532
Views
1
CrossRef citations to date
0
Altmetric
Review

Hydrogel Applications to Microbiological Water Treatment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 155-163 | Received 20 May 2021, Accepted 19 Feb 2022, Published online: 25 Mar 2022

References

  • Kurwadkar, S.;. Occurrence and Distribution of Organic and Inorganic Pollutants in Groundwater. Water Environ. Res. 2019, 91(10), 1001–1008. DOI: 10.1002/wer.1166.
  • Rajput, P.; Sinha, R. K.; Devi, P. Materials in Surface-enhanced Raman Spectroscopy-based Detection of Inorganic Water Pollutants, In: Inorg. Pollut. Water, Elsevier. 2020, 153–172. DOI: 10.1016/b978-0-12-818965-8.00009-3.
  • W.H.O. WHO, Drinking-water, (2019). https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed May 15, 2021).
  • Pandey, P. K.; Kass, P. H.; Soupir, M. L.; Biswas, S.; Singh, V. P. Contamination of Water Resources by Pathogenic Bacteria. AMB Express. 2014, 4(1), 1–16. DOI: 10.1186/s13568-014-0051-x.
  • Anand, S. S.; Philip, B. K., and Mehendale, H. M. Chlorination Byproducts. In Encycl. Toxicol, Third. Ed. London: Academic Press: Elsevier. 2014; pp 855–859. 10.1016/B978-0-12-386454-3.00276-1
  • Murcia, J. J.; Hernández-Laverde, M.; Rojas, H.; Muñoz, E.; Navío, J. A.; Hidalgo, M. C. Study of the Effectiveness of the Flocculation-photocatalysis in the Treatment of Wastewater Coming from Dairy Industries. J. Photochem. Photobiol. A Chem. 2018, 358, 256–264. DOI: 10.1016/j.jphotochem.2018.03.034.
  • Nageeb, M.;. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, In. Org. Pollut. - Monit. Risk Treat., InTech. 2013. DOI: 10.5772/54048.
  • Shanmuganathan, S.; Loganathan, P.; Kazner, C.; Johir, M. A. H.; Vigneswaran, S. Submerged Membrane Filtration Adsorption Hybrid System for the Removal of Organic Micropollutants from a Water Reclamation Plant Reverse Osmosis Concentrate. Desalination. 2017, 401, 134–141. DOI: 10.1016/j.desal.2016.07.048.
  • Wei, C.; Zhang, F.; Hu, Y.; Feng, C.; Wu, H. Ozonation in Water Treatment: The Generation, Basic Properties of Ozone and Its Practical Application. Rev. Chem. Eng. 2017, 33, 49–89. DOI: 10.1515/revce-2016-0008.
  • Sinha, V.; Chakma, S. Advances in the Preparation of Hydrogel for Wastewater Treatment: A Concise Review. J. Environ. Chem. Eng. 2019, 7(5), 103295. DOI: 10.1016/j.jece.2019.103295.
  • Dil, N. N.; Sadeghi, M. Free Radical Synthesis of Nanosilver/gelatin-poly (Acrylic Acid) Nanocomposite Hydrogels Employed for Antibacterial Activity and Removal of Cu(II) Metal Ions. J. Hazard. Mater. 2018, 351, 38–53. DOI: 10.1016/j.jhazmat.2018.02.017.
  • Nayak, S.; Prasad, S. R.; Mandal, D.; Das, P. Carbon Dot Cross-linked Polyvinylpyrrolidone Hybrid Hydrogel for Simultaneous Dye Adsorption, Photodegradation and Bacterial Elimination from Waste Water. J. Hazard. Mater. 2020, 392, 122287. DOI: 10.1016/j.jhazmat.2020.122287.
  • Sahraei, R.; Ghaemy, M. Synthesis of Modified Gum Tragacanth/graphene Oxide Composite Hydrogel for Heavy Metal Ions Removal and Preparation of Silver Nanocomposite for Antibacterial Activity. Carbohydr. Polym. 2017, 157, 823–833. DOI: 10.1016/j.carbpol.2016.10.059.
  • Sharshir, S. W.; Algazzar, A. M.; Elmaadawy, K. A.; Kandeal, A. W.; Elkadeem, M. R.; Arunkumar, T.; Zang, J.; Yang, N. New Hydrogel Materials for Improving Solar Water Evaporation, Desalination and Wastewater Treatment: A Review. Vol. 491. Desalination. 2020, 114564. doi:10.1016/j.desal.2020.114564
  • Van Tran, V.; Park, D.; Lee, Y. C. Hydrogel Applications for Adsorption of Contaminants in Water and Wastewater Treatment. Environ. Sci. Pollut. Res. 2018, 25(25), 24569–24599. DOI: 10.1007/s11356-018-2605-y.
  • Alcântara, M. T. S.; Lincopan, N.; Santos, P. M.; Ramirez, P. A.; Brant, A. J. C.; Riella, H. G.; Lugão, A. B. Simultaneous Hydrogel Crosslinking and Silver Nanoparticle Formation by Using Ionizing Radiation to Obtain Antimicrobial Hydrogels. Radiat. Phys. Chem. 2019, 165, 108369. DOI: 10.1016/j.radphyschem.2019.108369.
  • Kumar, A.; Boyer, C.; Nebhani, L.; Wong, E. H. H.; de Alcantara, B. N.; Araujo, F. M. C.; Queiroz, M. G. L.; Cruz, A. C. R.; Vasconcelos, B. H. B.; Chiang, J. O. Highly Bactericidal Macroporous Antimicrobial Polymeric Gel for Point-of-Use Water Disinfection. Sci. Rep. 2018, 8(1), 1–9. DOI: 10.1038/s41598-018-26202-0.
  • Ahmed, E. M.;. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6(2), 105–121. DOI: 10.1016/j.jare.2013.07.006.
  • Devi, L.; Gaba, P. Hydrogel: An Updated Primer. Journal of Critical Reviews. 2019, 1–10. DOI: 10.22159/jcr.2019v6i4.33266.
  • De Oliveira Cruz, F. S.; Nascimento, M. A.; Puiatti, G. A.; De Oliveira, A. F.; Mounteer, A. H.; Lopes, R. P. Textile Effluent Treatment Using a Fixed Bed Reactor Using Bimetallic Fe/Ni Nanoparticles Supported on Chitosan Spheres. J. Environ. Chem. Eng. 2020, 8(5), 104133. DOI: 10.1016/j.jece.2020.104133.
  • Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M. Classification, Processing and Application of Hydrogels: A Review, Mater. Sci. Eng. C. 2015, 57, 414–433. DOI: 10.1016/j.msec.2015.07.053.
  • Ahmed, A. E. S. I.;. Hydrogels for Water Filters: Characterization and Regeneration. J. Appl. Polym. Sci. 2012, 123(3), 1889–1895. DOI: 10.1002/app.34679.
  • Barik, B.; Nayak, P. S.; and Dash, P. Nanomaterials in Wastewater Treatments. In Nanotechnol. Beverage Ind, Amrane, A.; Rajendran, S.; Anh Nguyen, T.; Assadi, A.; Sharoba, A.;(Eds.). Elsevier: 2020, pp 185–206. doi:10.1016/b978-0-12-819941-1.00007-9.
  • Pooresmaeil, M.; Namazi, H. Application of Polysaccharide-based Hydrogels for Water Treatments, In. Hydrogels Based Nat. Polym., Elsevier. 2019, 411–455. DOI: 10.1016/B978-0-12-816421-1.00014-8.
  • Pérez-Álvarez, L.; Ruiz-Rubio, L.; Lizundia, E.; Vilas-Vilela, J. L. Polysaccharide-Based Superabsorbents: Synthesis, Properties, and Applications; Springer: Cham, 2019, pp 1393–1431. DOI: 10.1007/978-3-319-77830-3_46.
  • Gyles, D. A.; Castro, L. D.; Silva, J. O. C.; Ribeiro-Costa, R. M. A Review of the Designs and Prominent Biomedical Advances of Natural and Synthetic Hydrogel Formulations. Eur. Polym. J. 2017. DOI: 10.1016/j.eurpolymj.2017.01.027.
  • Jing, G.; Wang, L.; Yu, H.; Amer, W. A.; Zhang, L. Recent Progress on Study of Hybrid Hydrogels for Water Treatment, Colloids Surfaces A Physicochem. Eng. Asp. 2013, 416, 86–94. DOI: 10.1016/j.colsurfa.2012.09.043.
  • Wang, L.; He, J.; Zhu, L.; Wang, Y.; Feng, X.; Chang, B.; Karahan, H. E.; Chen, Y. Assembly of Pi-functionalized Quaternary Ammonium Compounds with Graphene Hydrogel for Efficient Water Disinfection. J. Colloid Interface Sci. 2019, 535, 149–158. DOI: 10.1016/j.jcis.2018.09.084.
  • Chen, Y.; Hao, Y.; Li, S.; Luo, Z.; Gao, Q. Preparation of Hydroxybutyl Starch with a High Degree of Substitution and Its Application in Temperature-sensitive Hydrogels. Food Chem. 2021, 355, 129472. DOI: 10.1016/j.foodchem.2021.129472.
  • Sun, L.; Mo, Z.; Li, Q.; Zheng, D.; Qiu, X.; Pan, X. Facile Synthesis and Performance of pH/temperature Dual-response Hydrogel Containing Lignin-based Carbon Dots. Int. J. Biol. Macromol. 2021, 175, 516–525. DOI: 10.1016/j.ijbiomac.2021.02.049.
  • Hou, S.; Wang, X.; Zhang, J. High Water Content Hydrogels with Instant Mechanical Recovery, Anti-high Temperature and Anti-high Ionic Strength Properties, Colloids Surfaces A Physicochem. Eng. Asp. 2021, 618, 126456. DOI: 10.1016/j.colsurfa.2021.126456.
  • Vaicekauskaite, J.; Yang, C.; Skov, A. L.; Suo, Z. Electric Field Concentration in Hydrogel–elastomer Devices. Extrem. Mech. Lett. 2020, 34, 100597. DOI: 10.1016/j.eml.2019.100597.
  • Gasco, M. R.; Pattarino, F.; Lattanzi, F. Long-acting Delivery Systems for Peptides: Reduced Plasma Testosterone Levels in Male Rats after a Single Injection. Int. J. Pharm. 1990, 62(2–3), 119–123. DOI: 10.1016/0378-5173(90)90225-S.
  • Sjöström, B.; Bergenståhl, B. Preparation of Submicron Drug Particles in Lecithin-stabilized O/w Emulsions I. Model Studies of the Precipitation of Cholesteryl Acetate. Int. J. Pharm. 1992, 88(1–3), 53–62. DOI: 10.1016/0378-5173(92)90303-J.
  • Trotta, M.; Debernardi, F.; Caputo, O. Preparation of Solid Lipid Nanoparticles by a Solvent Emulsification-diffusion Technique. Int. J. Pharm. 2003, 257(1–2), 153–160. DOI: 10.1016/S0378-5173(03)00135-2.
  • Jadhav, S. A.; Brunella, V.; Sapino, S.; Caprarelli, B.; Riedo, C.; Chirio, D.; Gallarate, M. Poly (N-isopropylacrylamide) Based Hydrogels as Novel Precipitation and Stabilization Media for Solid Lipid Nanoparticles (Slns. J. Colloid Interface Sci. 2019, 541, 454–460. DOI: 10.1016/j.jcis.2019.01.107.
  • Da Silva, E. P.; Guilherme, M. R.; Garcia, F. P.; Nakamura, C. V.; Cardozo-Filho, L.; Alonso, C. G.; Rubira, A. F.; Kunita, M. H. Drug Release Profile and Reduction in the in Vitro Burst Release from pectin/HEMA Hydrogel Nanocomposites Crosslinked with Titania. RSC Adv. 2016, 6(23), 19060–19068. DOI: 10.1039/c5ra27865a.
  • Lim Teik Zheng, A.; Phromsatit, T.; Boonyuen, S.; Andou, Y. Synthesis of Silver Nanoparticles/porphyrin/reduced Graphene Oxide Hydrogel as Dye Adsorbent for Wastewater Treatment. FlatChem. 2020, 23, 100174. DOI: 10.1016/j.flatc.2020.100174.
  • El-Batal, A. I.; Abd Elkodous, M.; El-Sayyad, G. S.; Al-Hazmi, N. E.; Gobara, M.; Baraka, A. Gum Arabic Polymer-stabilized and Gamma Rays-assisted Synthesis of Bimetallic Silver-gold Nanoparticles: Powerful Antimicrobial and Antibiofilm Activities against Pathogenic Microbes Isolated from Diabetic Foot Patients. Int. J. Biol. Macromol. 2020, 165, 169–186. DOI: 10.1016/j.ijbiomac.2020.09.160.
  • Hafezi Moghaddam, R.; Haji Shabani, A. M.; Dadfarnia, S. Synthesis of New Hydrogels Based on Pectin by Electron Beam Irradiation with and without Surface Modification for Methylene Blue Removal. J. Environ. Chem. Eng. 2019, 7(1), 102919. DOI: 10.1016/j.jece.2019.102919.
  • Jurkin, T.; Gotić, M.; Štefanić, G.; Pucić, I. Gamma-irradiation Synthesis of Iron Oxide Nanoparticles in the Presence of PEO, PVP or CTAB. Radiat. Phys. Chem. 2016, 124, 75–83. DOI: 10.1016/j.radphyschem.2015.11.019.
  • Mostakhdemin, M.; Nand, A.; Arjmandi, M.; Ramezani, M. Mechanical and Microscopical Characterisation of Bilayer Hydrogels Strengthened by TiO2 Nanoparticles as a Cartilage Replacement Candidate, Mater. Today Commun. 2020, 25, 101279. DOI: 10.1016/j.mtcomm.2020.101279.
  • Tao, X.; Wang, S.; Li, Z.; Zhou, S. Green Synthesis of Network Nanostructured Calcium Alginate Hydrogel and Its Removal Performance of Cd2+ and Cu2+ Ions. Mater. Chem. Phys. 2021, 258, 123931. DOI: 10.1016/j.matchemphys.2020.123931.
  • Xu, R.; Liu, W.; Cai, J.; Li, Z. Robust RGO Composite Aerogels with High Adsorption Capabilities for Organic Pollutants in Water, Sep. Purif. Technol. 2021, 257, 117876. DOI: 10.1016/j.seppur.2020.117876.
  • Badsha, M. A. H.; Khan, M.; Wu, B.; Kumar, A.; Lo, I. M. C. Role of Surface Functional Groups of Hydrogels in Metal Adsorption: From Performance to Mechanism. J. Hazard. Mater. 2021, 408, 124463. DOI: 10.1016/j.jhazmat.2020.124463.
  • Priyadarshi, R.; Kumar, B.; Rhim, J. W. Green and Facile Synthesis of carboxymethylcellulose/ZnO Nanocomposite Hydrogels Crosslinked with Zn2+ Ions. Int. J. Biol. Macromol. 2020, 162, 229–235. DOI: 10.1016/j.ijbiomac.2020.06.155.
  • Sun, D.; Cao, F.; Wang, H.; Guan, S.; Su, A.; Xu, W.; Xu, S. SERS Hydrogel Pellets for Highly Repeatable and Reliable Detections of Significant Small Biomolecules in Complex Samples without Pretreatment. Sens. Actuators B Chem. 2021, 327, 128943. DOI: 10.1016/j.snb.2020.128943.
  • K.v.g, R.; Kubendiran, H.; Ramesh, K.; Rani, S.; Mandal, T. K.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Batch and Column Study on Tetracycline Removal Using Green Synthesized NiFe Nanoparticles Immobilized Alginate Beads. Environ. Technol. Innovations. 2020, 17, 100520. DOI: 10.1016/j.eti.2019.100520.
  • López-Barriguete, J. E.; Flores-Rojas, G. G.; López-Saucedo, F.; Isoshima, T.; Bucio, E. Improving Thermo-responsive Hydrogel Films by Gamma Rays and Loading of Cu and Ag Nanoparticles. J. Appl. Polym. Sci. 2021, 138(7), 49841. DOI: 10.1002/app.49841.
  • Taghizadeh, M. T.; Siyahi, V.; Ashassi-Sorkhabi, H.; Zarrini, G. ZnO, AgCl and AgCl/ZnO Nanocomposites Incorporated Chitosan in the Form of Hydrogel Beads for Photocatalytic Degradation of MB, E. Coli and S. Aureus. Int. J. Biol. Macromol. 2020, 147, 1018–1028. DOI: 10.1016/j.ijbiomac.2019.10.070.
  • Zhang, D.; Tian, X.; Li, H.; Zhao, Y.; Chen, L. Novel Fluorescent Hydrogel for the Adsorption and Detection of Fe (III. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 608, 125563. DOI: 10.1016/j.colsurfa.2020.125563.
  • Sun, X. F.; Liu, B.; Jing, Z.; Wang, H. Preparation and Adsorption Property of Xylan/poly(acrylic Acid) Magnetic Nanocomposite Hydrogel Adsorbent, Carbohydr. Polym. 2015, 118, 16–23. DOI: 10.1016/j.carbpol.2014.11.013.
  • Reddy, P. R.; Varaprasad, K.; Sadiku, R.; Ramam, K.; Reddy, G. V. S.; Raju, K. M.; Reddy, N. S. Development of Gelatin Based Inorganic Nanocomposite Hydrogels for Inactivation of Bacteria. J. Inorg. Organomet. Polym. Mater. 2013, 23(5), 1054–1060. DOI: 10.1007/S10904-013-9886-X.
  • Kang, S. M.; Rethinasabapathy, M.; Hwang, S. K.; Lee, G. W.; Jang, S. C.; Kwak, C. H.; Choe, S. R.; Huh, Y. S. Microfluidic Generation of Prussian Blue-laden Magnetic Micro-adsorbents for Cesium Removal. Chem. Eng. J. 2018, 341, 218–226. DOI: 10.1016/J.CEJ.2018.02.025.
  • Saber-Samandari, S.; Saber-Samandari, S.; Joneidi-Yekta, H.; Mohseni, M. Adsorption of Anionic and Cationic Dyes from Aqueous Solution Using Gelatin-based Magnetic Nanocomposite Beads Comprising Carboxylic Acid Functionalized Carbon Nanotube. Chem. Eng. J. 2017, 308, 1133–1144. DOI: 10.1016/J.CEJ.2016.10.017.
  • Nguyen, T. K.; Lam, S. J.; Ho, K. K. K.; Kumar, N.; Qiao, G. G.; Egan, S.; Boyer, C.; Wong, E. H. H. Rational Design of Single-Chain Polymeric Nanoparticles that Kill Planktonic and Biofilm Bacteria. ACS Infect. Dis. 2017, 3(3), 237–248. DOI: 10.1021/acsinfecdis.6b00203.
  • Namivandi-Zangeneh, R.; Kwan, R. J.; Nguyen, T. K.; Yeow, J.; Byrne, F. L.; Oehlers, S. H.; Wong, E. H. H.; Boyer, C. The Effects of Polymer Topology and Chain Length on the Antimicrobial Activity and Hemocompatibility of Amphiphilic Ternary Copolymers. Polym. Chem. 2018, 9(13), 1735–1744. DOI: 10.1039/c7py01069a.
  • Kaur, R.; Liu, S. Antibacterial Surface Design – Contact Kill. Prog. Surf. Sci. 2016, 91(3), 136–153. DOI: 10.1016/j.progsurf.2016.09.001.
  • Riaz Ahmed, K. B.; Nagy, A. M.; Brown, R. P.; Zhang, Q.; Malghan, S. G.; Goering, P. L. Silver Nanoparticles: Significance of Physicochemical Properties and Assay Interference on the Interpretation of in Vitro Cytotoxicity Studies, Toxicol. Vitr. 2017, 38, 179–192. DOI: 10.1016/j.tiv.2016.10.012.
  • W.H.O. WHO, Silver as a Drinking-water Disinfectant, 2018. https://www.who.int/water_sanitation_health/publications/silver-02032018.pdf (accessed october 21, 2021).
  • Khan, S. S.; Srivatsan, P.; Vaishnavi, N.; Mukherjee, A.; Chandrasekaran, N. Interaction of Silver Nanoparticles (Snps) with Bacterial Extracellular Proteins (Ecps) and Its Adsorption Isotherms and Kinetics. J. Hazard. Mater. 2011, 192(1), 299–306. DOI: 10.1016/j.jhazmat.2011.05.024.
  • Sivaselvam, S.; Selvakumar, R.; Viswanathan, C.; Ponpandian, N. Rapid One-pot Synthesis of PAM-GO-Ag Nanocomposite Hydrogel by Gamma-ray Irradiation for Remediation of Environment Pollutants and Pathogen Inactivation. Chemosphere. 2021, 275, 130061. DOI: 10.1016/j.chemosphere.2021.130061.
  • Bagheri, N.; Mansour Lakouraj, M.; Hasantabar, V.; Mohseni, M. Biodegradable Macro-porous CMC-polyaniline Hydrogel: Synthesis, Characterization and Study of Microbial Elimination and Sorption Capacity of Dyes from Waste Water. J. Hazard. Mater. 2021, 403, 123631. DOI: 10.1016/j.jhazmat.2020.123631.
  • Duan, C.; Liu, C.; Meng, X.; Gao, K.; Lu, W.; Zhang, Y.; Dai, L.; Zhao, W.; Xiong, C.; Wang, W., et al. Facile Synthesis of Ag NPs@ MIL-100(Fe)/ Guar Gum Hybrid Hydrogel as a Versatile Photocatalyst for Wastewater Remediation: Photocatalytic Degradation, Water/oil Separation and Bacterial Inactivation, Carbohydr. Polym. 2020, 230, 115642. DOI: 10.1016/j.carbpol.2019.115642.
  • Huang, X.; Wang, L.; Zhang, J.; Du, X.; Wu, S.; Wang, H.; Wei, X. A Novel ε-polylysine-modified Microcrystalline Cellulose Based Antibacterial Hydrogel for Removal of Heavy Metal. Int. J. Biol. Macromol. 2020, 163, 1915–1925. DOI: 10.1016/j.ijbiomac.2020.09.047.
  • Zidan, T. A.; Abdelhamid, A. E.; Zaki, E. G. N-Aminorhodanine Modified Chitosan Hydrogel for Antibacterial and Copper Ions Removal from Aqueous Solutions. Int. J. Biol. Macromol. 2020, 158, 32–42. DOI: 10.1016/j.ijbiomac.2020.04.180.
  • Sharma, R.; Kaith, B. S.; Kalia, S.; Pathania, D.; Kumar, A.; Sharma, N.; Street, R. M.; Schauer, C. Biodegradable and Conducting Hydrogels Based on Guar Gum Polysaccharide for Antibacterial and Dye Removal Applications. J. Environ. Manage. 2015, 162, 37–45. DOI: 10.1016/j.jenvman.2015.07.044.
  • Zeng, X.; McCarthy, D. T.; Deletic, A.; Zhang, X. Silver/Reduced Graphene Oxide Hydrogel as Novel Bactericidal Filter for Point-of-Use Water Disinfection. Adv. Funct. Mater. 2015, 25(27), 4344–4351. DOI: 10.1002/adfm.201501454.
  • La, Y. H.; McCloskey, B. D.; Sooriyakumaran, R.; Vora, A.; Freeman, B.; Nassar, M.; Hedrick, J.; Nelson, A.; Allen, R. Bifunctional Hydrogel Coatings for Water Purification Membranes: Improved Fouling Resistance and Antimicrobial Activity. J. Memb. Sci. 2011, 372(1–2), 285–291. DOI: 10.1016/j.memsci.2011.02.005.
  • Magalhães-Ghiotto, G. A. V.; D. Oliveira, A. M.; Natal, J. P. S.; Bergamasco, R.; Gomes, R. G. Green Nanoparticles in Water Treatment: A Review of Research Trends, Applications, Environmental Aspects and Large-scale Production. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100526. DOI: 10.1016/J.ENMM.2021.100526.
  • Xue, B.; Qin, M.; Wu, J.; Luo, D.; Jiang, Q.; Li, Y.; Cao, Y.; Wang, W. Electroresponsive Supramolecular Graphene Oxide Hydrogels for Active Bacteria Adsorption and Removal. ACS Appl. Mater. Interfaces. 2016, 8, 15120–15127. DOI: 10.1021/acsami.6b04338.
  • Fukuda, H.; Tsuchiya, K.; Toba, Y.; Eguchi, M.; Tokoro, C. Rapid Boron Removal from Wastewater Using Low-crystalline Magnesium Oxide. J. Environ. Chem. Eng. 2020, 8(5), 104171. DOI: 10.1016/j.jece.2020.104171.
  • Kumar, M.; Isloor, A. M.; Todeti, S. R.; Nagaraja, H. S.; Ismail, A. F.; Susanti, R. Effect of Binary Zinc-magnesium Oxides on Polyphenylsulfone/cellulose Acetate Derivatives Hollow Fiber Membranes for the Decontamination of Arsenic from Drinking Water. Chem. Eng. J. 2021, 405, 126809. DOI: 10.1016/j.cej.2020.126809.
  • Sivaselvam, S.; Premasudha, P.; Viswanathan, C.; Ponpandian, N. Enhanced Removal of Emerging Pharmaceutical Contaminant Ciprofloxacin and Pathogen Inactivation Using Morphologically Tuned MgO Nanostructures. J. Environ. Chem. Eng. 2020, 8(5), 104256. DOI: 10.1016/j.jece.2020.104256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.