826
Views
2
CrossRef citations to date
0
Altmetric
Review

Defluoridation by Bare Nanoadsorbents, Nanocomposites, and Nanoadsorbent Loaded Mixed Matrix Membranes

ORCID Icon, & ORCID Icon
Pages 135-153 | Received 17 Oct 2019, Accepted 18 Feb 2022, Published online: 04 Mar 2022

References

  • Veldkamp, T. I. E.; Wada, Y.; Alerts, J. C. J. H.; Doll, P.; Gosling, S. N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y., et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun.,(2017) 8(1): 15697. DOI: 10.1038/ncomms15697.
  • Chaudhary, M., Mishra, S., Kumar, A. (2017) Estimation of water pollution and probability of health risk due to imbalanced nutrients in River Ganga, India. Int. J. River Basin Manag., 15(1), 53–60. DOI: 10.1080/15715124.2016.1205078.
  • Tortajada, C. (2021) Covid-19 and clean water, sanitation and waste water management. Int. J. Water Resour. Dev., 37(2), 179–181. DOI: 10.1080/07900627.2021.1877956.
  • Bhatnagar, A.; Kumar, E.; Sillanpaa, M. fluoride removal from water by adsorption-a review. Chem. Eng. J., 2011, 171(3), 811–840. DOI: 10.1016/j.cej.2011.05.028.
  • Strunecka, A.; Strunecky, O. 2020 Mechanisms of fluoride toxicity: from enzymes to underlying integrative networks. Appl. Sci., 10(20), 7100. DOI: 10.3390/app10207100.
  • Chae, G. T.; Yun, S. T.; Mayer, B.; Kim, K. H.; Kim, S. Y.; Kwon, J. S.; Kim, K.; Koh, Y. K. Fluorine geochemistry in bedrock groundwater of South Korea. Sci. Total Environ., 2007, 385(1–3), 272–283. DOI: 10.1016/j.scitotenv.2007.06.038.
  • Saxena, V.; Ahmed, S. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol., 2003, 43(6), 731–736. DOI: 10.1007/s00254-002-0672-2.
  • Jia-xi, W. L. T.; Yong-mei, B. Fluoride effects on the mulberry-silkworm system. Environ. Pollut., 1988, 52(1), 11–18. DOI: 10.1016/0269-7491(88)90104-2.
  • Zuo, H.; Chen, L.; Kong, M.; Qiu, L.; Lü, P.; Wu, P.; Yang, Y.; Chen, K. Toxic effects of fluoride on organisms. Life Sci., 2018, 198, 18–24. DOI: 10.1016/j.lfs.2018.02.001.
  • Meenakshi.; Maheshwari, R. C.; Maheshwari, R. C. Fluoride in drinking water and its removal. J. Hazard. Mater., 2006, 137(1), 456–463. DOI: 10.1016/j.jhazmat.2006.02.024.
  • Chaudhary, M.; Bhattacharya, P.; Maiti, A. Synthesis of iron oxyhydroxide nanoparticles and its application for fluoride removal from water. J. Environ. Chem. Eng., 2016, 4(4), 4897–4903. DOI: 10.1016/j.jece.2016.05.018.
  • Sundaram, C. S.; Meenakshi, S. Fluoride sorption using organic-inorganic hybrid type ion exchangers. J. Colloid Interface Sci., 2009, 333(1), 58–62. DOI: 10.1016/j.jcis.2009.01.022.
  • Richards, L. A.; Vuachère, M.; Schäfer, A. I. Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination., 2010, 261(3), 331–337. DOI: 10.1016/j.desal.2010.06.025.
  • Lacson, C. F. Z.; Lu, M.-C.; Huang, Y.-H. Fluoride-containing water: a global perspective and a pursuit to sustainable water defluoridation management-an overview. J. Cleaner Prod., 2021, 280, 124236. DOI: 10.1016/j.jclepro.2020.124236.
  • Karmakar, S.; Bhattacharjee, S.; De, S. Experimental and modeling of fluoride removal using aluminum fumarate (alfu) metal organic framework incorporated cellulose acetate phthalate mixed matrix membrane. J. Environ. Chem. Eng., 2017, 5(6), 6087–6097. DOI: 10.1016/j.jece.2017.11.035.
  • Mondal, S.; Chatterjee, S.; De, S. Theoretical investigation of cross flow ultrafiltration by mixed matrix membrane: a case study on fluoride removal. Desalination., 2015, 365, 347–354. DOI: 10.1016/j.desal.2015.03.017.
  • Chatterjee, S.; De, S. Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane. Sep. Purif. Technol., 2014, 125, 223–238. DOI: 10.1016/j.seppur.2014.01.055.
  • Karmakar, S.; Bhattacharjee, S.; De, S. Aluminium fumarate metal organic framework incorporated polyacrylonitrile hollow fiber membranes: spinning, characterization and application in fluoride removal from groundwater. Chem. Eng. J., 2018, 334, 41–53. DOI: 10.1016/j.cej.2017.10.021.
  • Pang, T.; Chan, T. S. A.; Jande, Y. A. C.; Shen, J. Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. Chemosphere., 2020, 255, 126950. DOI: 10.1016/j.chemosphere.2020.126950.
  • Mukherjee, S.; Kamila, B.; Paul, S.; Hazra, B.; Chowdhury, S.; Halder, G. Optimizing fluoride uptake influencing parameters of paper industry waste derived activated carbon. Microchem. J., 2021, 160, 105643. DOI: 10.1016/j.microc.2020.105643.
  • Takmil, F.; Esmaeili, H.; Mousavi, S. M.; Hashemi, S. A. Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride Ion. Adv. Powder Technol., 2020, 31(8), 3236–3245. DOI: 10.1016/j.apt.2020.06.015.
  • Larsen, M. J.; Pearce, E. I. F.; Jensen, S. J. Defluoridation of water at high ph with use of brushite, calcium hydroxide and bone char. J. Dent. Res., 1993, 72(11), 1519–1525. DOI: 10.1177/00220345930720111001.
  • Murugan, M.; Subramanian, E. Studies on defluoridation of water by tamarind seed, an unconventional biosorbent. J. Water Health., 2006, 4(4), 453–461. DOI: 10.2166/wh.2006.0029.
  • Raichur, A. M.; Basu, M. J. Adsorption of fluoride onto mixed rare earth oxides. Sep. Purif. Technol., 2001, 24(1–2), 121–127. DOI: 10.1016/S1383-5866(00)00219-7.
  • Alagumuthu, G.; Rajan, M. Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon. Chem. Eng. J., 2010, 158(3), 451–457. DOI: 10.1016/j.cej.2010.01.017.
  • Mohapatra, M.; Hariprasad, D.; Mohapatra, L.; Anand, S.; Mishra, B. K. Mg-doped nano ferrihydrite-a new adsorbent for fluoride removal from aqueous solutions. Appl. Surf. Sci., 2012, 258(10), 4228–4236. DOI: 10.1016/j.apsusc.2011.12.047.
  • Chai, L.; Wang, Y.; Zhao, N.; Yang, W.; You, X. Sulfate-Doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res., 2013, 47(1), 4040–4049. DOI: 10.1016/j.watres.2013.02.057.
  • Jin, Z. ;.; Liu, J.-H.; Meng, F.-L. ;.; Sun, B. ;.; Jia, Y.; Kong, L.-T.; Sun, B. ;.; Shen, W. ;.; Meng, F. L. ;.; Liu, J. H. Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism. J. Alloys Compd., 2016, 675, 292–300. DOI: 10.1016/j.jallcom.2016.03.118.
  • Chaudhary, M.; Rawat, S.; Jain, N.; Bhatnagar, A.; Maiti, A. Chitosan-Fe-Al-Mn metal oxyhydroxides composite as highly efficient fluoride scavenger for aqueous medium. Carbohydr. Polym., 2019, 216, 140–148. DOI: 10.1016/j.carbpol.2019.04.028.
  • Faghihian, H.; Atarodi, H.; Kooravand, M. S. Treatment, and application of a novel carbon nanostructure for removal of fluoride from aqueous solution. Desalination Water Treat., 2015, 54(9), 2432–2440. DOI: 10.1080/19443994.2014.899519.
  • Wang, J.; Xu, W.; Chen, L.; Jia, Y.; Wang, L.; Huang, X. J.; Liu, J. Excellent fluoride removal performance by ceo2-zro2 nanocages in water environment. Chem. Eng. J., 2013, 231, 198–205. DOI: 10.1016/j.cej.2013.07.022.
  • Dhillon, A.; Kumar, D. Development of a nanoporous adsorbent for the removal of health-hazardous fluoride ions from aqueous systems. J. Mater. Chem. A., 2015, 3(8), 4215–4228. DOI: 10.1039/c4ta06147k.
  • Dhillon, A.; Nair, M.; Bhargava, S. K.; Kumar, D. Excellent fluoride decontamination and antibacterial efficacy of fe–ca–zr hybrid metal oxide nanomaterial. J. Colloid Interface Sci., 2015, 457, 289–297. DOI: 10.1016/j.jcis.2015.06.045.
  • Liu, X.; Pang, H.; Liu, X.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M.; Hu, B.; Yang, H.; Wang, X. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovat., 2021, 2(1), 100076. DOI: 10.1016/j.xinn.2021.100076.
  • Barathi, M.; Krishna, A. S.; Rajesh, N. Impact of fluoride in potable water–an outlook on the existing defluoridation strategies and the road ahead. Coord. Chem. Rev., 2019, 387, 121–128. DOI: 10.1016/j.ccr.2019.02.006.
  • Mohapatra, M.; Anand, S.; Mishra, B. K.; Giles, D. E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manage., 2009, 91(1), 67–77. DOI: 10.1016/j.jenvman.2009.08.015.
  • Miretzky, P.; Cirelli, A. F. Fluoride removal from water by chitosan derivatives and composites: a review. J. Fluor. Chem., 2011, 132(4), 231–240. DOI: 10.1016/j.jfluchem.2011.02.001.
  • Jadhav, S. V.; Bringas, E.; Yadav, G. D.; Rathod, V. K.; Ortiz, I.; Marathe, K. V. Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J. Environ. Manage., 2015, 162, 306–325. DOI: 10.1016/j.jenvman.2015.07.020.
  • Yadav, K. K.; Kumar, S.; Pham, Q. B.; Gupta, N.; Rezania, S.; Kamyab, H.; Yadav, S.; Vymazal, J.; Kumar, V.; Tri, D. Q. Fluoride contamination, health problems and remediation methods in asian groundwater: a comprehensive review. Ecotoxicol. Environ. Saf., 2019, 182, 109362. DOI: 10.1016/j.ecoenv.2019.06.045.
  • Mukherjee, S.; Halder, G. A review on the sorptive elimination of fluoride from contaminated waste water. J. Environ. Chem. Eng., 2018, 6(1), 1257–1270. DOI: 10.1016/j.jece.2018.01.046.
  • Khan, S. T.; Malik, A. Engineered nanomaterials for water decontamination and purification: from lab to products. J. Hazard. Mater., 2019, 363, 295–308. DOI: 10.1016/j.jhazmat.2018.09.091.
  • Livingston, A.; Trout, B. L.; Horvath, I. T.; Johnson, M. D.; Vaccaro, L.; Coronas, J.; Babbitt, C. W.; Zhang, X.; Pradeep, T., and Driol, E., et al. Challenges and directions for green chemical engineering—role of nanoscale materials.Sustainable nanoscale engineering: from materials design to chemical processing,1st; Szekely, G., and Livingston, A.ed.; Elsevier: Amsterdam, Netherlands,2021: 1–18. DOI:10.1016/B978-0-12-814681-1.00001-1.
  • Zhang, C.; Luan, J.; Yu, X.; Chen, W. Characterization and adsorption performance of graphene oxide–montmorillonite nanocomposite for the simultaneous removal of Pb2+ and P-nitrophenol. J. Hazard. Mater., 2019, 378, 120739. DOI: 10.1016/j.jhazmat.2019.06.016.
  • Lin, Y.; Jin, X.; Owens, G.; Chen, Z. Simultaneous removal of mixed contaminants triclosan and copper by green synthesized bimetallic iron/nickel nanoparticles. Sci. Total Environ., 2019, 695, 133878. DOI: 10.1016/j.scitotenv.2019.133878.
  • Cai, W.; Fu, F.; Zhu, L.; Tang, B. Simultaneous removal of chromium(vi) and phosphate from water using easily separable magnetite/pyrite nanocomposite. J. Alloys Compd., 2019, 803, 118–125. DOI: 10.1016/j.jallcom.2019.06.285.
  • Pan, B.; Xu, J.; Wu, B.; Li, Z.; Liu, X. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ. Sci. Technol., 2013, 47(16), 9347–9354. DOI: 10.1021/es401710q.
  • Zhang, X.; Zhang, L.; Li, Z.; Jiang, Z.; Zheng, Q.; Lin, B.; Pan, B. Rational design of antifouling polymeric nanocomposite for sustainable fluoride removal from NOM-Rich water. Environ. Sci. Technol., 2017, 51(22), 13363–13371. DOI: 10.1021/acs.est.7b04164.
  • Kumar, A.; Paul, P.; Nataraj, S. K. Bionanomaterial scaffolds for effective removal of fluoride, chromium, and dye. ACS Sustain. Chem. Eng., 2017, 5(1), 895–903. DOI: 10.1021/acssuschemeng.6b02227.
  • Prasad, K. S.; Amin, Y.; Selvaraj, K. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: kinetic and equilibrium studies. J. Hazard. Mater., 2014, 276, 232–240. DOI: 10.1016/j.jhazmat.2014.05.038.
  • Chen, L.; He, B.; He, S.; Wang, T.; Su, C.; Jin, Y. Fe-Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism. Powder Technol., 2012, 227, 3–8. DOI: 10.1016/j.powtec.2011.11.030.
  • Zhang, D.; Luo, H.; Zheng, L.; Wang, K.; Li, H.; Wang, Y.; Huixia, F. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. J. Hazard. Mater., 2012, 241–242, 418–426. DOI: 10.1016/j.jhazmat.2012.09.066.
  • Zhao, X.; Wang, J.; Wu, F.; Wang, T.; Cai, Y.; Shi, Y.; Guibin, J. removal of fluoride from aqueous media by fe3o4@al(oh)3 magnetic nanoparticles. J. Hazard. Mater., 2010, 173(1–3), 102–109. DOI: 10.1016/j.jhazmat.2009.08.054.
  • Zhao, X.; Xiong, P.; Ma, W.; Qian, N.; Lu, W.; Zhang, L. A novel method for synthesis of co-al layered double hydroxides and their conversions to mesoporous CoAl2O4 nanostructures for applications in adsorption removal of fluoride ions. Microporous Mesoporous Mater., 2015, 201, 91–98. DOI: 10.1016/j.micromeso.2014.09.030.
  • Devi, R. R.; Umlong, I. M.; Raul, P. K.; Das, B.; Banerjee, S.; Singh, L. Defluoridation of water using nano-magnesium oxide. J. Exp. Nanosci. 2014, 9(5), 512–524. DOI: 10.1080/17458080.2012.675522.
  • Ghosh, A.; Chakrabarti, S.; Biswas, K.; Ghosh, U. C. Agglomerated nanoparticles of hydrous Ce(IV)+Zr(IV) mixed oxide: preparation, characterization and physicochemical aspects on fluoride adsorption. Appl. Surf. Sci., 2014, 307, 665–676. DOI: 10.1016/j.apsusc.2014.04.095.
  • Zhang, K.; Wu, S.; He, J.; Chen, L.; Cai, X.; Chen, K.; Li, Y.; Sun, B.; Lin, D.; Liu, G., et al. Development of a nanosphere adsorbent for the removal of fluoride from water. J. Colloid Interface Sci., (2016) 475: 17–25. DOI: 10.1016/j.jcis.2016.04.037.
  • Jiang, H.; Li, X.; Tian, L.; Wang, T.; Wang, Q.; Niu, P.; Chen, P.; Luo, X. Defluoridation investigation of yttrium by laminated y-zr-al tri-metal nanocomposite and analysis of the fluoride sorption mechanism. Sci. Total Environ., 2019, 648, 1342–1353. DOI: 10.1016/j.scitotenv.2018.08.258.
  • Tangsir, S.; Hafshejani, L. D.; Lähde, A.; Maljanen, M.; Hooshmand, A.; Naseri, A. A.; Moazed, H.; Jokiniemi, J.; Bhatnagar, A. Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method. Chem. Eng. J., 2016, 288, 198–206. DOI: 10.1016/j.cej.2015.11.097.
  • Hafshejani, L. D.; Tangsir, S.; Daneshvar, E.; Maljanen, M.; Lähde, A.; Jokiniemi, J.; Naushad, M.; Bhatnagar, A. Optimization of fluoride removal from aqueous solution by Al2O3 nanoparticles. J. Mol. Liq., 2017, 238, 254–262. DOI: 10.1016/j.molliq.2017.04.104.
  • Adak, M. K.; Sen, A.; Mukherjee, A.; Sen, S.; Dhak, D. Removal of fluoride from drinking water using highly efficient nano-adsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J. Alloys Compd., 2017, 719, 460–469. DOI: 10.1016/j.jallcom.2017.05.149.
  • Zendehdel, M.; Shoshtari-Yeganeh, B.; Khanmohamadi, H.; Cruciani, G. Removal of fluoride from aqueous solution by adsorption on NaP:HAp nanocomposite using response surface methodology. Process Saf . Environ. Prot. 2017, 109, 172–191. DOI: 10.1016/j.psep.2017.03.028.
  • Changmai, M.; Priyesh, J. P.; Purkait, M. K. Al2O3 nanoparticles synthesized using various oxidizing agents: defluoridation performance. J. Sci.: Adv. Mater. Devices., 2017, 2, 483–492. DOI: 10.1016/j.jsamd.2017.09.001.
  • Budyanto, S.; Kuo, Y. L.; Liu, J. C. Adsorption and precipitation of fluoride on calcite nanoparticles: a spectroscopic study. Sep. Purif. Technol., 2015, 150, 325–331. DOI: 10.1016/j.seppur.2015.07.016.
  • Rathore, V. K.; Mondal, P. Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: multicomponent isotherms and spent adsorbent management. Ind. Eng. Chem. Res., 2017, 56(28), 8081–8094. DOI: 10.1021/acs.iecr.7b01139.
  • Nayak, B.; Samant, A.; Patel, R.; Misra, P. K. Comprehensive understanding of the kinetics and mechanism of fluoride removal over a potent nanocrystalline hydroxyapatite surface. ACS Omega., 2017, 2(11), 8118–8128. DOI: 10.1021/acsomega.7b00370.
  • Ayinde, W. B.; Gitari, W. M.; Munkombwe, M.; Amidou, S. Green synthesis of Ag/MgO nanoparticle modified nanohydroxyapatite and its potential for defluoridation and pathogen removal in groundwater. Phys. Chem. Earth., 2018, 107, 25–37. DOI: 10.1016/j.pce.2018.08.007.
  • Maity, J. P. ;.; Lin, T.-J.; Chen, C. Y.; Hsu, C.-M.; Lee, W.-C.; Bhattacharya, P.; Bundschuh, J.; Chen, C. Y. Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: adsorption isotherm, adsorption kinetic and adsorption thermodynamics. Environ. Nanotechnol. Monit. Manag., 2018, 9, 18–28. DOI: 10.1016/j.enmm.2017.11.001.
  • Zhang, C.; Li, Y.; Jiang, Y.; Wang, T. J. Size-dependent fluoride removal performance of a magnetic fe3o4@fe-ti adsorbent and its defluoridation in a fluidized bed. Ind. Eng. Chem. Res., 2017, 56(9), 2425–2432. DOI: 10.1021/acs.iecr.6b03856.
  • Dehghani, M. H.; Haghighat, G. A.; Yetilmezsoy, K.; Mckay, G.; Heibati, B.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Adsorptive removal of fluoride from aqueous solution using single- and multi-walled carbon nanotubes. J. Mol. Liq., 2016, 216, 401–410. DOI: 10.1016/j.molliq.2016.01.057.
  • Chatterjee, S.; Lee, M. W.; Woo, S. H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol., 2010, 101(6), 1800–1806. DOI: 10.1016/j.biortech.2009.10.051.
  • Su, F.; Lu, C.; Cnen, W.; Bai, H.; Hwang, J. F. Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci. Total Environ., 2009, 407(8), 3017–3023. DOI: 10.1016/j.scitotenv.2009.01.007.
  • Rosebrock, D. C.; Riefler, N.; Wriedt, T.; Madler, L.; Tse, S. D. Disruptive burning of precursor/solvent droplets in flame-spray synthesis of nanoparticles. AIChE J., 2013, 59(12), 4553–4566. DOI: 10.1002/aic.14234.
  • Kumari, U.; Mishra, A.; Siddiqi, H.; Meikap, B. C. Effective defluoridation of industrial wastewater by using acid modified alumina in fixed-bed adsorption column: experimental and breakthrough curves analysis. J. Cleaner Prod., 2021, 279, 123645. DOI: 10.1016/j.jclepro.2020.123645.
  • Chaudhary, M.; Maiti, A. Defluoridation by highly efficient calcium hydroxide nanorods from synthetic and industrial wastewater. Colloids Surf. A Physicochem. Eng. Asp., 2019, 561, 79–88. DOI: 10.1016/j.colsurfa.2018.10.052.
  • Martinez-Vargas, D. R.; Larios-Duran, E. R.; Chazaro-Ruiz, L. F.; Rangel-Mendez, J. R. Correlation between physicochemical and electrochemical properties of an activated carbon doped with lanthanum for fluoride electrosorption. Sep. Purif. Technol., 2021, 268, 118702. DOI: 10.1016/j.seppur.2021.118702.
  • Rashid, U. S.; Das, T. K.; Sakthivel, T. S.; Seal, S.; Bezbaruah, A. N. GO-CeO₂ nanohybrid for ultra-rapid fluoride removal from drinking water. Sci. Total Environ., 2021, 793, 148547. DOI: 10.1016/j.scitotenv.2021.148547.
  • Yu, Y.; Yu, L.; Koh, K. Y.; Wang, C.; Chen, J. P. Rare-earth metal-based adsorbents for effective removal of arsenic from water: a critical review. Crit. Rev. Environ. Sci. Technol., 2018, 48(22–24), 1127–1164. DOI: 10.1080/10643389.2018.1514930.
  • Zhang, C.; Chen, L.; Wang, T. J.; Su, C. L.; Jin, Y. Synthesis and properties of a magnetic core-shell composite nanoadsorbent for fluoride removal from drinking water. Appl. Surf. Sci., 2014, 317, 552–559. DOI: 10.1016/j.apsusc.2014.08.143.
  • Pandi, K.; Viswanathan, N. Synthesis of alginate beads filled with nanohydroxyapatite: an efficient approach for fluoride sorption. J. Appl. Polym. Sci., 2015, 132(19), 1–9. DOI: 10.1002/app.41937.
  • Pandi, K.; Viswanathan, N. In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. Int. J. Biol. Macromol., 2015, 74, 351–359. DOI: 10.1016/j.ijbiomac.2014.12.004.
  • Dayananda, D.; Sarva, V. R.; Prasad, S. V.; Arunachalam, J.; Parameswaran, P.; Ghosh, N. N. Synthesis of MgO nanoparticle loaded mesoporous al2o3 and its defluoridation study. Appl. Surf. Sci., 2015, 329, 1–10. DOI: 10.1016/j.apsusc.2014.12.057.
  • Teimouri, A.; Nasab, S. G.; Habibollahi, S.; Fazel-Najafabadi, M.; Chermahini, A. N. Synthesis and characterization of a chitosan/montmorillonite/zro2 nanocomposite and its application as an adsorbent for removal of fluoride. RSC Adv., 2015, 5(9), 6771–6781. DOI: 10.1039/c4ra13139h.
  • Christina, E.; Viswanathan, P. Development of a novel nano-biosorbent for the removal of fluoride from water. Chin. J. Chem. Eng., 2015, 23(6), 924–933. DOI: 10.1016/j.cjche.2014.05.024.
  • Mohammadi, E.; Daraei, H.; Ghanbari, R.; Athar, S. D.; Zandsalimi, Y.; Ziaee, A.; Maleki, A.; Yetimezsoy, K. Synthesis of carboxylated chitosan modified with ferromagnetic nanoparticles for adsorptive removal of fluoride, nitrate, and phosphate anions from aqueous solutions. J. Mol. Liq., 2019, 273, 116–124. DOI: 10.1016/j.molliq.2018.10.019.
  • Qiu, H. ;.; Ye, M.; Zhang, M.-D. ;.; Zhang, X. ;.; Zhao, Y.; Yu, J. Nano-hydroxyapatite encapsulated inside an anion exchanger for efficient defluoridation of neutral and weakly alkaline water. ACS ES&T Engg., 2021, 1, 46–54. DOI: 10.1021/acsestengg.0c00005.
  • Patel, R. K.; Chawla, A. K.; Loulergue, P.; Teychene, B.; Pandey, J. K. 3D printed microchannel loaded with hematite nanoadsorbent for fluoride removal from water. Mater. Lett., 2019, 254, 190–193. DOI: 10.1016/j.matlet.2019.07.061.
  • Ghanbarian, M.; Ghanbarian, M.; Mahvi, A. H.; Tabatabaie, T. Enhanced fluoride removal over mgfe2o4–chitosan–caal nanohybrid: response surface optimization, kinetic and isotherm study. Int. J. Biol. Macromol., 2020, 148, 574–590. DOI: 10.1016/j.ijbiomac.2020.01.143.
  • Nehra, S.; Raghav, S.; Kumar, D. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study. Environ. Pollut., 2020, 258, 113773. DOI: 10.1016/j.envpol.2019.113773.
  • Wanga, Q.; Chena, P.; Zeng, X.; Jiang, H.; Meng, F.; Li, X.; Wang, T.; Zenga, G.; Liu, L.; Shu, H., et al. Synthesis of (Zro2-al2o3)/go nanocomposite by sonochemical method and the mechanism analysis of its high defluoridation. J. Hazard. Mater., (2020) 381: 120954. DOI: 10.1016/j.jhazmat.2019.120954.
  • Mukhopadhyay, K.; Naskar, A.; Ghosh, U. C.; Sasikumar, P. One-pot synthesis of β-cyclodextrin amended mesoporous cerium (IV) incorporated ferric oxide surface towards the evaluation of fluoride removal efficiency from contaminated water for point of use. J. Hazard. Mater., 2020, 384, 121235. DOI: 10.1016/j.jhazmat.2019.121235.
  • Affonso, L. N.; Marques, J. L., Jr; Lima, V. V. C.; Gonçalves, J. O.; Barbosa, S. C.; Primel, E. G.; Burgo, T. A. L.; Dotto, G. L.; Pinto, L. A. A., Jr; C, T. R. S. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J. Hazard. Mater., 2020, 388, 122042. DOI: 10.1016/j.jhazmat.2020.122042.
  • Chaudhary, M.; Jain, N.; Maiti, M. A comparative adsorption kinetic modeling of fluoride adsorption by nanoparticles and its polymeric nanocomposite. J. Environ. Chem. Eng., 2021, 9(5), 105595. DOI: 10.1016/j.jece.2021.105595.
  • Wan, S.; Lin, J.; Tao, W.; Yang, Y.; Li, Y.; He, F. Enhanced fluoride removal from water by nanoporous biochar-supported magnesium oxide. Ind. Eng. Chem. Res., 2019, 58(23), 9988–9996. DOI: 10.1021/acs.iecr.9b01368.
  • Robshaw, T. J.; James, A. M.; Hammond, D. B.; Reynolds, J.; Dawson, R.; Ogden, M. D. Calcium-loaded hydrophilic hypercrosslinked polymers for extremely high defluoridation capacity via multiple uptake mechanisms. J. Mater. Chem. A., 2020, 8(15), 7130–7144. DOI: 10.1039/C9TA12285K.
  • Wang, Q.; Chen, P.; Zeng, X.; Jiang, H.; Meng, F.; Li, X.; Wang, T.; Zeng, G.; Liu, L.; Shu, H., et al. Synthesis of (Zro2-al2o3)/go nanocomposite by sonochemical method and the mechanism analysis of its high defluoridation. J. Hazard. Mater., (2020) 381: 120954. DOI: 10.1016/j.jhazmat.2019.120954.
  • Kanno, C. M.; Sanders, R. L.; Flynn, S. M.; Lessard, G.; Myneni, S. C. B. Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone. Environ. Sci. Technol., 2014, 48(10), 5798–5807. DOI: 10.1021/es405135r.
  • Pandi, K.; Viswanathan, N. In situ fabrication of magnetic iron oxide over nano-hydroxyapatite gelatin eco-polymeric composite for defluoridation studies. J. Chem. Eng. Data., 2016, 61(1), 571–578. DOI: 10.1021/acs.jced.5b00727.
  • Chen, L.; Wu, H. X.; Wang, T. J.; Jin, Y.; Zhang, Y.; Dou, X. M. Granulation of Fe-Al-Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed. Powder Technol., 2009, 193(1), 59–64. DOI: 10.1016/j.powtec.2009.02.007.
  • Chen, L.; Wang, T. J.; Wu, H. X.; Jin, Y.; Zhang, Y., and Dou, X. M. Optimization of a Fe-Al-Ce Nano-adsorbent Granulation Process that Used Spray Coating in a Fluidized Bed for Fluoride Removal from Drinking Water. Powder Technol., 2011, 206(3): 291–296. DOI: 10.1016/j.powtec.2010.09.033.
  • Kuang, L.; Liu, Y.; Fu, D.; Zhao, Y. FeOOH-graphene oxide nanocomposites for fluoride removal from water: acetate mediated nano FeOOH growth and adsorption mechanism. J. Colloid Interface Sci., 2017, 490, 259–269. DOI: 10.1016/j.jcis.2016.11.071.
  • Wan, Z.; Chen, W.; Liu, C.; Liu, Y.; Dong, C. Preparation and characterization of γ-AlOOH@CS magnetic nanoparticle as a novel adsorbent for removing fluoride from drinking water. J. Colloid Interface Sci., 2015, 443, 115–124. DOI: 10.1016/j.jcis.2014.12.012.
  • Sahoo, S. K.; Hota, G. Surface functionalization of GO with MgO MgFe2O4 binary oxides : a novel magnetic nanoadsorbent for removal of fluoride ions. J. Environ. Chem. Eng. 2018, 6(2), 2918–2931. DOI: 10.1016/j.jece.2018.04.054.
  • Parashar, K.; Ballav, N.; Debnath, S.; Pillay, K.; Maity, A. Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite. J. Colloid Interface Sci., 2016, 476, 103–118. DOI: 10.1016/j.jcis.2016.05.013.
  • Zhao, B.; Zhang, Y.; Dou, X.; Wu, X.; Yang, M. Granulation of Fe–Al–Ce trimetal hydroxide as a fluoride adsorbent using the extrusion method. Chem. Eng. J., 2012, 185–186, 211–221. DOI: 10.1016/j.cej.2012.01.085.
  • Alagumuthu, G.; Veeraputhiran, V.; Venkataraman, R. Fluoride sorption using cynodon dactylon based activated carbon. Hem. Ind., 2011, 65(1), 23–35. DOI: 10.2298/HEMIND100712052A.
  • Dou, X.; Zhang, Y.; Wang, H.; Wang, T.; Wang, Y. Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water. Water Res., 2011, 45(12), 3571–3578. DOI: 10.1016/j.watres.2011.04.002.
  • Swain, S. K.; Patnaik, T.; Singha, V. K.; Jha, U.; Patel, R. K.; Dey, R. K. K. Equilibrium and thermodynamic aspects of removal of fluoride from drinking water using meso-structured zirconium phosphate. Chem. Eng. J., 2011, 171(3), 1218–1226. DOI: 10.1016/j.cej.2011.05.030.
  • Li, Y.; Zhang, P.; Du, Q.; Peng, X.; Liu, T.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; Zhu, H., et al. Adsorption of fluoride from aqueous solution by graphene. J. Colloid Interface Sci., (2011) 363(1): 348–354. DOI: 10.1016/j.jcis.2011.07.032.
  • El-sayed, M. E. A. (2020) Nanoadsorbents for water and wastewater remediation. Sci. Total Environ., 739, 139903. DOI: 10.1016/j.scitotenv.2020.139903.
  • El-Gendy, N. S.; Omran, B. A. Green Synthesis of Nanoparticles for Water Treatment. In In nano and bio-based technologies for wastewater treatment: prediction and control tools for the dispersion of pollutants in the environment, 1st ed.; Fosso-Kankeu, E., Ed.; John Wiley & Sons: Hoboken NJ, USA and Scrivener Publishing LLC: Beverly, USA, 2019; pp 205–264.
  • Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S. K.; Poinern, G. E. J. Green synthesis of metallic nanoparticles via biological entities. Materials., 2015, 8(11), 7278–7308. DOI: 10.3390/ma8115377.
  • Ali, M.; Ahmed, T.; Wu, W.; Hossain, A.; Hafeez, R.; Masum, M. I.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials., 2020, 10(6), 1146. DOI: 10.3390/nano10061146.
  • Huang, J.; Lin, L.; Sun, D.; Chen, H.; Yang, D.; Li, Q. Bio-inspired synthesis of metal nanomaterials and applications. Chemical Society Reviews. 2015, 44(17), 6330–6374. DOI: 10.1039/C5CS00133A.
  • Carofiglio, M.; Barui, S.; Cauda, V.; Laurenti, M. Doped zinc oxide nanoparticles: synthesis, characterization, and potential use in nanomedicine. Appl. Sci., 2020, 10(15), 5194. DOI: 10.3390/app10155194.
  • Galstyan, V.; Poli, N.; Arco, A. D.; Macis, S.; Lupi, S.; Comini, E. A novel approach for green synthesis of wo3 nanomaterials and their highly selective chemical sensing properties. J. Mater. Chem. A., 2020, 8(39), 20373–20385. DOI: 10.1039/D0TA06418A.
  • Jiang, G.; Jin, L.; Pan, Q.; Peng, N.; Meng, Y.; Huang, L., and Wang, H. Structural modification of aluminum oxides for removing fluoride in water: crystal forms and metal ion doping. Environ. Technol., 2021. Online early access. DOI: 10.1080/09593330.2021.1921044. Online early access.1–14.
  • Huang, L.; Yang, Z.; Lei, D.; Liu, F.; He, Y.; Wang, H.; Luo, J. Experimental and modeling studies for adsorbing different species of fluoride using lanthanum-aluminum perovskite. Chemosphere., 2021, 263, 128089. DOI: 10.1016/j.chemosphere.2020.128089.
  • Rawat, S.; Maiti, A. Facile preparation of iron oxyhydroxide–biopolymer (chitosan/alginate) beads and their comparative insights into arsenic removal. Sep. Purif. Technol., 2021, 272, 118983. DOI: 10.1016/j.seppur.2021.118983.
  • Nunes-pereira, J.; Lima, R.; Choudhary, G.; Sharma, P. R.; Ferdov, S.; Botelho, G.; Sharma, R. K.; Lanceros-Méndez, S. Highly efficient removal of fluoride from aqueous media through polymer composite membranes. Sep. Purif. Technol., 2018, 205, 1–10. DOI: 10.1016/j.seppur.2018.05.015.
  • Zhang, Q.; Bolisetty, S.; Cao, Y.; Handschin, S.; Adamcik, J.; Peng, Q.; Mezzenga, R. Selective and efficient removal of fluoride from water: in situ engineered amyloid fibril/zro2 hybrid membranes. Angew. Chem. Int., 2019, 58(18), 6012–6016. DOI: 10.1002/anie.201901596.
  • He, J.; Cui, A.; Ni, F.; Deng, S.; Shen, F.; Song, C.; Lou, L.; Tian, D.; Huang, C.; Long, L. In situ-generated yttrium-based nanoparticle/polyethersulfone composite adsorptive membranes: development, characterization, and membrane formation mechanism. J. Colloid Interface Sci., 2019, 536, 710–721. DOI: 10.1016/j.jcis.2018.10.064.
  • Zhang, J.; Chen, N.; Su, P.; Li, M.; Feng, C. Fluoride removal from aqueous solution by zirconium-chitosan/graphene oxide membrane. React. Funct. Polym., 2017, 114, 127–135. DOI: 10.1016/j.reactfunctpolym.2017.03.008.
  • Chaudhary, M.; Maiti, A. M. Fe–Al–Mn@chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: removal mechanisms and antibacterial behavior. J. Membr. Sci., 2020, 611, 118372. DOI: 10.1016/j.memsci.2020.118372.
  • Wang, G.; Li, D.; Wang, S.; Zhao, Z.; Lv, S.; Qiu, J. Ternary NiFeMn layered metal oxide (LDO) compounds for capacitive deionization defluoridation: the unique role of Mn. Sep. Purif. Technol., 2021, 254, 1176667. DOI: 10.1016/j.seppur.2020.117667.
  • Hardian, R.; Liang, Z.; Zhang, X.; Szekely, G. Artificial intelligence: the silver bullet for sustainable materials development. Green Chem., 2020, 22(21), 7521–7528. DOI: 10.1039/D0GC02956D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.