavy Metals from Waters by Magnetic Chitosan-based Composite. Adsorption. 2019, 25, 1337–1347. DOI: 10.1007/s10450-019-00096-4.
  • Huang, G. L.; Chen, Z. S.; Wang, L. L.; Lv, T. T.; Shi, J. Removal of thorium(IV) from Aqueous Solution Using Magnetic Ion-imprinted Chitosan Resin. J. Radioanal. Nucl. Chem. 2016, 310, 1265–1272. DOI: 10.1007/s10967-016-4993-0.
  • Zhao, B. S.; He, M.; Chen, B. B.; Hu, B. Novel Ion Imprinted Magnetic Mesoporous Silica for Selective Magnetic Solid Phase Extraction of Trace Cd Followed by Graphite Furnace Atomic Absorption Spectrometry Detection. Spectrochim. Acta B. 2015, 107, 115–124. DOI: 10.1016/j.sab.2015.03.005.
  • Zheng, H.; Gao, X. Z.; Song, L.; Guo, H. Y.; Yang, S. L.; Chang, X. J. Preconcentration of Trace Aluminum (III) Ion Using a Nanometer-sized TiO2-silica Composite Modified with 4-aminophenylarsonic Acid, and Its Determination by ICP-OES. Microchim. Acta. 2011, 175, 225–231. DOI: 10.1007/s00604-011-0667-3.
  • Jiang, W. J.; Jin, X.; Yu, X. H.; Wu, W. H.; Xu, L. J.; Fu, F. F. Ion-imprinted Magnetic Nanoparticles for Specific Separation and Concentration of Ultra-trace Methyl Mercury from Aqueous Sample. J. Chromatogr. A. 2017, 1496, 167–173. DOI: 10.1016/j.chroma.2017.03.049.
  • Xu, J. C.; Pu, Z. L.; Xu, X. C.; Wang, Y. Y.; Yang, D. Y.; Zhang, T.; Qiu, F. X. Simultaneous Adsorption of Li(I) and Rb(I) by Dual Crown Ethers Modified Magnetic Ion Imprinting Polymers. Appl. Organomet. Chem. 2019, 3, e4778. DOI: 10.1002/aoc.4778.
  • Zhang, Z.; Zhang, X.; Niu, D.; Li, Y.; Shi, J. Highly Efficient and Selective Removal of Trace Lead from Aqueous Solutions by Hollow Mesoporous Silica Loaded with Molecularly Imprinted Polymers. J. Hazard. Mater. 2017, 328, 160–169. DOI: 10.1016/j.jhazmat.2017.01.003.
  • Santo, J.; Penumakala, P. K.; Adusumalli, R. B. Mechanical and Electrical Properties of Three‐dimensional Printed Polylactic Acid–graphene–carbon Nanofiber Composites. Polym. Composite. 2021, 42, 3231–3242. DOI: 10.1002/pc.26053.
  • Vinu, A.; Miyahara, M.; Mori, T.; Ariga, K. Carbon Nanocage: A Large-pore Cage-type Mesoporous Carbon Material as an Adsorbent for Biomolecules. J. Porous Mat. 2006, 13, 379–383. DOI: 10.1007/s10934-006-8034-1.
  • Han, B.; Zhang, E. Y.; Cheng, G.; Zhang, L. J.; Wang, D. W.; Wang, X. K. Hydrothermal Carbon Superstructures Enriched with Carboxyl Groups for Highly Efficient Uranium Removal. Chem. Eng. J. 2018, 338, 734–744. DOI: 10.1016/j.cej.2018.01.089.
  • Zhang, Y.; Bian, T.; Jiang, R.; Zhang, Y.; Zheng, X.; Li, Z. Bionic Chitosan-carbon Imprinted Aerogel for High Selective Recovery of Gd(III) from End-of-life Rare Earth Productions. J. Hazard. Mater. 2021, 407, 124347. DOI: 10.1016/j.jhazmat.2020.124347.
  • Li, K.; Gao, Q.; Yadavalli, G.; Shen, X.; Lei, H. W.; Han, B.; Xia, K. S.; Zhou, C. G. Selective Adsorption of Gd(III) on a Magnetically Retrievable Imprinted Chitosan/carbon Nanotube Composite with High Capacity. ACS Appl. Mater. Interfaces. 2015, 7, 21047–21055. DOI: 10.1021/acsami.5b07560.
  • Zhang, L.; Zhong, L.; Yang, S.; Liu, D.; Wang, Y.; Wang, S.; Han, X.; Zhang, X. Adsorption of Ni(II) Ion on Ni(II) Ion-imprinted Magnetic Chitosan/poly(vinyl Alcohol) Composite. Colloid Polym. Sci. 2015, 293, 2497–2506. DOI: 10.1007/s00396-015-3626-4.
  • Fouladian, H. R.; Behbahani, M. Solid Phase Extraction of Pb(II) and Cd(II) in Food, Soil, and Water Samples Based on 1-(2-Pyridylazo)-2-naphthol-functionalized Organic–inorganic Mesoporous Material with the Aid of Experimental Design Methodology. Food Anal. Method. 2015, 8, 982–993. DOI: 10.1007/s12161-014-9981-9.
  • Dahaghin, Z.; Mousavi, H. Z.; Boutorabi, L. Application of Magnetic Ion-imprinted Polymer as a New Environmentally-friendly Nonocomposite for a Selective Adsorption of the Trace Level of Cu(II) from Aqueous Solution and Different Samples. J. Mol. Liq. 2017, 243, 380–386. DOI: 10.1016/j.molliq.2017.08.018.
  • Keçili, R.; Ghorbani-Bidkorbeh, F.; Dolak, B.; Canpolat, G.; Hussain, C. M. Functionalized Magnetic Nanoparticles as Powerful Sorbents and Stationary Phases for the Extraction and Chromatographic Applications. Trac-trend. Anal. Chem. 2021, 143, 116380. DOI: 10.1016/j.trac.2021.116380.
  • Xie, C. S.; Huang, X. J.; Wei, S. L.; Xiao, C.; Cao, J. F.; Wang, Z. X. Novel Dual-template Magnetic Ion Imprinted Polymer for Separation and Analysis of Cd2+ and Pb2+ in Soil and Food. J. Clean. Prod. 2020, 262, 121387. DOI: 10.1016/j.jclepro.2020.121387.
  • Deng, H. N.; Zhao, S. J.; Meng, Q. Q.; Zhang, W.; Hu, B. S. A Novel Surface Ion-imprinted Cation-exchange Membrane for Selective Separation of Copper Ion. Ind. Eng. Chem. Res. 2014, 53, 15230–15236. DOI: 10.1021/ie502612m.
  • Wang, W. S.; Li, Y. B.; Gao, B. J.; Huang, X. W.; Zhang, Y. Q.; Yang, X.; An, F. Q. Effective Removal of Fe(II) Impurity from Rare Earth Solution Using Surface Imprinted Polymer. Chem. Eng. Res. Des. 2013, 91, 2759–2764. DOI: 10.1016/j.cherd.2013.05.006.
  • Luo, X. B.; Guo, B.; Luo, J. M.; Deng, F.; Zhang, S. Y.; Luo, S. L.; Crittenden, J. Recovery of Lithium from Wastewater Using Development of Li Ion-imprinted Polymers. ACS Sustain. Chem. Eng. 2015, 3, 460–467. DOI: 10.1021/sc500659h.
  • Zhao, H.; Liang, Q.; Yang, Y.; Liu, W. F.; Liu, X. G. Magnetic Graphene Oxide Surface Lithium Ion-imprinted Material Towards Lithium Extraction from Salt Lake. Sep. Purif. Technol. 2021, 265, 118513. DOI: 10.1016/j.seppur.2021.118513.
  • Cheng, Z.; Wang, H.; Wang, Y.; He, F.; Zhang, H.; Yang, S. Synthesis and Characterization of an Ion-imprinted Polymer for Selective Solid Phase Extraction of thorium(IV). Microchim. Acta. 2011, 173, 423–431. DOI: 10.1007/s00604-011-0576-5.
  • Sja, B.; Nrbab, C.; Kmda, C.; Vep, D.; Pnnab, C. Multi-ion Imprinted Polymers (Miips) for Simultaneous Extraction and Preconcentration of Sb(III), Te(IV), Pb(II) and Cd(II) Ions from Drinking Water Sources. J. Hazard. Mater. 2021, 416, 126175.
  • Huang, K.; Chen, Y.; Zhou, F.; Zhao, X.; Liu, J.; Mei, S.; Zhou, Y.; Jing, T. Integrated Ion Imprinted Polymers-paper Composites for Selective and Sensitive Detection of Cd(II) Ions. J. Hazard. Mater. 2017, 333, 137–143. DOI: 10.1016/j.jhazmat.2017.03.035.
  • Bahrami, A.; Besharati-Seidani, A.; Abbaspour, A.; Shamsipur, M. A Highly Selective Voltammetric Sensor for Nanomolar Detection of Mercury Ions Using A Carbon Ionic Liquid Paste Electrode Impregnated with Novel Ion Imprinted Polymeric Nanobeads. Mat. Sci. Eng. C. Mater. 2015, 48, 205–212. DOI: 10.1016/j.msec.2014.12.005.
  • An, Z.; Liu, W.; Liang, Q.; Yan, G.; Qin, L.; Chen, L.; Wang, M.; Yang, Y.; Liu, X. Ion-imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+. Nano. 2019, 13, 1850140. DOI: 10.1142/S1793292018501400.
  • Torkashvand, M.; Gholivand, M. B.; Azizi, R. Synthesis, Characterization and Application of a Novel Ion-imprinted Polymer Based Voltammetric Sensor for Selective Extraction and Trace Determination of Cobalt (II) Ions. Sensor. Actuat. B. Chem. 2017, 243, 283–291. DOI: 10.1016/j.snb.2016.11.094.
  • Xu, Z.; Deng, P.; Li, J.; Tang, S. Fluorescent Ion-imprinted Sensor for Selective and Sensitive Detection of Copper(II) Ions. Sensor. Actuat. B. Chem. 2018, 255, 2095–2104. DOI: 10.1016/j.snb.2017.09.007.
  • Bakhshpour, M.; Denizli, A. Highly Sensitive Detection of Cd(II) Ions Using Ion-imprinted Surface Plasmon Resonance Sensors. Microchem. J. 2020, 159, 105572. DOI: 10.1016/j.microc.2020.105572.
  • Zhang, M. Y.; Huang, R. F.; Ma, X. G.; Guo, L. H.; Wang, Y.; Fan, Y. M. Selective Fluorescence Sensor Based on Ion-imprinted Polymer-modified Quantum Dots for Trace Detection of Cr(VI) in Aqueous Solution. Anal. Bioanal. Chem. 2019, 411, 7165–7175. DOI: 10.1007/s00216-019-02100-w.
  • Fattahi, M.; Ezzatzadeh, E.; Jalilian, R.; Taheri, A. Micro Solid Phase Extraction of Cadmium and Lead on a New Ion-imprinted Hierarchical Mesoporous Polymer via Dual-template Method in River Water and Fish Muscles: Optimization by Experimental Design. J. Hazard. Mater. 2021, 403, 123716. DOI: 10.1016/j.jhazmat.2020.123716.
  • Wei, P. J.; Zhu, Z. G.; Song, R. M.; Li, Z. H.; Chen, C. An Ion-imprinted Sensor Based on Chitosan-graphene Oxide Composite Polymer Modified Glassy Carbon Electrode for Environmental Sensing Application. Electrochim. Acta. 2019, 317, 93–101. DOI: 10.1016/j.electacta.2019.05.136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.