472
Views
4
CrossRef citations to date
0
Altmetric
Review

Trends offered by ionic liquid-based surfactants: Applications in stabilization, separation processes, and within the petroleum industry

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 164-192 | Received 11 Oct 2021, Accepted 05 Mar 2022, Published online: 08 Apr 2022

References

  • Pacheco-Fernández, I.; González-Hernández, P.; Pino, V.; Ayala, J. H.; Afonso, A. M. Ionic Liquid-based Surfactants: A Step Forward. In Ionic Liquid Devices; Eftekhari, A., Ed.; Royal Society of Chemistry: London, 2017; pp 53–78. DOI: 10.1039/9781788011839-00053.
  • Welton, T.;. Ionic Liquids: A Brief History. Biophys. Rev. 2018, 10, 691–706. DOI: 10.1007/s12551-018-0419-2.
  • Akbaş, H.; Boz, M.; Batıgöç, Ç. Study on Cloud Points of Triton X-100-cationic Gemini Surfactants Mixtures: A Spectroscopic Approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 671–677. DOI: 10.1016/j.saa.2009.11.038.
  • Hejazifar, M.; Lanaridi, O.; Bica-Schröder, K. Ionic Liquid Based Microemulsions: A Review. J. Mol. Liq. 2020, 303, 112264. DOI: 10.1016/j.molliq.2019.112264.
  • Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Supported ionic liquid and polymer inclusion membranes for metal separation. Sep. Purif. Rev. 2021, 51(1), 100–116. DOI: 10.1080/15422119.2020.1846564.
  • Asadabadi, S.; Saien, J. Effects of pH and Salinity on Adsorption of Different Imidazolium Ionic Liquids at the Interface of Oil–water. Colloids Surf A: Physicochem Eng. Asp. 2016, 489, 36–45. DOI: 10.1016/j.colsurfa.2015.10.021.
  • Murillo-Hernández, J. A.; Aburto, J. Current Knowledge and Potential Applications of Ionic Liquids in the Petroleum Industry. In Ionic Liquids: Applications and Perspectives; Kokorin, A., Ed.; InTechOpen: London, UK, 2011; pp 1–22. DOI: 10.5772/1782.
  • Pal, N.; Saxena, N.; Mandal, A. Studies on the Physicochemical Properties of Synthesized Tailor-made Gemini Surfactants for Application in Enhanced Oil Recovery. J. Mol. Liq. 2018, 258, 211–224. DOI: 10.1016/j.molliq.2018.03.037.
  • Bera, A.; Belhaj, H. Ionic Liquids as Alternatives of Surfactants in Enhanced Oil Recovery-a State-of-the-art Review. J. Mol. Liq. 2016, 224, 177–188. DOI: 10.1016/j.molliq.2016.09.105.
  • Saien, J.; Hashemi, S. Long Chain Imidazolium Ionic Liquid and Magnetite Nanoparticle Interactions at the Oil/water Interface. J. Pet. Sci. Eng. 2018, 160, 363–371. DOI: 10.1016/j.petrol.2017.10.057.
  • Dong, B.; Li, N.; Zheng, L.; Yu, L.; Inoue, T. Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution. Langmuir. 2007, 23, 4178–4182. DOI: 10.1021/la0633029.
  • Sedrpoushan, A.; Hosseini Eshbala, F.; Mohanazadeh, F.; Heydari, M. Tungstate Supported Mesoporous Silica SBA‐15 with Imidazolium Framework as a Hybrid Nanocatalyst for Selective Oxidation of Sulfides in the Presence of Hydrogen Peroxide. Appl. Organomet. Chem. 2018, 32, 4004. DOI: 10.1002/aoc.4004.
  • Saien, J.; Asrami, M. R.; Salehzadeh, S. Phase Equilibrium Measurements and Thermodynamic Modelling of {water+ phenol+[Hmim][NTf2]} Ionic Liquid System at Several Temperatures. J. Chem. Thermodyn. 2018, 119, 76–83. DOI: 10.1016/j.jct.2017.12.014.
  • Fabre, E.; Murshed, S. S. A Review of the Thermophysical Properties and Potential of Ionic Liquids for Thermal Applications. J. Mater. Chem. A. 2021, 151, 111593. DOI: 10.1016/j.rser.2021.111593.
  • Zunita, M.; Hastuti, R.; Alamsyah, A.; Khoiruddin, K.; Wenten, I. G. Ionic Liquid Membrane for Carbon Capture and Separation. Sep. Purif. Rev. 2021, 51(2), 261–280. DOI: 10.1080/15422119.2021.1920428.
  • Giustiniani, A.; Drenckhan, W.; Poulard, C. Interfacial Tension of Reactive, Liquid Interfaces and Its Consequences. Adv. Colloid Interface Sci. 2017, 247, 185–197. DOI: 10.1016/j.cis.2017.07.017.
  • Kumar, S.; Kaur, N.; Mithu, V. S. Amphiphilic Ionic Liquid Induced Fusion of Phospholipid Liposomes. Phys. Chem. Chem. Phys. 2020, 22, 25255–25263. DOI: 10.1039/D0CP04014B.
  • Ruzanov, A.; Lembinen, M.; Jakovits, P.; Srirama, S. N.; Voroshylova, I. V.; Cordeiro, M. N. D.; Pereira, C. M.; Rossmeisl, J.; Ivaništšev, V. B. On the Thickness of the Double Layer in Ionic Liquids. Phys. Chem. Chem. Phys. 2018, 20, 10275–10285. DOI: 10.1039/C7CP07939G.
  • Łuczak, J.; Hupka, J.; Thöming, J.; Jungnickel, C. Self-organization of Imidazolium Ionic Liquids in Aqueous Solution. Colloids Surf. A. 2008, 329, 125–133. DOI: 10.1016/j.colsurfa.2008.07.012.
  • Welton, T.;. Room-temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. DOI: 10.1021/cr980032t.
  • Berthod, A.; Ruiz-Angel, M.; Carda-Broch, S. Ionic Liquids in Separation Techniques. J. Chromatogr. A. 1184, 2008, 6–18. DOI: 10.1016/j.chroma.2007.11.109.
  • Saien, J.; Asadabadi, S. Alkyl Chain Length, Counter Anion and Temperature Effects on the Interfacial Activity of Imidazolium Ionic Liquids: Comparison with Structurally Related Surfactants. Fluid Phase Equilib. 2015, 386, 134–139. DOI: 10.1016/j.fluid.2014.12.002.
  • Gardas, R. L.; Coutinho, J. A. Applying a QSPR Correlation to the Prediction of Surface Tensions of Ionic Liquids. Fluid Phase Equilib. 2008, 265, 57–65. DOI: 10.1016/j.fluid.2008.01.002.
  • Khazalpour, S.; Yarie, M.; Kianpour, E.; Amani, A.; Asadabadi, S.; Seyf, J. Y.; Rezaeivala, M.; Azizian, S.; Zolfigol, M. A. Applications of Phosphonium-based Ionic Liquids in Chemical Processes. J. Iran. Chem. Soc. 2020, 17, 1–143. DOI: 10.1007/s13738-020-01901-6.
  • Cho, C. W.; Pham, T. P. T.; Zhao, Y.; Stolte, S.; Yun, Y. S. Review of the Toxic Effects of Ionic Liquids. Sci. Total Environ. 2021, 147309. DOI: 10.1016/j.scitotenv.2021.147309.
  • Bordes, R.; Holmberg, K. Amino Acid-based Surfactants – Do They Deserve More Attention? Adv. Colloid Interface Sci. 2015, 222, 79–91. DOI: 10.1016/j.cis.2014.10.013.
  • Trivedi, T. J.; Rao, K. S.; Singh, T.; Mandal, S. K.; Sutradhar, N.; Panda, A. B.; Kumar, A. Task‐specific, Biodegradable Amino Acid Ionic Liquid Surfactants. ChemSusChem. 2011, 4, 604–608. DOI: 10.1002/cssc.201100065.
  • Kaczmarek, D. K.; Gwiazdowska, D.; Juś, K.; Klejdysz, T.; Wojcieszak, M.; Materna, K.; Pernak, J. Glycine Betaine-based Ionic Liquids and Their Influence on Bacteria, Fungi, Insects and Plants. New J. Chem. 2021, 45, 6344–6355. DOI: 10.1039/D1NJ00498K.
  • Kusumahastuti, D. K.; Sihtmäe, M.; Aruoja, V.; Gathergood, N.; Kahru, A. Ecotoxicity Profiling of a Library of 24 L-phenylalanine Derived Surface-active Ionic Liquids (Sails). Sustain. Chem. Pharm. 2021, 19, 100369. DOI: 10.1016/j.scp.2020.100369.
  • Fernández-Stefanuto, V.; Corchero Morais, R.; Rodríguez Escontrela, I.; Soto Campos, A. M.; Tojo Sierra, R. Ionic Liquids Derived from Proline: Application as Surfactants. ChemSusChem. 2018, 19, 2885–2893. DOI: 10.1002/cphc.201800735.
  • Häckl, K.; Mühlbauer, A.; Ontiveros, J. F.; Marinkovic, S.; Estrine, B.; Kunz, W.; Nardello-Rataj, V. Carnitine Alkyl Ester Bromides as Novel Biosourced Ionic Liquids, Cationic Hydrotropes and Surfactants. J. Colloid Interface Sci. 2018, 511, 165–173. DOI: 10.1016/j.jcis.2017.09.096.
  • Sastry, N. V.; Vaghela, N. M.; Aswal, V. K. Effect of Alkyl Chain Length and Head Group on Surface Active and Aggregation Behavior of Ionic Liquids in Water. Fluid Phase Equilib. 2012, 327, 22–29. DOI: 10.1016/j.fluid.2012.04.013.
  • Li, H.; Imai, Y.; Takiue, T.; Matsubara, H.; Aratono, M. Effect and Mixing of Counter Anions at the Surface of Aqueous Solution of Imidazolium-based Ionic Liquids. Colloids Surf. A. 2013, 427, 26–32. DOI: 10.1016/j.colsurfa.2013.02.062.
  • Kamboj, R.; Bharmoria, P.; Chauhan, V.; Singh, G.; Kumar, A.; Singh, S.; Kang, T. S. Effect of Cationic Head Group on Micellization Behavior of New Amide-functionalized Surface Active Ionic Liquids. Phys. Chem. Chem. Phys. 2014, 16, 26040–26050. DOI: 10.1039/C4CP04054F.
  • Pillai, P.; Kumar, A.; Mandal, A. Mechanistic Studies of Enhanced Oil Recovery by Imidazolium-based Ionic Liquids as Novel Surfactants. J. Ind. Eng. Chem. 2018, 63, 262–274. DOI: 10.1016/j.jiec.2018.02.024.
  • Saien, J.; Kharazi, M.; Asadabadi, S. Adsorption Behavior of Long Alkyl Chain Imidazolium Ionic Liquids at the N-butyl Acetate+water Interface. J. Mol. Liq. 2015, 212, 58–62. DOI: 10.1016/j.molliq.2015.08.056.
  • Saien, J.; Kharazi, M. A Comparative Study on the Interface Behavior of Different Counter Anion Long Chain Imidazolium Ionic Liquids. J. Mol. Liq. 2016, 220, 136–141. DOI: 10.1016/j.molliq.2016.04.028.
  • Manshad, A. K.; Rezaei, M.; Moradi, S.; Nowrouzi, I.; Mohammadi, A. H. Wettability Alteration and Interfacial Tension (IFT) Reduction in Enhanced Oil Recovery (EOR) Process by Ionic Liquid Flooding. J. Mol. Liq. 2017, 248, 153–162. DOI: 10.1016/j.molliq.2017.10.009.
  • Vraneš, M.; Petrović, L.; Gadžurić, S.; Četojević-Simin, D.; Ranitović, A.; Cvetković, D.; Papović, S.; Tot, A.; Panić, J.; Milinković, J. Aggregation Properties and Toxicity of Newly Synthesized Thiazolium Based surfactants–Thermodynamic and Computational Study. J. Chem. Thermodyn. 2019, 131, 599–612. DOI: 10.1016/j.jct.2018.12.021.
  • Jia, H.; Lian, P.; Liang, Y.; Zhu, Y.; Huang, P.; Wu, H.; Leng, X.; Zhou, H. Systematic Investigation of the Effects of Zwitterionic Surface-active Ionic Liquids on the Interfacial Tension of a Water/crude Oil System and Their Application to Enhance Crude Oil Recovery. Energy Fuels. 2018, 32, 154–160. DOI: 10.1021/acs.energyfuels.7b02746.
  • Pacheco-Fernández, I.; Pino, V.; Ayala, J. H.; Afonso, A. M. Guanidinium Ionic Liquid-based Surfactants as Low Cytotoxic Extractants: Analytical Performance in an In-situ Dispersive Liquid–liquid Microextraction Method for Determining Personal Care Products. J. Chromatogr. A. 2018, 1559, 102–111. DOI: 10.1016/j.chroma.2017.04.061.
  • Bouchal, R.; Hamel, A.; Hesemann, P.; In, M.; Prelot, B.; Zajac, J. Micellization Behavior of Long-chain Substituted Alkylguanidinium Surfactants. Int. J. Mol. Sci. 2016, 17, 223. DOI: 10.3390/ijms17020223.
  • Kulshrestha, A.; Gehlot, P. S.; Kumar, A. Magnetic Proline-based Ionic Liquid Surfactant as a Nano-carrier for Hydrophobic Drug Delivery. J. Mater. Chem. B. 2020, 8, 3050–3057. DOI: 10.1039/D0TB00176G.
  • Rodríguez-Escontrela, I.; Rodríguez-Palmeiro, I.; Rodríguez, O.; Arce, A.; Soto, A. Characterization and Phase Behavior of the Surfactant Ionic Liquid Tributylmethylphosphonium Dodecylsulfate for Enhanced Oil Recovery. Fluid Phase Equilib. 2016, 417, 87–95. DOI: 10.1016/j.fluid.2016.02.021.
  • Zhou, H.; Zhu, Y.; Peng, T.; Song, Y.; An, J.; Leng, X.; Yi, Z.; Sun, Y.; Jia, H. Systematic Study of the Effects of Novel Halogen-free Anionic Surface Active Ionic Liquid on Interfacial Tension of Water/model Oil System. J. Mol. Liq. 2016, 223, 516–520. DOI: 10.1016/j.molliq.2016.08.080.
  • Jiao, J.; Han, B.; Lin, M.; Cheng, N.; Yu, L.; Liu, M. Salt-free Catanionic Surface Active Ionic Liquids 1-alkyl-3-methylimidazolium Alkylsulfate: Aggregation Behavior in Aqueous Solution. J. Colloid Interface Sci. 2013, 412, 24–30. DOI: 10.1016/j.jcis.2013.09.001.
  • Jiao, J.; Dong, B.; Zhang, H.; Zhao, Y.; Wang, X.; Wang, R.; Yu, L. Aggregation Behaviors of Dodecyl Sulfate-based Anionic Surface Active Ionic Liquids in Water. J. Phys. Chem. B. 2012, 116, 958–965. DOI: 10.1021/jp209276c.
  • Srinivasa Rao, K.; Singh, T.; Trivedi, T. J.; Kumar, A. Aggregation Behavior of Amino Acid Ionic Liquid Surfactants in Aqueous Media. J. Phys. Chem. B. 2011, 115, 13847–13853. DOI: 10.1021/jp2076275.
  • Ali, M. K.; Moshikur, R. M.; Wakabayashi, R.; Tahara, Y.; Moniruzzaman, M.; Kamiya, N.; Goto, M. Synthesis and Characterization of Choline–fatty-acid-based Ionic Liquids: A New Biocompatible Surfactant. J. Colloid Interface Sci. 2019, 551, 72–80. DOI: 10.1016/j.jcis.2019.04.095.
  • Kharazi, M.; Saien, J.; Yarie, M.; Zolfigol, M. A. Different Spacer Homologs of Gemini Imidazolium Ionic Liquid Surfactants at the Interface of Crude Oil-water. J. Mol. Liq. 2019, 296, 111748. DOI: 10.1016/j.molliq.2019.111748.
  • Kharazi, M.; Saien, J.; Yarie, M.; Zolfigol, M. A. The Superior Effects of a Long Chain Gemini Ionic Liquid on the Interfacial Tension, Emulsification and Oil Displacement of Crude Oil-water. J. Pet. Sci. Eng. 2020, 195, 107543. DOI: 10.1016/j.petrol.2020.107543.
  • Saien, J.; Kharazi, M.; Yarie, M.; Zolfigol, M. A. A Systematic Investigation of A Surfactant Type Nano Gemini Ionic Liquid and Simultaneous Abnormal Salts Effects on the Crude Oil/water Interfacial Tension. Ind. Eng. Chem. Res. 2019, 58, 3583–3594. DOI: 10.1021/acs.iecr.8b05553.
  • Zhou, H.; Liang, Y.; Huang, P.; Liang, T.; Wu, H.; Lian, P.; Leng, X.; Jia, C.; Zhu, Y.; Jia, H. Systematic Investigation of Ionic Liquid-type Gemini Surfactants and Their Abnormal Salt Effects on the Interfacial Tension of a Water/model Oil System. J. Mol. Liq. 2018, 249, 33–39. DOI: 10.1016/j.molliq.2017.11.004.
  • Nacham, O.; Martín-Pérez, A.; Steyer, D. J.; Trujillo-Rodríguez, M. J.; Anderson, J. L.; Pino, V.; Afonso, A. M. Interfacial and Aggregation Behavior of Dicationic and Tricationic Ionic Liquid-based Surfactants in Aqueous Solution. Colloids Surf. A. 2015, 469, 224–234. DOI: 10.1016/j.colsurfa.2015.01.026.
  • Rodríguez-Escontrela, I.; Rodríguez-Palmeiro, I.; Rodríguez, O.; Arce, A.; Soto, A. Phase Behavior of the Surfactant Ionic Liquid Trihexyltetradecylphosphonium Bis(2,4,4-trimethylpentyl)phosphinate with Water and Dodecane. Colloids Surf. A. 2015, 480, 50–59. DOI: 10.1016/j.colsurfa.2015.04.002.
  • Sakthivel, S.; Chhotaray, P. K.; Velusamy, S.; Gardas, R. L.; Sangwai, J. S. Synergistic Effect of Lactam, Ammonium and Hydroxyl Ammonium Based Ionic Liquids with and without NaCl on the Surface Phenomena of Crude Oil/water System. Fluid Phase Equilib. 2015, 398, 80–97. DOI: 10.1016/j.fluid.2015.04.011.
  • Zeinolabedini Hezave, A.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Effect of Different Families (Imidazolium and Pyridinium) of Ionic Liquids-based Surfactants on Interfacial Tension of Water/crude Oil System. Fluid Phase Equilib. 2013, 360, 139–145. DOI: 10.1016/j.fluid.2013.09.025.
  • Dong, B.; Zhao, X.; Zheng, L.; Zhang, J.; Li, N.; Inoue, T. Aggregation Behavior of Long-chain Imidazolium Ionic Liquids in Aqueous Solution: Micellization and Characterization of Micelle Microenvironment. Colloids Surf. A. 2008, 317, 666–672. DOI: 10.1016/j.colsurfa.2007.12.001.
  • López-Díaz, D.; Velázquez, M. Variation of the Critical Micelle Concentration with Surfactant Structure: A Simple Method to Analyze the Role of Attractive–repulsive Forces on Micellar Association. Chem. Educator TCE. 2007, 12, 327–330. DOI: 10.1333/s00897072075a.
  • El Seoud, O. A.; Pires, P. A. R.; Abdel-Moghny, T.; Bastos, E. L. Synthesis and Micellar Properties of Surface-active Ionic Liquids: 1-alkyl-3-methylimidazolium Chlorides. J. Colloid Interface Sci. 2007, 313, 296–304. DOI: 10.1016/j.jcis.2007.04.028.
  • Alam, M. S.; Siddiq, A. M.; Mythili, V.; Priyadharshini, M.; Kamely, N.; Mandal, A. B. Effect of Organic Additives and Temperature on the Micellization of Cationic Surfactant Cetyltrimethylammonium Chloride: Evaluation of Thermodynamics. J. Mol. Liq. 2014, 199, 511–517. DOI: 10.1016/j.molliq.2014.09.026.
  • Brown, P.; Butts, C. P.; Eastoe, J.; Fermin, D.; Grillo, I.; Lee, H.-C.; Parker, D.; Plana, D.; Richardson, R. M. Anionic Surfactant Ionic Liquids with 1-butyl-3-methyl-imidazolium Cations: Characterization and Application. Langmuir. 2012, 28, 2502–2509. DOI: 10.1021/la204557t.
  • Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial Phenomena; John Wiley & Sons: New Jersey, USA, 2012; pp 1–607.
  • Brown, P.; Butts, C.; Dyer, R.; Eastoe, J.; Grillo, I.; Guittard, F.; Rogers, S.; Heenan, R. Anionic Surfactants and Surfactant Ionic Liquids with Quaternary Ammonium Counterions. Langmuir. 2011, 27, 4563–4571. DOI: 10.1021/la200387n.
  • Ao, M.; Xu, G.; Zhu, Y.; Bai, Y. Synthesis and Properties of Ionic Liquid-type Gemini Imidazolium Surfactants. J. Colloid Interface Sci. 2008, 326, 490–495. DOI: 10.1016/j.jcis.2008.06.048.
  • Das, S.; Naskar, B.; Ghosh, S. Influence of Temperature and Organic Solvents (Isopropanol and 1, 4-dioxane) on the Micellization of Cationic Gemini Surfactant (14-4-14). Soft Matter. 2014, 10, 2863–2875. DOI: 10.1039/C3SM52938J.
  • Yoshimura, T.; Yoshida, H.; Ohno, A.; Esumi, K. Physicochemical Properties of Quaternary Ammonium Bromide-type Trimeric Surfactants. J. Colloid Interface Sci. 2003, 267, 167–172. DOI: 10.1016/S0021-9797(03)00694-5.
  • Wang, X.; Liu, J.; Yu, L.; Jiao, J.; Wang, R.; Sun, L. Surface Adsorption and Micelle Formation of Imidazolium-based Zwitterionic Surface Active Ionic Liquids in Aqueous Solution. J. Colloid Interface Sci. 2013, 391, 103–110. DOI: 10.1016/j.jcis.2012.09.073.
  • Weingärtner, H.;. Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angew Chem. Int. Ed. 2008, 47, 654–670. DOI: 10.1002/anie.200604951.
  • Wang, H.; Wang, J.; Zhang, S.; Xuan, X. Structural Effects of Anions and Cations on the Aggregation Behavior of Ionic Liquids in Aqueous Solutions. J. Phys. Chem. B. 2008, 112, 16682–16689. DOI: 10.1021/jp8069089.
  • Nandwani, S. K.; Malek, N. I.; Chakraborty, M.; Gupta, S. Insight into the Application of Surface-active Ionic Liquids in Surfactant Based Enhanced Oil Recovery Processes–a Guide Leading to Research Advances. Energy Fuels. 2020, 34, 6544–6557. DOI: 10.1021/acs.energyfuels.0c00343.
  • Rodríguez-Palmeiro, I.; Rodríguez-Escontrela, I.; Rodríguez, O.; Arce, A.; Soto, A. Characterization and Interfacial Properties of the Surfactant Ionic Liquid 1-dodecyl-3-methyl Imidazolium Acetate for Enhanced Oil Recovery. RSC Adv. 2015, 5, 37392–37398. DOI: 10.1039/C5RA05247E.
  • Blesic, M.; Marques, M. H.; Plechkova, N. V.; Seddon, K. R.; Rebelo, L. P. N.; Lopes, A. Self-aggregation of Ionic Liquids: Micelle Formation in Aqueous Solution. Green Chem. 2007, 9, 481–490. DOI: 10.1039/B615406A.
  • Mustahil, N. A.; Baharuddin, S. H.; Abdullah, A. A.; Reddy, A. V. B.; Mutalib, M. I. A.; Moniruzzaman, M. Synthesis, Characterization, Ecotoxicity and Biodegradability Evaluations of Novel Biocompatible Surface Active Lauroyl Sarcosinate Ionic Liquids. Chemosphere. 2019, 229, 349–357. DOI: 10.1016/j.chemosphere.2019.05.026.
  • Brown, P.; Butts, C. P.; Eastoe, J. Stimuli-responsive Surfactants. Soft Matter. 2013, 9, 2365–2374. DOI: 10.1002/anie.201108010.
  • Pino, V.; Germán-Hernández, M.; Martín-Pérez, A.; Anderson, J. L. Ionic Liquid-based Surfactants in Separation Science. Sep. Sci. Technol. 2012, 47, 264–276. DOI: 10.1080/01496395.2011.620589.
  • Saien, J.; Kharazi, M.; Asadabadi, S. Adsorption Behavior of Short Alkyl Chain Imidazolium Ionic Liquidsat N-butyl Acetate+ Water Interface: Experiments and Modeling. Iran J. Chem. Eng. 2015, 12, 59–74.
  • Vaghela, N. M.; Sastry, N. V.; Aswal, V. K. Surface Active and Aggregation Behavior of Methylimidazolium-based Ionic Liquids of Type [Cnmim][x], N= 4, 6, 8 and [X]= Cl−, Br−, and I− in Water. Colloid Polym. Sci. 2011, 289, 309–322. DOI: 10.1007/s00396-010-2332-5.
  • Miskolczy, Z.; Sebők-Nagy, K.; Biczók, L.; Göktürk, S. Aggregation and Micelle Formation of Ionic Liquids in Aqueous Solution. Chem. Phys. Lett. 2004, 400, 296–300. DOI: 10.1016/j.cplett.2004.10.127.
  • Al-Mohammed, N. N.; Hussen, R. S. D.; Ali, T. H.; Alias, Y.; Abdullah, Z. Tetrakis-imidazolium and Benzimidazolium Ionic Liquids: A New Class of Biodegradable Surfactants. RSC Adv. 2015, 5, 21865–21876. DOI: 10.1039/C4RA16811A.
  • Łuczak, J.; Markiewicz, M.; Thöming, J.; Hupka, J.; Jungnickel, C. Influence of the Hofmeister Anions on Self-organization of 1-decyl-3-methylimidazolium Chloride in Aqueous Solutions. J. Colloid Interface Sci. 2011, 362, 415–422. DOI: 10.1016/j.jcis.2011.06.058.
  • Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic Liquids for Nano-and Microstructures Preparation. Part 1: Properties and Multifunctional Role. Adv. Colloid Interface Sci. 2016, 230, 13–28. DOI: 10.1016/j.cis.2015.08.006.
  • Mohamed, A. I.; Sultan, A. S.; Hussein, I. A.; Al-Muntasheri, G. A. Influence of Surfactant Structure on the Stability of Water-in-oil Emulsions under High-temperature High-salinity Conditions. J. Chem. 2017, 2017, 5471376. DOI: 10.1155/2017/5471376.
  • Kuchlyan, J.; Kundu, N. Ionic Liquids in Microemulsions: Formulation and Characterization. Curr. Opin. Colloid Interface Sci. 2016, 25, 27–38. DOI: 10.1016/j.cocis.2016.05.011.
  • Lemos, R. C.; da Silva, E. B.; Dos Santos, A.; Guimarães, R. C.; Ferreira, B. M.; Guarnieri, R. A.; Dariva, C.; Franceschi, E.; Santos, A. F.; Fortuny, M. Demulsification of Water-in-crude Oil Emulsions Using Ionic Liquids and Microwave Irradiation. Energy Fuels. 2010, 24, 4439–4444. DOI: 10.1021/ef100425v.
  • Hejazifar, M.; Earle, M.; Seddon, K. R.; Weber, S.; Zirbs, R.; Bica, K. Ionic Liquid-based Microemulsions in Catalysis. J. Org. Chem. 2016, 81, 12332–12339. DOI: 10.1021/acs.joc.6b02165.
  • Moniruzzaman, M.; Kamiya, N.; Goto, M. Ionic Liquid Based Microemulsion with Pharmaceutically Accepted Components: Formulation and Potential Applications. J. Colloid Interface Sci. 2010, 352, 136–142. DOI: 10.1016/j.jcis.2010.08.035.
  • Mohamed Isa, E. D.; Ahmad, H.; Abdul Rahman, M. B. Optimization of Synthesis Parameters of Mesoporous Silica Nanoparticles Based on Ionic Liquid by Experimental Design and Its Application as a Drug Delivery Agent. J. Nanomater. 2019, 2019, 4982054. DOI: 10.1155/2019/4982054.
  • Zaharudin, N. S.; Isa, E. D. M.; Ahmad, H., .; Rahman, M. B. A.; Jumbri, K. Functionalized Mesoporous Silica Nanoparticles Templated by Pyridinium Ionic Liquid for Hydrophilic and Hydrophobic Drug Release Application. J. Saudi Chem. Soc. 2020, 24, 289–302. DOI: 10.1016/j.jscs.2020.01.003.
  • Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Ed. 2004, 43, 4988–4992. DOI: 10.1002/anie.200460091.
  • Zech, O.; Thomaier, S.; Bauduin, P.; Rück, T.; Touraud, D.; Kunz, W. Microemulsions with an Ionic Liquid Surfactant and Room Temperature Ionic Liquids as Polar Pseudo-phase. J. Phys. Chem. B. 2008, 113, 465–473. DOI: 10.1021/jp8061042.
  • Rao, V. G.; Mandal, S.; Ghosh, S.; Banerjee, C.; Sarkar, N. Phase Boundaries, Structural Characteristics, and NMR Spectra of Ionic Liquid-in-oil Microemulsions Containing Double Chain Surface Active Ionic Liquid: A Comparative Study. J. Phys. Chem. B. 2013, 117, 1480–1493. DOI: 10.1021/jp310616p.
  • Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. Designing a New Strategy for the Formation of IL-in-oil Microemulsions. J. Phys. Chem. B. 2012, 116, 2850–2855. DOI: 10.1021/jp2110488.
  • Banerjee, C.; Kundu, N.; Ghosh, S.; Mandal, S.; Kuchlyan, J.; Sarkar, N. Fluorescence Resonance Energy Transfer in Microemulsions Composed of Tripled-chain Surface Active Ionic Liquids, RTILs, and Biological Solvent: An Excitation Wavelength Dependence Study. J. Phys. Chem. B. 2013, 117, 9508–9517. DOI: 10.1021/jp405919y.
  • Banerjee, C.; Mandal, S.; Ghosh, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. Unique Characteristics of Ionic Liquids Comprised of Long-chain Cations and Anions: A New Physical Insight. J. Phys. Chem. B. 2013, 117, 3927–3934. DOI: 10.1021/jp4015405.
  • Rao, V. G.; Mandal, S.; Ghosh, S.; Banerjee, C.; Sarkar, N. Ionic Liquid-in-oil Microemulsions Composed of Double Chain Surface Active Ionic Liquid as a Surfactant: Temperature Dependent Solvent and Rotational Relaxation Dynamics of Coumarin-153 in [Py][tf2n]/[c4mim][aot]/benzene Microemulsions. J. Phys. Chem. B. 2012, 116, 8210–8221. DOI: 10.1021/jp304668f.
  • Sarkar, S.; Mandal, S.; Pramanik, R.; Ghatak, C.; Rao, V. G.; Sarkar, N. Photoinduced Electron Transfer in a Room Temperature Ionic Liquid 1-butyl-3-methylimidazolium Octyl Sulfate Micelle: A Temperature Dependent Study. J. Phys. Chem. B. 2011, 115, 6100–6110. DOI: 10.1021/jp201702x.
  • Thomaier, S.; Kunz, W. Aggregates in Mixtures of Ionic Liquids. J. Mol. Liq. 2007, 130, 104–107. DOI: 10.1016/j.molliq.2006.04.013.
  • Ghosh, S.; Banerjee, C.; Mandal, S.; Rao, V. G.; Sarkar, N. Effect of Alkyl Chain of Room Temperature Ionic Liquid (Rtils) on the Phase Behavior of [C2mim][c N SO4]/TX-100/cyclohexane Microemulsions: Solvent and Rotational Relaxation Study. J. Phys. Chem. B. 2013, 117, 5886–5897. DOI: 10.1021/jp400013r.
  • Rao, V. G.; Banerjee, C.; Ghosh, S.; Mandal, S.; Kuchlyan, J.; Sarkar, N. A Step toward the Development of High-temperature Stable Ionic Liquid-in-oil Microemulsions Containing Double-chain Anionic Surface Active Ionic Liquid. J. Phys. Chem. B. 2013, 117, 7472–7480. DOI: 10.1021/jp403265p.
  • Zech, O.; Thomaier, S.; Kolodziejski, A.; Touraud, D.; Grillo, I.; Kunz, W. Ethylammonium Nitrate in High Temperature Stable Microemulsions. J. Colloid Interface Sci. 2010, 347, 227–232. DOI: 10.1016/j.jcis.2010.03.031.
  • Pei, Y.; Ru, J.; Yao, K.; Hao, L.; Li, Z.; Wang, H.; Zhu, X.; Wang, J. Nanoreactors Stable up to 200° C: A Class of High Temperature Microemulsions Composed Solely of Ionic Liquids. Chem. Commun. 2018, 54, 6260–6263. DOI: 10.1039/C8CC02901F.
  • Winsor, P.;. Hydrotropy, Solubilisation and Related Emulsification Processes. Trans. Faraday Soc. 1948, 44, 376–398. DOI: 10.1039/TF9484400376.
  • Lago, S.; Rodríguez, H.; Khoshkbarchi, M. K.; Soto, A.; Arce, A. Enhanced Oil Recovery Using the Ionic Liquid Trihexyl (Tetradecyl) Phosphonium Chloride: Phase Behaviour and Properties. RSC Adv. 2012, 2, 9392–9397. DOI: 10.1039/C2RA21698A.
  • Nguyen, T. T.; Sabatini, D. A. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications. Int. J. Mol. Sci. 2011, 12, 1232–1244. DOI: 10.3390/ijms12021232.
  • El Seoud, O. A.; Keppeler, N.; Malek, N. I.; Galgano, P. D. Ionic Liquid-based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers. 2021, 13, 1–51. DOI: 10.3390/polym13071100.
  • Huang, B.; Huang, C.; Chen, J.; Sun, X. Size-controlled Synthesis and Morphology Evolution of Nd2O3 Nano-powders Using Ionic Liquid Surfactant Templates. J. Alloys Compd. 2017, 712, 164–171. DOI: 10.1016/j.jallcom.2017.04.009.
  • Li, J.; Liang, J.; Wu, W.; Zhang, S.; Zhang, K.; Zhou, H. AuCl4− Responsive Self-assembly of Ionic Liquid Block Copolymers for Obtaining Composite Gold Nanoparticles and Polymeric Micelles with Controlled Morphologies. New J. Chem. 2014, 38, 2508–2513. DOI: 10.1039/C4NJ00128A.
  • Naderi, O.; Nyman, M.; Amiri, M.; Sadeghi, R. Synthesis and Characterization of Silver Nanoparticles in Aqueous Solutions of Surface Active Imidazolium-based Ionic Liquids and Traditional Surfactants SDS and DTAB. J. Mol. Liq. 2019, 273, 645–652. DOI: 10.1016/j.molliq.2018.10.046.
  • Verma, M.; Singh, K.; Bakshi, M. S. Surface Active Magnetic Iron Oxide Nanoparticles for Extracting Metal Nanoparticles across an Aqueous–organic Interface. J. Mater. Chem. C. 2019, 7, 10623–10634. DOI: 10.1039/C9TC03109J.
  • Fitchett, B. D.; Conboy, J. C. Structure of the Room-temperature Ionic liquid/SiO2 Interface Studied by Sum-frequency Vibrational Spectroscopy. J. Phys. Chem. B. 2004, 108, 20255–20262. DOI: 10.1021/jp0471251.
  • Koning, C.; Van Duin, M.; Pagnoulle, C.; Jerome, R. Strategies for Compatibilization of Polymer Blends. Prog. Polym. Sci. 1998, 23, 707–757. DOI: 10.1016/S0079-6700(97)00054-3.
  • Macosko, C.; Guegan, P.; Khandpur, A. K.; Nakayama, A.; Marechal, P.; Inoue, T. Compatibilizers for Melt Blending: Premade Block Copolymers. Macromolecules. 1996, 29, 5590–5598. DOI: 10.1021/ma9602482.
  • Fonseca, G. S.; Machado, G.; Teixeira, S. R.; Fecher, G. H.; Morais, J.; Alves, M. C.; Dupont, J. Synthesis and Characterization of Catalytic Iridium Nanoparticles in Imidazolium Ionic Liquids. J. Colloid Interface Sci. 2006, 301, 193–204. DOI: 10.1016/j.jcis.2006.04.073.
  • Zvereva, E. E.; Grimme, S.; Katsyuba, S. A.; Ermolaev, V. V.; Arkhipova, D. A.; Yan, N.; Miluykov, V. A.; Sinyashin, O. G.; Aleksandrov, A. Solvation and Stabilization of Palladium Nanoparticles in Phosphonium-based Ionic Liquids: A Combined Infrared Spectroscopic and Density Functional Theory Study. Phys. Chem. Chem. Phys. 2014, 16, 20672–20680. DOI: 10.1039/C4CP02547D.
  • Katsyuba, S. A.; Zvereva, E. E.; Yan, N.; Yuan, X.; Kou, Y.; Dyson, P. J. Rationalization of Solvation and Stabilization of Palladium Nanoparticles in Imidazolium‐based Ionic Liquids by Dft and Vibrational Spectroscopy. ChemPhysChem. 2012, 13, 1781–1790. DOI: 10.1002/cphc.201200087.
  • Roucoux, A.; Schulz, J.; Patin, H. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chem. Rev. 2002, 102, 3757–3778. DOI: 10.1021/cr010350j.
  • Ueno, K.; Inaba, A.; Kondoh, M.; Watanabe, M. Colloidal Stability of Bare and Polymer-grafted Silica Nanoparticles in Ionic Liquids. Langmuir. 2008, 24, 5253–5259. DOI: 10.1021/la704066v.
  • Berthod, A.; Ruiz-Ángel, M.; Carda-Broch, S. Recent Advances on Ionic Liquid Uses in Separation Techniques. J. Chromatogr. A. 1559, 2018, 2–16. DOI: 10.1016/j.chroma.2017.09.044.
  • Ionic Liquid GC Capillary Columns, sigmaaldrich, https://www.sigmaaldrich.com/ES/en/technical-documents/protocol/analyticalchemistry/gas-chromatography/ionic-liquid-gc-capillary-columns
  • Iadarola, P.; Fumagalli, M., and Viglio, S. Micellar Electrokinetic Chromatography. In Analytical Separation Science;; Anderson, J. L., Berthod, A., Pino, V., Stalcup, A. M., Eds.; Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015; pp 675–706.
  • Kazarjan, J.; Mahlapuu, R.; Hansen, M.; Soomets, U.; Kaljurand, M.; Vaher, M. Investigation of the Surfactant Type and Concentration Effect on the Retention Factors of Glutathione and Its Analogues by Micellar Electrokinetic Chromatography. J. Sep. Sci. 2015, 38, 3461–3468. DOI: 10.1002/jssc.201500567.
  • Rageh, A. H.; Pyell, U. Imidazolium-based Ionic Liquid-type Surfactant as Pseudostationary Phase in Micellar Electrokinetic Chromatography of Highly Hydrophilic Urinary Nucleosides. J. Chromatogr. A. 2013, 1316, 135–146. DOI: 10.1016/j.chroma.2013.09.079.
  • Rageh, A. H.; Pyell, U. Boronate Affinity‐assisted MEKC Separation of Highly Hydrophilic Urinary Nucleosides Using Imidazolium‐based Ionic Liquid Type Surfactant as Pseudostationary Phase. Electrophoresis. 2015, 36, 784–795. DOI: 10.1002/elps.201400357.
  • Tejada‐Casado, C.; Moreno‐González, D.; García‐Campaña, A. M.; Del Olmo‐iruela, M. Use of an Ionic Liquid‐based Surfactant as Pseudostationary Phase in the Analysis of Carbamates by Micellar Electrokinetic Chromatography. Electrophoresis. 2015, 36, 955–961. DOI: 10.1002/elps.201400311.
  • Niu, J.; Qiu, H.; Li, J.; Liu, X.; Jiang, S. 1-Hexadecyl-3-methylimidazolium Ionic Liquid as a New Cationic Surfactant for Separation of Phenolic Compounds by MEKC. Chromatographia. 2009, 69, 1093–1096. DOI: 10.1365/s10337-009-1028-9.
  • Schnee, V. P.; Baker, G. A.; Rauk, E.; Palmer, C. P. Electrokinetic Chromatographic Characterization of Novel Pseudo‐phases Based on N‐alkyl‐N‐methylpyrrolidinium Ionic Liquid Type Surfactants. Electrophoresis. 2006, 27, 4141–4148. DOI: 10.1002/elps.200600268.
  • Vitha, M.; Carr, P. W. The Chemical Interpretation and Practice of Linear Solvation Energy Relationships in Chromatography. J. Chromatogr. A. 2006, 1126, 143–194. DOI: 10.1016/j.chroma.2006.06.074.
  • Feng, Z.; Ju, L.; Yu, T.; Du, Y.; Sun, X. Imidazolium-based Ionic Liquid Surfactants as Pseudostationary in Combination with a Chiral Selector in Micellar Electrokinetic Chromatography. Anal. Bioanal. Chem. 2019, 411, 3849–3856. DOI: 10.1007/s00216-019-01861-8.
  • Su, H.-L.; Lan, M.-T.; Hsieh, Y.-Z. Using the Cationic Surfactants N-cetyl-N-methylpyrrolidinium Bromide and 1-cetyl-3-methylimidazolium Bromide for Sweeping–micellar Electrokinetic Chromatography. J. Chromatogr. A. 2009, 1216, 5313–5319. DOI: 10.1016/j.chroma.2009.05.001.
  • Rageh, A. H.; Pyell, U. “Pseudostationary Ion-Exchanger” Sweeping as an Online Enrichment Technique in the Determination of Nucleosides in Urine via Micellar Electrokinetic Chromatography. Chromatographia. 2019, 82, 325–345. DOI: 10.1007/s10337-018-3570-9.
  • Flieger, J.; Siwek, A.; Pizoń, M.; Czajkowska‐Żelazko, A. Ionic Liquids as Surfactants in Micellar Liquid Chromatography. J. Sep. Sci. 2013, 36, 1530–1536. DOI: 10.1002/jssc.201201059.
  • Qiu, H.; Zhang, Q.; Chen, L.; Liu, X.; Jiang, S. Long‐chain Alkylimidazolium Ionic Liquids, a New Class of Cationic Surfactants Coated on ODS Columns for Anion‐exchange Chromatography. J. Sep. Sci. 2008, 31, 2791–2796. DOI: 10.1002/jssc.200800150.
  • Yavir, K.; Marcinkowski, Ł.; Marcinkowska, R.; Namieśnik, J.; Kloskowski, A. Analytical Applications and Physicochemical Properties of Ionic Liquid-based Hybrid Materials: A Review. Anal. Chim. Acta. 2019, 1054, 1–16. DOI: 10.1016/j.aca.2018.10.061.
  • de Faria, E. L.; Shabudin, S. V.; Claúdio, A. F. M.; Válega, M.; Domingues, F. M.; Freire, C. S.; Silvestre, A. J.; Freire, M. G. Aqueous Solutions of Surface-active Ionic Liquids: Remarkable Alternative Solvents to Improve the Solubility of Triterpenic Acids and Their Extraction from Biomass. ACS Sustain. Chem. Eng. 2017, 5, 7344–7351. DOI: 10.1021/acssuschemeng.7b01616.
  • de Faria, E. L.; Gomes, M. V.; Cláudio, A. F. M.; Freire, C. S.; Silvestre, A. J.; Freire, M. G. Extraction and Recovery Processes for Cynaropicrin from Cynara Cardunculus L. Using Aqueous Solutions of Surface-active Ionic Liquids. Biophys. Rev. 2018, 10, 915–925. DOI: 10.1007/s12551-017-0387-y.
  • Hu, -S.-S.; Yi, L.; Li, X.-Y.; Cao, J.; Ye, L.-H.; Cao, W.; Da, J.-H.; Dai, H.-B.; Liu, X.-J. Ionic Liquid-based One-step Micellar Extraction of Multiclass Polar Compounds from Hawthorn Fruits by Ultrahigh-performance Liquid Chromatography Coupled with Quadrupole Time-of-flight Tandem Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 5275–5280. DOI: 10.1021/jf501171w.
  • Moučková, K.; Pacheco-Fernández, I.; Ayala, J. H.; Bajerová, P.; Pino, V. Evaluation of Structurally Different Ionic Liquid-based Surfactants in a Green Microwave-assisted Extraction for the Flavonoids Profile Determination of Mangifera Sp. And Passiflora Sp. Leaves from Canary Islands. Molecules. 2020, 25, 4734. DOI: 10.3390/molecules25204734.
  • Germán-Hernández, M.; Pino, V.; Anderson, J. L.; Afonso, A. M. A Novel in Situ Preconcentration Method with Ionic Liquid-based Surfactants Resulting in Enhanced Sensitivity for the Extraction of Polycyclic Aromatic Hydrocarbons from Toasted Cereals. J. Chromatogr. A. 2012, 1227, 29–37. DOI: 10.1016/j.chroma.2011.12.097.
  • Salamat, Q.; Yamini, Y.; Moradi, M.; Karimi, M.; Nazraz, M. Novel Generation of Nano-structured Supramolecular Solvents Based on an Ionic Liquid as a Green Solvent for Microextraction of Some Synthetic Food Dyes. New J. Chem. 2018, 42, 19252–19259. DOI: 10.1039/C8NJ03943G.
  • Trujillo-Rodríguez, M. J.; Pino, V.; Anderson, J. L.; Ayala, J. H.; Afonso, A. M. Double Salts of Ionic-liquid-based Surfactants in Microextraction: Application of Their Mixed Hemimicelles as Novel Sorbents in Magnetic-assisted Micro-dispersive Solid-phase Extraction for the Determination of Phenols. Anal. Bioanal. Chem. 2015, 407, 8753–8764. DOI: 10.1007/s00216-015-9034-2.
  • Yang, X.; Lin, X.; Mi, Y.; Gao, H.; Li, J.; Zhang, S.; Zhou, W.; Lu, R. Ionic Liquid-type Surfactant Modified Attapulgite as a Novel and Efficient Dispersive Solid Phase Material for Fast Determination of Pyrethroids in Tea Drinks. J. Chromatogr. B. 2018, 1089, 70–77. DOI: 10.1016/j.jchromb.2018.04.043.
  • Pacheco-Fernández, I., and Pino, V. 2020. Extraction with Ionic Liquids-organic Compounds. In Liquid-Phase Extraction, Poole, C. F., Ed. Amsterdam: Elsevier: pp 499–537. doi:10.1016/B978-0-12-816911-7.00017-7.
  • Li, X. J.; Yu, H. M.; Gao, C.; Zu, Y. G.; Wang, W.; Luo, M.; Gu, C. B.; Zhao, C. J.; Fu, Y. J. Application of Ionic Liquid‐based Surfactants in the Microwave‐assisted Extraction for the Determination of Four Main Phloroglucinols from D Ryopteris Fragrans. J. Sep. Sci. 2012, 35, 3600–3608. DOI: 10.1002/jssc.201200603.
  • Wu, K.; Zhang, Q.; Liu, Q.; Tang, F.; Long, Y.; Yao, S. Ionic Liquid Surfactant‐mediated Ultrasonic‐assisted Extraction Coupled to HPLC: Application to Analysis of Tanshinones in Salvia Miltiorrhiza Bunge. J. Sep. Sci. 2009, 32, 4220–4226. DOI: 10.1002/jssc.200900398.
  • Vieira, F. A.; Guilherme, R. J.; Neves, M. C.; Rego, A.; Abreu, M. H.; Coutinho, J. A.; Ventura, S. P. Recovery of Carotenoids from Brown Seaweeds Using Aqueous Solutions of Surface-active Ionic Liquids and Anionic Surfactants. Sep. Purif. Technol. 2018, 196, 300–308. DOI: 10.1016/j.seppur.2017.05.006.
  • Mastellone, G.; Pacheco-Fernández, I.; Rubiolo, P.; Pino, V.; Cagliero, C. Sustainable Micro-scale Extraction of Bioactive Phenolic Compounds from Vitis Vinifera Leaves with Ionic Liquid-based Surfactants. Molecules. 2020, 25, 3072. doi: 10.3390/molecules25133072.
  • Liu, C.; Si, X.; Yan, S.; Zhao, X.; Qian, X.; Ying, W.; Zhao, L. Development of the C12Im-Cl-assisted Method for Rapid Sample Preparation in Proteomic Application. Anal. Methods. 2021, 13, 776–781. DOI: 10.1039/D0AY02079F.
  • Delgado, B.; Pino, V.; Anderson, J. L.; Ayala, J. H.; Afonso, A. M.; Gonzalez, V. An In-situ Extraction–preconcentration Method Using Ionic Liquid-based Surfactants for the Determination of Organic Contaminants Contained in Marine Sediments. Talanta. 2012, 99, 972–983. DOI: 10.1016/j.talanta.2012.07.073.
  • Pacheco-Fernández, I.; González-Martín, R.; E Silva, F. A.; Freire, M. G.; Pino, V. Insights into Coacervative and Dispersive Liquid-phase Microextraction Strategies with Hydrophilic media–A Review. Anal. Chim. Acta. 2020, 1143, 225–249. DOI: 10.1016/j.aca.2020.08.022.
  • Pacheco-Fernández, I.; Pino, V.; Lorenzo-Morales, J.; Ayala, J. H.; Afonso, A. M. Salt-induced Ionic Liquid-based Microextraction Using a Low Cytotoxic Guanidinium Ionic Liquid and Liquid Chromatography with Fluorescence Detection to Determine Monohydroxylated Polycyclic Aromatic Hydrocarbons in Urine. Anal. Bioanal. Chem. 2018, 410, 4701–4713. DOI: 10.1007/s00216-018-0946-5.
  • Khiat, M.; Pacheco-Fernández, I.; Pino, V.; Benabdallah, T.; Ayala, J. H.; Afonso, A. M. A Guanidinium Ionic Liquid-based Surfactant as an Adequate Solvent to Separate and Preconcentrate Cadmium and Copper in Water Using in Situ Dispersive Liquid–liquid Microextraction. Anal. Methods. 2018, 10, 1529–1537. DOI: 10.1039/C8AY00022K.
  • Sun, Q.; Du, B.; Wang, C.; Xu, W.; Fu, Z.; Yan, Y.; Li, S.; Wang, Z.; Zhang, H. Ultrasound-assisted Ionic Liquid Solid–liquid Extraction Coupled with Aqueous Two-phase Extraction of Naphthoquinone Pigments in Arnebia Euchroma (Royle) Johnst. Chromatographia. 2019, 82, 1777–1789. DOI: 10.1007/s10337-019-03804-y.
  • Torres, F. A. E.; de Almeida Francisco, A. C.; Pereira, J. F. B.; de Carvalho Santos-ebinuma, V. Imidazolium-based Ionic Liquids as Co-surfactants in Aqueous Micellar Two-phase Systems Composed of Nonionic Surfactants and Their Aptitude for Recovery of Natural Colorants from Fermented Broth. Sep. Purif. Technol. 2018, 196, 262–269. DOI: 10.1016/j.seppur.2017.07.056.
  • Vicente, F. A.; Lario, L. D.; Pessoa, A., Jr; Ventura, S. P. Recovery of Bromelain from Pineapple Stem Residues Using Aqueous Micellar Two-phase Systems with Ionic Liquids as Co-surfactants. Process Biochem. 2016, 51, 528–534. DOI: 10.1016/j.procbio.2016.01.004.
  • Bamdad, F.; Raziani, A. Application of Surface-active Ionic Liquids in Micelle-mediated Extraction Methods: Pre-concentration of Cadmium Ions by Surface-active Ionic Liquid-assisted Cloud Point Extraction. J. Iran. Chem. Soc. 2020, 17, 327–332. DOI: 10.1007/s13738-019-01770-8.
  • Xiang, Z.; Zheng, Y.; Zhang, H.; Yan, Y.; Yang, X.; Xin, X.; Yang, Y. Effect of Spacer Length of Ionic Liquid-type Imidazolium Gemini Surfactant-based Water-in-oil Microemulsion for the Extraction of Gold from Hydrochloric Acid. New J. Chem. 2017, 41, 6180–6186. DOI: 10.1039/C7NJ00551B.
  • Wang, S.; Zheng, Y.; Zhang, H.; Yan, Y.; Xin, X.; Yang, Y. Ionic-liquid-type Imidazolium Gemini Surfactant Based Water-in-oil Microemulsion for Extraction of Gold from Hydrochloric Acid Medium. Ind. Eng. Chem. Res. 2016, 55, 2790–2797. DOI: 10.1021/acs.iecr.5b04115.
  • Gutiérrez-Serpa, A.; Napolitano-Tabares, P. I.; Šulc, J.; Pacheco-Fernández, I.; Pino, V. Role of Ionic Liquids in Composites in Analytical Sample Preparation. Separations. 2020, 7, 37. DOI: 10.3390/separations7030037.
  • Aliyari, E.; Alvand, M.; Shemirani, F. Modified Surface-active Ionic Liquid-coated Magnetic Graphene Oxide as a New Magnetic Solid Phase Extraction Sorbent for Preconcentration of Trace Nickel. RSC Adv. 2016, 6, 64193–641202. DOI: 10.1039/C6RA04163A.
  • Wu, J.; Zhao, H.; Xiao, D.; Chuong, P.-H.; He, J.; He, H. Mixed Hemimicelles Solid-phase Extraction of Cephalosporins in Biological Samples with Ionic Liquid-coated Magnetic Graphene Oxide Nanoparticles Coupled with High-performance Liquid Chromatographic Analysis. J. Chromatogr. A. 2016, 1454, 1–8. DOI: 10.1016/j.chroma.2016.05.071.
  • Liu, W.; Wang, R.; Hu, F.; Wu, P.; Huang, T.; Fizir, M.; He, H. Novel Mixed Hemimicelles Based on Nonionic Surfactant–imidazolium Ionic Liquid and Magnetic Halloysite Nanotubes as Efficient Approach for Analytical Determination. Anal. Bioanal. Chem. 2018, 410, 7357–7371. DOI: 10.1007/s00216-018-1348-4.
  • Lashkarbolooki, M.; Ayatollahi, S. Investigation of Ionic Liquids Based on Pyridinium and Imidazolium as Interfacial Tension Reducer of Crude Oil−water and Their Synergism with MgCl2. J. Pet. Sci. Eng. 2018, 171, 414–421. DOI: 10.1016/j.petrol.2018.07.062.
  • Zeinolabedini Hezave, A.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Investigating the Effect of Ionic Liquid (1-dodecyl-3-methylimidazolium Chloride ([C 12 mim][Cl])) on the Water/oil Interfacial Tension as a Novel Surfactant. Colloids Surf. A. 2013, 421, 63–71. DOI: 10.1016/j.colsurfa.2012.12.008.
  • Guang, Z.; Caili, D.; Qing, Y. Characteristics and Displacement Mechanisms of the Dispersed Particle Gel Soft Heterogeneous Compound Flooding System. Petrol. Explor. Dev. 2018, 45, 481–490. DOI: 10.1016/S1876-3804(18)30053-3.
  • Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical Properties of Ionic Liquids: Database and Evaluation. J. Phys. Chem. Ref. Data. 2006, 35, 1475–1517. DOI: 10.1063/1.2204959.
  • Bera, A.; Ojha, K.; Mandal, A.; Kumar, T. Interfacial Tension and Phase Behavior of Surfactant-brine-oil System. Colloids Surf. A. 2011, 383, 114–119. DOI: 10.1016/j.colsurfa.2011.03.035.
  • Painter, P.; Williams, P.; Lupinsky, A. Recovery of Bitumen from Utah Tar Sands Using Ionic Liquids. Energy Fuels. 2010, 24, 5081–5088. DOI: 10.1021/ef100765u.
  • Painter, P.; Williams, P.; Mannebach, E. Recovery of Bitumen from Oil or Tar Sands Using Ionic Liquids. Energy Fuels. 2009, 24, 1094–1098. DOI: 10.1021/ef9009586.
  • Sakthivel, S.; Velusamy, S.; Gardas, R. L.; Sangwai, J. S. Use of Aromatic Ionic Liquids in the Reduction of Surface Phenomena of Crude Oil–water System and Their Synergism with Brine. Ind. Eng. Chem. Res. 2015, 54, 968–9678. DOI: 10.1021/ie504331k.
  • Sakthivel, S.; Velusamy, S.; Gardas, R. L.; Sangwai, J. S. Adsorption of Aliphatic Ionic Liquids at Low Waxy Crude Oil–water Interfaces and the Effect of Brine. Colloids Surf. A. 2015, 468, 62–75. DOI: 10.1016/j.colsurfa.2014.12.010.
  • Guo, Y. J.; Liu, J. X.; Zhang, X. M.; Feng, R. S.; Li, H. B.; Zhang, J.; Lv, X.; Luo, P. Y. Solution Property Investigation of Combination Flooding Systems Consisting of Gemini–non-ionic Mixed Surfactant and Hydrophobically Associating Polyacrylamide for Enhanced Oil Recovery. Energy Fuels. 2012, 26, 2116–2123. DOI: 10.1021/ef202005p.
  • Kharazi, M.; Saien, J.; Yarie, M.; Zolfigol, M. A. Promoting Activity of Gemini Ionic Liquids Surfactant at the Interface of Crude Oil-water. Pet. Res. 2021, 117, 113–123. DOI: 10.22078/PR.2020.4130.2874.
  • Frizzo, C. P.; Gindri, I. M.; Bender, C. R.; Tier, A. Z.; Villetti, M. A.; Rodrigues, D. C.; Machado, G.; Martins, M. A. Effect on Aggregation Behavior of Long-chain Spacers of Dicationic Imidazolium-based Ionic Liquids in Aqueous Solution. Colloids Surf. A. 2015, 468, 285–294. DOI: 10.1016/j.colsurfa.2014.12.029.
  • Liu, Y.; Yu, L.; Zhang, S.; Yuan, J.; Shi, L.; Zheng, L. Dispersion of Multiwalled Carbon Nanotubes by Ionic Liquid-type Gemini Imidazolium Surfactants in Aqueous Solution. Colloids Surf. A. 2010, 359, 66–70. DOI: 10.1016/j.colsurfa.2010.01.065.
  • Saxena, N.; Pal, N.; Dey, S.; Mandal, A. Characterizations of Surfactant Synthesized from Palm Oil and Its Application in Enhanced Oil Recovery. J. Taiwan Inst. Chem. Eng. 2017, 81, 343–355. DOI: 10.1016/j.jtice.2017.09.014.
  • Saien, J.; Asadabadi, S. Temperature Effect on Adsorption of Imidazolium-based Ionic Liquids at Liquid–liquid Interface. Colloids Surf. A. 2013, 431, 34–41. DOI: 10.1016/j.colsurfa.2013.04.043.
  • Asadabadi, S.; Saien, J.; Khakizadeh, V. Interface Adsorption and Micelle Formation of Ionic Liquid 1-hexyl-3-methylimidazolium Chloride in the Toluene+water System. J. Chem. Thermodyn. 2013, 62, 92–97. DOI: 10.1016/j.jct.2013.03.004.
  • Matsubara, H.; Onohara, A.; Imai, Y.; Shimamoto, K.; Takiue, T.; Aratono, M. Effect of Temperature and Counterion on Adsorption of Imidazolium Ionic Liquids at Air–water Interface. Colloids Surf. A. 2010, 370, 113–119. DOI: 10.1016/j.colsurfa.2010.08.057.
  • Gardas, R. L.; Ge, R.; Ab Manan, N.; Rooney, D. W.; Hardacre, C. Interfacial Tensions of Imidazolium-based Ionic Liquids with Water and N-alkanes. Fluid Phase Equilib. 2010, 294, 139–147. DOI: 10.1016/j.fluid.2010.02.022.
  • Borwankar, R.; Wasan, D. Equilibrium and Dynamics of Adsorption of Surfactants at Fluid-fluid Interfaces. Chem. Eng. Sci. 1988, 43, 1323–1337. DOI: 10.1016/0009-2509(88)85106-6.
  • Gong, H.; Xin, X.; Xu, G.; Wang, Y. The Dynamic Interfacial Tension between HPAM/C17H33COONa Mixed Solution and Crude Oil in the Presence of Sodium Halide. Colloids Surf. A. 2008, 317, 522–527. DOI: 10.1016/j.colsurfa.2007.11.034.
  • Kumar, S.; Mandal, A. Studies on Interfacial Behavior and Wettability Change Phenomena by Ionic and Nonionic Surfactants in Presence of Alkalis and Salt for Enhanced Oil Recovery. Appl. Surf. Sci. 2016, 372, 42–51. DOI: 10.1016/j.apsusc.2016.03.024.
  • Belhaj, A. F.; Elraies, K. A.; Mahmood, S. M.; Zulkifli, N. N.; Akbari, S.; Hussien, O. S. The Effect of Surfactant Concentration, Salinity, Temperature, and pH on Surfactant Adsorption for Chemical Enhanced Oil Recovery: A Review. J. Pet. Explor. Prod. Technol. 2020, 10, 125–137. DOI: 10.1007/s13202-019-0685-y.
  • Mallakpour, S.; Dinari, M. Ionic Liquids as Green Solvents: Progress and Prospects. In Green Solvents II; Inamuddin, A. M., Ed.; Springer: Dordrecht, 2012; pp 1–32.
  • Nandwani, S. K.; Chakraborty, M.; Gupta, S. Chemical Flooding with Ionic Liquid and Nonionic Surfactant Mixture in Artificially Prepared Carbonate Cores: A Diffusion Controlled CFD Simulation. J. Pet. Sci. Eng. 2019, 173, 835–843. DOI: 10.1016/j.petrol.2018.10.083.
  • Dahbag, M. B.; AlQuraishi, A.; Benzagouta, M. Efficiency of Ionic Liquids for Chemical Enhanced Oil Recovery. J. Pet. Explor. Prod. Technol. 2015, 5, 353–361. DOI: 10.1007/s13202-014-0147-5.
  • Santanna, V.; Silva, A.; Lopes, H. M.; Neto, F. S. Microemulsion Flow in Porous Medium for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2013, 105, 116–120. DOI: 10.1016/j.petrol.2013.03.015.
  • Goswami, R.; Chaturvedi, K. R.; Kumar, R. S.; Chon, B. H.; Sharma, T. Effect of Ionic Strength on Crude Emulsification and EOR Potential of Micellar Flood for Oil Recovery Applications in High Saline Environment. J. Pet. Sci. Eng. 2018, 170, 49–61. DOI: 10.1016/j.petrol.2018.06.040.
  • Yuan, C. D.; Pu, W. F.; Wang, X. C.; Sun, L.; Zhang, Y. C.; Cheng, S. Effects of Interfacial Tension, Emulsification, and Surfactant Concentration on Oil Recovery in Surfactant Flooding Process for High Temperature and High Salinity Reservoirs. Energy Fuels. 2015, 29, 6165–6176. DOI: 10.1021/acs.energyfuels.5b01393.
  • Lago, S.; Francisco, M.; Arce, A.; Soto, A. Enhanced Oil Recovery with the Ionic Liquid Trihexyl (Tetradecyl) Phosphonium Chloride: A Phase Equilibria Study at 75 C. Energy Fuels. 2013, 27, 5806–5810. DOI: 10.1021/ef401144z.
  • Fernández‐Stefanuto, V.; Corchero, R.; Rodríguez‐Escontrela, I.; Soto, A.; Tojo, E. Ionic Liquids Derived from Proline: Application as Surfactants. ChemPhysChem. 2018, 19, 2885–2893. DOI: 10.1002/cphc.201800735.
  • Sheng, J. J.;. Modern Chemical Enhanced Oil Recovery: Theory and Practice; Burlington: Elsevier, Gulf Professional Publishing, 2010; pp 1–620.
  • Kharazi, M.; Saien, J.; Asadabadi, S. Review on Amphiphilic Ionic Liquids as New Surfactants: From Fundamentals to Applications. Top. Curr. Chem. 2022, 380, 1–44. DOI: 10.1007/s41061-021-00362-6.
  • Gbadamosi, A. O.; Junin, R.; Manan, M. A.; Agi, A.; Yusuff, A. S. An Overview of Chemical Enhanced Oil Recovery: Recent Advances and Prospects. Int. Nano Lett. 2019, 9, 171–202. DOI: 10.1007/s40089-019-0272-8.
  • Velusamy, S.; Sakthivel, S.; Sangwai, J. S. Effect of Imidazolium-based Ionic Liquids on the Interfacial Tension of the Alkane–water System and Its Influence on the Wettability Alteration of Quartz under Saline Conditions through Contact Angle Measurements. Ind. Eng. Chem. Res. 2017, 56, 13521–13534. DOI: 10.1021/acs.iecr.7b02528.
  • Li, Y.; Dai, C.; Zhou, H.; Wang, X.; Lv, W.; Zhao, M. Investigation of Spontaneous Imbibition by Using a Surfactant-free Active Silica Water-based Nanofluid for Enhanced Oil Recovery. Energy Fuels. 2018, 32, 287–293. DOI: 10.1021/acs.energyfuels.7b03132.
  • Yahya, M.; Sangapalaarachchi, D. T.; Lau, E. Effects of Carbon Chain Length of Imidazolium-based Ionic Liquid in the Interactions between Heavy Crude Oil and Sand Particles for Enhanced Oil Recovery. J. Mol. Liq. 2019, 274, 285–292. DOI: 10.1016/j.molliq.2018.10.147.
  • Chang, C. L.; Fogler, H. S. Stabilization of Asphaltenes in Aliphatic Solvents Using Alkylbenzene-derived Amphiphiles. 1. Effect of the Chemical Structure of Amphiphiles on Asphaltene Stabilization. Langmuir. 1994, 10, 1749–1757. DOI: 10.1021/la00018a022.
  • Martínez-Palou, R.; de Lourdes Mosqueira, M.; Zapata-Rendón, B.; Mar-Juárez, E.; Bernal-Huicochea, C.; de la Cruz Clavel-lópez, J.; Aburto, J. Transportation of Heavy and Extra-heavy Crude Oil by Pipeline: A Review. J. Pet. Sci. Eng. 2011, 75, 274–282. DOI: 10.1016/j.petrol.2010.11.020.
  • Sjoblom, J.;. Encyclopedic Handbook of Emulsion Technology;2rd.; CRC Press: New York, USA, 2001; pp 1–554.
  • Strausz, O. P.; Morales-Izquierdo, A.; Kazmi, N.; Montgomery, D. S.; Payzant, J. D.; Safarik, I.; Murgich, J. Chemical Composition of Athabasca Bitumen: The Saturate Fraction. Energy Fuels. 2010, 24, 5053–5072. DOI: 10.1021/ef100702j.
  • Langevin, D.; Argillier, J. F. Interfacial Behavior of Asphaltenes. Adv. Colloid Interface Sci. 2016, 233, 83–93. DOI: 10.1016/j.cis.2015.10.005.
  • Forny-Le Follotec, A.; Glatter, O.; Pezron, I.; Barré, L.; Noïk, C.; Dalmazzone, C.; Metlas-Komunjer, L. Characterization of Micelles of Small Triblock Copolymer by Small-angle Scattering. Macromolecules. 2012, 45, 2874–2881. DOI: 10.1021/ma202610n.
  • Hamidi, H.; Mohammadian, E.; Rafati, R.; Azdarpour, A.; Ing, J. The Effect of Ultrasonic Waves on the Phase Behavior of a Surfactant–brine–oil System. Colloids Surf. A. 2015, 482, 27–33. DOI: 10.1016/j.colsurfa.2015.04.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.