438
Views
0
CrossRef citations to date
0
Altmetric
Review

Performance of Silicon Carbide Nanomaterials in Separation Process

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 205-220 | Received 28 Jan 2022, Accepted 12 May 2022, Published online: 06 Jun 2022

References

  • Baig, N. Kammakakam, I.; Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mat. Adv. 2021, 2, 1821–1871. DOI: 10.1039/D0MA00807A.
  • Kolahalam, L. A.; Kasi Viswanath, I. V.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y. L. N. Review on Nanomaterials: Synthesis and Applications. Mater. Today 2019, 18, 2182–2190. DOI: 10.1016/j.matpr.2019.07.371.
  • Neikov, O. D.; Yefimov, N. A. Chapter 9 - Nanopowders. In Handbook of Non-Ferrous Metal Powders, 2nd ed.; Neikov, O. D., S.S, Naboychenko, N. A., Yefimov, Eds.; Elsevier: Oxford, UK, 2019; pp 271–311.
  • Goh, P. S.; Ismail, A. F. Review: Is Interplay between Nanomaterial and Membrane Technology the Way Forward for Desalination? J. Chem. Technol. Biotechnol. 2015, 90(6), 971–980. DOI: 10.1002/jctb.4531.
  • Park, K.; Kim, J.; Yang, D. R.; Hong, S. Towards A low-energy Seawater Reverse Osmosis Desalination Plant: A Review and Theoretical Analysis for Future Directions. J. Membr. Sci. 2020, 595, 117607. DOI: 10.1016/j.memsci.2019.117607.
  • Zhang, J.; Li, Z.; Zhan, K.; Sun, R.; Sheng, Z.; Wang, M.; Wang, S.; Hou, X. Two Dimensional nanomaterial-based Separation Membranes. Electrophoresis. 2019, 40, 2029–2040. DOI: 10.1002/elps.201800529.
  • Sidhikku Kandath Valappil, R.; Ghasem, N.; Al-Marzouqi, M. Current and Future Trends in Polymer membrane-based Gas Separation Technology: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 98, 103–129. DOI: 10.1016/j.jiec.2021.03.030.
  • Yeo, Z. Y.; Chew, T. L.; Zhu, P. W.; Mohamed, A. R.; Chai, S.-P. Conventional Processes and Membrane Technology for Carbon Dioxide Removal from Natural Gas: A Review. J. Nat. Gas. Chem. 2012, 21(3), 282–298. DOI: 10.1016/S1003-9953(11)60366-6.
  • Kianfar, E.; Liao, J.; Lu, J.; Ma, J.; Kianfar, E. The Effect of Nanoparticles on Gas Permeability with Polyimide Membranes and Network Hybrid Membranes: A Review. Rev. Inorg. Chem. 2021, 41(1), 1–20. DOI: 10.1515/revic-2020-0007.
  • Liu, J.; Yang, H.; Gosling, S. N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C., et al. Water Scarcity Assessments in the Past, Present, and Future. Earth’s Future.2017, 5(6), 545–559. DOI: 10.1002/2016EF000518.
  • Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A Review of Water Scarcity and Drought Indexes in Water Resources Planning and Management. J. Hydrol. 2015, 527, 482–493. DOI: 10.1016/j.jhydrol.2015.05.003.
  • Anis, S. F.; Hashaikeh, R.; Hilal, N. Functional Materials in Desalination: A Review. Desalination 2019, 468, 114077. DOI: 10.1016/j.desal.2019.114077.
  • Qasim, M.; Badrelzaman, M.; Darwish, N. N.; Darwish, N. A.; Hilal, N. Reverse Osmosis Desalination: A state-of-the-art Review. Desalination 2019, 459, 59–104. DOI: 10.1016/j.desal.2019.02.008.
  • Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of Reverse Osmosis Desalination. Desalination 2007, 216(1–3), 1–76. DOI: 10.1016/j.desal.2006.12.009.
  • Kim, J.; Park, K.; Yang, D. R.; Hong, S. A Comprehensive Review of Energy Consumption of Seawater Reverse Osmosis Desalination Plants. Appl. Energy 2019, 254, 113652. DOI: 10.1016/j.apenergy.2019.113652.
  • Okamoto, Y.; Lienhard, J. H. How RO Membrane Permeability and Other Performance Factors Affect Process Cost and Energy Use: A Review. Desalination 2019, 470, 114064. DOI: 10.1016/j.desal.2019.07.004.
  • Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12(6), 964. DOI: 10.3390/en12060964.
  • Asadollahi, M.; Bastani, D.; Musavi, S. A. Enhancement of Surface Properties and Performance of Reverse Osmosis Membranes after Surface Modification: A Review. Desalination 2017, 420, 330–383. DOI: 10.1016/j.desal.2017.05.027.
  • Jiang, S.; Li, Y.; Ladewig, B. P. A Review of Reverse Osmosis Membrane Fouling and Control Strategies. Sci. Total Environ. 2017, 595, 567–583. DOI: 10.1016/j.scitotenv.2017.03.235.
  • Yuan, Y.; Qiao, Z.; Xu, J.; Wang, J.; Zhao, S.; Cao, X.; Wang, Z.; Guiver, M. D. Mixed Matrix Membranes for CO2 Separations by Incorporating Microporous Polymer Framework Fillers with amine-rich Nanochannels. J. Membr. Sci. 2021, 620, 118923. DOI: 10.1016/j.memsci.2020.118923.
  • Qadir, D.; Mukhtar, H.; Keong, L. K. Mixed Matrix Membranes for Water Purification Applications. Sep. Purif. Rev. 2017, 46(1), 62–80. DOI: 10.1080/15422119.2016.1196460.
  • Vu, M.-T.; Lin, R.; Bhatia, S. K.; Bhatia, S. K.; Smart, S.; Smart, S. Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes 2021, 11(5), 328. DOI: 10.3390/membranes11050328.
  • Liu, Z.; Dibaji, A.; Li, D.; Mateti, S.; Liu, J.; Yan, F.; Barrow, C. J.; Chen, Y.; Ariga, K.; Yang, W., et al. Challenges and Solutions in Surface Engineering and Assembly of Boron Nitride Nanosheets. Mater. Today 2021, 44, 194–210. DOI: 10.1016/j.mattod.2020.11.020.
  • Maan, K. S.; Sharma, A.; Nath, P.; Vo, D.-V. N.; Ha, H. T.; Minh, T. D. 13 - Application of carbon-based Smart Nanocomposites for Hydrogen Production: Current Progress, Challenges, and Prospects. In New Dimensions in Production and Utilization of Hydrogen; Nanda, S., Vo, D.-V. N., Nguyen-Tri, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp 321–336.
  • Iijima, S.; Ichihashi, T. Single-shell Carbon Nanotubes of 1-nm Diameter. Nature 1993, 363(6430), 603–605. DOI: 10.1038/363603a0.
  • Farid, M. U.; Khanzada, N. K.; An, A. K. Understanding Fouling Dynamics on Functionalized CNT-based Membranes: Mechanisms and Reversibility. Desalination 2019, 456, 74–84. DOI: 10.1016/j.desal.2019.01.013.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306(5696), 666–669. DOI: 10.1126/science.1102896.
  • Nguyen, T. P.; Shahedi Asl, M.; Delbari, S. A.; Sabahi Namini, A.; Le, Q. V.; Shokouhimehr, M.; Mohammadi, M. Electron Microscopy Investigation of Spark Plasma Sintered ZrO2 Added ZrB2–SiC Composite. Ceram. Int. 2020, 46(11), 19646–19649. DOI: 10.1016/j.ceramint.2020.04.292.
  • Nguyen, T. P.; Ghassemi Kakroudi, M.; Shahedi Asl, M.; Ahmadi, Z.; Sabahi Namini, A.; Delbari, S. A.; Van Le, Q.; Shokouhimehr, M. Influence of SiAlON Addition on the Microstructure Development of hot-pressed ZrB2–SiC Composites. Ceram. Int. 2020, 46(11), 19209–19216. DOI: 10.1016/j.ceramint.2020.04.258.
  • Xia, C.; Shahedi Asl, M.; Sabahi Namini, A.; Ahmadi, Z.; Delbari, S. A.; Le, Q. V.; Shokouhimehr, M.; Mohammadi, M. Enhanced Fracture Toughness of ZrB2–SiCw Ceramics with Graphene nano-platelets. Ceram. Int. 2020, 46(16), 24906–24915. DOI: 10.1016/j.ceramint.2020.06.275.
  • Nguyen, V.-H.; Shahedi Asl, M.; Hamidzadeh Mahaseni, Z.; Dashti Germi, M.; Delbari, S. A.; Le, Q. V.; Ahmadi, Z.; Shokouhimehr, M.; Sabahi Namini, A.; Mohammadi, M., et al. Role of co-addition of BN and SiC on Microstructure of TiB2-based Composites Densified by SPS Method. Ceram. Int. 2020, 46(16), 25341–25350. DOI: 10.1016/j.ceramint.2020.07.001.
  • Nguyen, V.-H.; Delbari, S. A.; Ahmadi, Z.; Shahedi Asl, M.; Ghassemi Kakroudi, M.; Le, Q. V.; Sabahi Namini, A.; Mohammadi, M.; Shokouhimehr, M. Electron Microscopy Characterization of Porous ZrB2–SiC–AlN Composites Prepared by Pressureless Sintering. Ceram. Int. 2020, 46(16), 25415–25423. DOI: 10.1016/j.ceramint.2020.07.011.
  • Powell, A. R.; Rowland, L. B. SiC materials-progress, Status, and Potential Roadblocks. Proc. IEEE 2002, 90: 942–955. DOI: 10.1109/JPROC.2002.1021560.
  • Buttay, C.; Raynaud, C.; Morel, H.; Civrac, G.; Locatelli, M.; Morel, F. Thermal Stability of Silicon Carbide Power Diodes. IEEE. T. Electron. Dev. 2012, 59(3), 761–769. DOI: 10.1109/TED.2011.2181390.
  • Casady, J. B.; Johnson, R. W. Status of Silicon Carbide (Sic) as A wide-bandgap Semiconductor for high-temperature Applications: A Review. Solid·State Electron. 1996, 39(10), 1409–1422. DOI: 10.1016/0038-1101(96)00045-7.
  • Wijesundara, M., and Azevedo, R. Silicon Carbide Microsystems for Harsh Environments; NewYork, USA: Springer, 2011.
  • Lee, E.; Lee, M.; Shim, J.; Min, K.; Kim, D. J. Microstructure Formation of Porous Silicon Carbide Ceramics during β-α Phase Transformation. Int. J. Refract. Met. Hard Mater. 2017, 65, 64–68. DOI: 10.1016/j.ijrmhm.2016.11.007.
  • Han, W.; Fan, S.; Li, Q.; Liang, W.; Gu, B.; Yu, D. Continuous Synthesis and Characterization of Silicon Carbide Nanorods. Chem. Phys. Lett. 1997, 265(3–5), 374–378. DOI: 10.1016/S0009-2614(96)01441-8.
  • Vörös, M.; Gali, A. Electronic and Optical Properties of Silicon Carbide Nanotubes and Nanoparticles Studied by Density Functional Theory Calculations: Effect of Doping and Environment. J. Comput. Theor. Nanosci. 2012, 9(11), 1906–1940. DOI: 10.1166/jctn.2012.2600.
  • Mavrandonakis, A.; Froudakis, G. E.; Schnell, M.; Mühlhäuser, M. From Pure Carbon to Silicon−Carbon Nanotubes:  An Ab-initio Study. Nano Lett. 2003, 3(11), 1481–1484. DOI: 10.1021/nl0343250.
  • Hotza, D.; Di Luccio, M.; Wilhelm, M.; Iwamoto, Y.; Bernard, S.; Diniz da Costa, J. C. Silicon Carbide Filters and Porous Membranes: A Review of Processing, Properties, Performance and Application. J. Membr. Sci. 2020, 610, 118193. DOI: 10.1016/j.memsci.2020.118193.
  • Fatemi, S. M.; Foroutan, M. Review on Carbon Nanotubes and Carbon Nanotube Bundles for gas/ion Separation and Water Purification Studied by Molecular Dynamics Simulation. Int. J. Environ. Sci. Technol. 2016, 13(2), 457–470. DOI: 10.1007/s13762-015-0918-7.
  • O’Hern, S. C.; Boutilier, M. S. H.; Idrobo, J.-C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes. Nano Lett. 2014, 14(3), 1234–1241. DOI: 10.1021/nl404118f.
  • Boretti, A.; Al-Zubaidy, S.; Vaclavikova, M.; Al-Abri, M.; Castelletto, S.; Mikhalovsky, S. Outlook for graphene-based Desalination Membranes. Npj Clean Water 2018, 1(1), 5. DOI: 10.1038/s41545-018-0004-z.
  • Naser, J. A.; Ahmed, Z. W.; Ali, E. H. Nanomaterials Usage as Adsorbents for the Pollutants Removal from Wastewater; a Review. Mater. Today 2021, 42: 2590–2595. DOI: 10.1016/j.matpr.2020.12.584.
  • Doroszkowski, A 6 - the Physical Chemistry of Dispersion. In Paint and Surface Coatings, 2nd ed.; Lambourne, R., Strivens, T. A., Eds.; United Kingdom: Woodhead Publishing, 1999; pp 198–242.
  • Johnson, C 2.4 - Advances in Pretreatment and Clarification Technologies. In Comprehensive Water Quality and Purification; Ahuja, S., Ed.; Elsevier: Waltham, 2014; pp 60–74.
  • Bläker, C.; Heib, S.; Pasel, C.; Atakan, B.; Bathen, D. Investigation of Mechanical, Chemical and Adsorptive Properties of Novel Silicon-Based Adsorbents with Activated Carbon Structure. J. Carbon Res. 2017, 3(4), 27. DOI: 10.3390/c3030027.
  • Reddy, M.; Koneru, B.; Franco, A.; Rangappa, D.; Banerjee, P. Recent Developments in Nanomaterials Based Adsorbents for Water Purification Techniques. Biointerface Res. Appl. Chem. 2021, 12, 5821–5835. DOI: 10.33263/BRIAC125.58215835.
  • Barghi, S. H.; Tsotsis, T. T.; Sahimi, M. Experimental Investigation of Hydrogen Adsorption in Doped silicon-carbide Nanotubes. Int. J. Hydrogen Energy 2016, 41(1), 369–374. DOI: 10.1016/j.ijhydene.2015.10.091.
  • Ajalli, N.; Alizadeh, M.; Hasanzadeh, A.; Khataee, A.; Azamat, J. A Theoretical Investigation into the Effects of Functionalized Graphene Nanosheets on Dimethyl Sulfoxide Separation. Chemosphere 2022, 297, 134183. DOI: 10.1016/j.chemosphere.2022.134183.
  • Majidi, S.; Erfan-Niya, H.; Azamat, J.; Cruz-Chú, E. R.; Honoré Walther, J. The Performance of a C2N Membrane for Heavy Metal Ions Removal from Water under External Electric Field. Sep. Purif. Technol. 2022, 289, 120770. DOI: 10.1016/j.seppur.2022.120770.
  • Azizi, B.; Vessally, E.; Ahmadi, S.; Ebadi, A. G.; Azamat, J. Separation of CH4/N2 Gas Mixture Using MFI Zeolite Nanosheet: Insights from Molecular Dynamics Simulation. Colloids Surf. A 2022, 641, 128527. DOI: 10.1016/j.colsurfa.2022.128527.
  • Azamat, J.; Sardroodi, J. J. The Permeation of Potassium and Chloride Ions through Nanotubes: A Molecular Simulation Study. Monatsh. Chem. 2014, 145(6), 881–890. DOI: 10.1007/s00706-013-1136-y.
  • Eray, E.; Candelario, V. M.; Boffa, V.; Safafar, H.; Østedgaard-Munck, D. N.; Zahrtmann, N.; Kadrispahic, H.; Jørgensen, M. K. A Roadmap for the Development and Applications of Silicon Carbide Membranes for Liquid Filtration: Recent Advancements, Challenges, and Perspectives. Chem. Eng. J. 2021, 414, 128826. DOI: 10.1016/j.cej.2021.128826.
  • Čomor, J. J.; Lauševic, Z. V.; Kopečni, M. M.; Vukov, A. J. Alkane Adsorption on Silicon Carbide Surface. J. Colloid Interface Sci. 1992, 151(2), 498–504. DOI: 10.1016/0021-9797(92)90497-A.
  • Lemraski, E. G.; Palizban, Z. Comparison of 2-amino Benzyl Alcohol Adsorption onto Activated Carbon, Silicon Carbide Nanoparticle and Silicon Carbide Nanoparticle Loaded on Activated Carbon. J. Mol. Liq. 2015, 212, 245–258. DOI: 10.1016/j.molliq.2015.09.007.
  • Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L., et al. Porous Materials with Optimal Adsorption Thermodynamics and Kinetics for CO2 Separation. Nature2013, 495(7439), 80–84. DOI: 10.1038/nature11893.
  • Haluska, O.; Rahmani, A.; Salami, A.; Turhanen, P.; Vepsäläinen, J.; Lappalainen, R.; Lehto, V.-P.; Riikonen, J. Plant-based Nanostructured Silicon Carbide Modified with Bisphosphonates for Metal Adsorption. Microporous Mesoporous Mater. 2021, 324, 111294. DOI: 10.1016/j.micromeso.2021.111294.
  • Luo, L.; Chen, X.; Wang, Y.; Yue, J.; Du, Z.; Huang, X.; Tang, X.-Z. Bio-inspired Modification of Silicon Carbide Foams for oil/water Separation and Rapid power-free Absorption Towards Highly Viscous Oils. Ceram. Int. 2018, 44(11), 12021–12029. DOI: 10.1016/j.ceramint.2018.03.196.
  • Luo, M.; Shen, Y. H.; Yin, T. L. Electronic and Magnetic Properties of TM Atoms Adsorption on 2D Silicon Carbide by first-principles Calculations. Solid State Commun. 2017, 252, 1–5. DOI: 10.1016/j.ssc.2017.01.003.
  • Majid, A.; Rani, N.; Malik, M. F.; Ahmad, N.; Najam Al, H.; Hussain, F.; Shakoor, A. A Review on Transition Metal Doped Silicon Carbide. Ceram. Int. 2019, 45(7), 8069–8080. DOI: 10.1016/j.ceramint.2019.01.167.
  • Li, C.; Fang, C. First-principle Studies of Radioactive Fission Productions of Cs/Sr/Ag/I Adsorption on Silicon Carbide in HTGR. Prog. Nuclear Energy 2017, 100, 164–170. DOI: 10.1016/j.pnucene.2017.06.007.
  • Remyamol, T.; Gopi, R.; Ajith, M. R.; Pant, B. Porous Silicon Carbide Structures with Anisotropic Open Porosity for High- Temperature Cycling Applications. J. Eur. Ceram. Soc. 2021, 41(3), 1828–1833. DOI: 10.1016/j.jeurceramsoc.2020.10.060.
  • Chen, J.; Nan, L.; Wei, Y.; Han, B.; Zhang, Y. A low-cost Approach to Fabricate SiC Nanosheets by Reactive Sintering from Si Powders and Graphite. J. Alloys Compd. 2019, 788, 345–351. DOI: 10.1016/j.jallcom.2019.02.179.
  • Khan, A.; Ahmad, R.; Ahmad, I. Silicon Carbide and III-Nitrides Nanosheets: Promising Anodes for Mg-ion Batteries. Mater. Chem. Phys. 2020, 257, 123785. DOI: 10.1016/j.matchemphys.2020.123785.
  • Morris, R. E.; Wheatley, P. S. Gas Storage in Nanoporous Materials. Angew. Chem. Int. Ed. Engl. 2008, 47(27), 4966–4981. DOI: 10.1002/anie.200703934.
  • El Kassaoui, M.; Houmad, M.; Lakhal, M.; Benyoussef, A.; El Kenz, A.; Loulidi, M. Hydrogen Storage in Lithium, Sodium and magnesium-decorated on Tetragonal Silicon Carbide. Int. J. Hydrogen Energy 2021, 46(47), 24190–24201. DOI: 10.1016/j.ijhydene.2021.04.183.
  • Yaremov, P. S.; Shcherban, N. D.; Aho, A.; Murzin, D. Y. Molecular Insight on Unusually High Specific Hydrogen Adsorption over Silicon Carbide. Int. J. Hydrogen Energy 2019, 44(12), 6074–6085. DOI: 10.1016/j.ijhydene.2019.01.081.
  • Mourya, S.; Kumar, A.; Jaiswal, J.; Malik, G.; Kumar, B.; Chandra, R. Development of Pd-Pt Functionalized High Performance H2 Gas Sensor Based on Silicon Carbide Coated Porous Silicon for Extreme Environment Applications. Sens. Actuators B 2019, 283, 373–383. DOI: 10.1016/j.snb.2018.12.042.
  • Zeng, Y.; Lin, S.; Gu, D.; Li, X. Two-Dimensional Nanomaterials for Gas Sensing Applications: The Role of Theoretical Calculations. Nanomaterials 2018, 8(10), 851. DOI: 10.3390/nano8100851.
  • Rahimi, R.; Solimannejad, M.; Ehsanfar, Z. First-principles Studies on two-dimensional B(3)O(3) Adsorbent as a Potential Drug Delivery Platform for TEPA Anticancer Drug. J. Mol. Model. 2021, 27(12), 347. DOI: 10.1007/s00894-021-04930-x.
  • Safari, L.; Vessally, E.; Bekhradnia, A.; Hosseinian, A.; Edjlali, L. A Density Functional Theory Study of the Sensitivity of two-dimensional BN Nanosheet to Nerve Agents Cyclosarin and Tabun. Thin Solid Films 2017, 623, 157–163. DOI: 10.1016/j.tsf.2017.01.006.
  • Jia, S.; Wang, Z.; Ding, N.; Elaine Wong, Y. L.; Chen, X.; Qiu, G.; Dominic Chan, T. W. Hexagonal Boron Nitride Nanosheets as Adsorbents for solid-phase Extraction of Polychlorinated Biphenyls from Water Samples. Anal. Chim. Acta 2016, 936, 123–129. DOI: 10.1016/j.aca.2016.07.019.
  • Shi, C.; Chen, Y.; Qin, H.; Li, L.; Hu, J. Adsorption of CO2 and O2 on SiC Nanosheet: Density Functional Theory Study. Chem. Phys. Lett. 2015, 635, 23–28. DOI: 10.1016/j.cplett.2015.06.028.
  • Liu, Y.; Zhou, Y.; Yang, S.; Xu, H.; Lan, Z.; Xiong, J.; Wang, Z.; Gu, H. A DFT Study on Enhanced Adsorption of H2 on Be-decorated Porous Graphene Nanosheet and the Effects of Applied Electrical Fields. Int. J. Hydrogen Energy 2021, 46(7), 5891–5903. DOI: 10.1016/j.ijhydene.2020.11.090.
  • Bezi Javan, M.; Houshang Shirdel-Havar, A.; Soltani, A.; Pourarian, F. Adsorption and Dissociation of H2 on Pd Doped graphene-like SiC Sheet. Int. J. Hydrogen Energy 2016, 41(48), 22886–22898. DOI: 10.1016/j.ijhydene.2016.09.081.
  • Farmanzadeh, D.; Ardehjani, N. A. Adsorption of O3, SO2 and NO2 Molecules on the Surface of Pure and Fe-doped Silicon Carbide Nanosheets: A Computational Study. Appl. Surf. Sci. 2018, 462, 685–692. DOI: 10.1016/j.apsusc.2018.08.150.
  • Lee, G.; Lee, B.; Kim, J.; Cho, K. Ozone Adsorption on Graphene: Ab Initio Study and Experimental Validation. J. Phys. Chem. C 2009, 113(32), 14225–14229. DOI: 10.1021/jp904321n.
  • Farmanzadeh, D.; Askari Ardehjani, N. Theoretical Study of Ozone Adsorption on the Surface of Fe, Co and Ni Doped Boron Nitride Nanosheets. Appl. Surf. Sci. 2018, 444, 642–649. DOI: 10.1016/j.apsusc.2018.02.253.
  • Zhou, Q.; Ju, W.; Su, X.; Yong, Y.; Li, X. Adsorption Behavior of SO2 on vacancy-defected Graphene: A DFT Study. J. Phys. Chem. Solids 2017, 109, 40–45. DOI: 10.1016/j.jpcs.2017.05.007.
  • Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H 2 O, N H 3, CO, N O 2, and NO on Graphene: A first-principles Study. Phys. Rev. B: Condens. Matter. 2008, 77(12), 125416. DOI: 10.1103/PhysRevB.77.125416.
  • Peyghan, A. A.; Aslanzadeh, S. A.; Noei, M. A Density Functional Study on the Acidity Properties of Pristine and Modified SiC nano-sheets. Physica B 2014, 443, 54–59. DOI: 10.1016/j.physb.2014.03.006.
  • Peng, Y.; Li, J. Ammonia Adsorption on Graphene and Graphene Oxide: A first-principles Study. Front. Environ. Sci. Eng. 2013, 7(3), 403–411. DOI: 10.1007/s11783-013-0491-6.
  • Srivastava, A.; Bhat, C.; Jain, S. K.; Mishra, P. K.; Brajpuriya, R. Electronic Transport Properties of BN Sheet on Adsorption of Ammonia (NH3) Gas. J. Mol. Model. 2015, 21(3), 1–8. DOI: 10.1007/s00894-015-2595-3.
  • Nematollahi, P.; Esrafili, M. D. A DFT Study on the N 2 O Reduction by CO Molecule over Silicon Carbide Nanotubes and Nanosheets. RSC Adv. 2016, 6(64), 59091–59099. DOI: 10.1039/C6RA07548G.
  • Ciora, R. J.; Fayyaz, B.; Liu, P. K. T.; Suwanmethanond, V.; Mallada, R.; Sahimi, M.; Tsotsis, T. T. Preparation and Reactive Applications of Nanoporous Silicon Carbide Membranes. Chem. Eng. Sci. 2004, 59(22–23), 4957–4965. DOI: 10.1016/j.ces.2004.07.015.
  • Elyassi, B.; Sahimi, M.; Tsotsis, T. T. Silicon Carbide Membranes for Gas Separation Applications. J. Membr. Sci. 2007, 288(1–2), 290–297. DOI: 10.1016/j.memsci.2006.11.027.
  • Nagano, T.; Sato, K.; Kawahara, K. Gas Permeation Property of Silicon Carbide Membranes Synthesized by Counter-Diffusion Chemical Vapor Deposition. Membranes 2020, 10(1), 11. DOI: 10.3390/membranes10010011.
  • Boffa, V.; Lunghi, C.; Quist-Jensen, C. A.; Magnacca, G.; Calza, P. Fabrication and Surface Interactions of Super-Hydrophobic Silicon Carbide for Membrane Distillation. Nanomaterials 2019, 9(8), 1159. DOI: 10.3390/nano9081159.
  • Eray, E.; Boffa, V.; Jørgensen, M. K.; Magnacca, G.; Candelario, V. M. Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatment: From Laboratory to Industrial Scale. J. Membr. Sci. 2020, 606, 118080. DOI: 10.1016/j.memsci.2020.118080.
  • Azamat, J.; Khataee, A. Separation of CH 4 /C 2 H 6 Mixture Using Functionalized Nanoporous Silicon Carbide Nanosheet. Energy Fuels 2018, 32(7), 7508–7518. DOI: 10.1021/acs.energyfuels.8b01433.
  • Bayat, G.; Saghatchi, R.; Azamat, J.; Khataee, A. Separation of Methane from Different Gas Mixtures Using Modified Silicon Carbide Nanosheet: Micro and Macro Scale Numerical Studies. Chin. J. Chem. Eng. 2020, 28(5), 1268–1276. DOI: 10.1016/j.cjche.2019.12.005.
  • Kurada, K. V.; Mukherjee, M.; De, S. Permeability Hysteresis of polypyrrole-polysulfone Blend Ultrafiltration Membranes: Study of Phase Separation Thermodynamics and pH Responsive Membrane Properties. Sep. Purif. Technol. 2019, 227, 115736. DOI: 10.1016/j.seppur.2019.115736.
  • Azamat, J Theoretical Investigation of the Removal of Nitrate Ions from Contaminated Aqueous Solution Using Functionalized Silicon Carbide Nanosheets. Comput. Mater. Sci. 2021, 187, 110118. DOI: 10.1016/j.commatsci.2020.110118.
  • Jafarzadeh, R.; Azamat, J.; Erfan-Niya, H. Water Desalination across Functionalized Silicon Carbide Nanosheet Membranes: Insights from Molecular Simulations. Struct. Chem. 2020, 31(1), 293–303. DOI: 10.1007/s11224-019-01405-x.
  • Liu, Y.; Chen, X. High Permeability and Salt Rejection Reverse Osmosis by a Zeolite nano-membrane. PCCP 2013, 15(18), 6817–6824. DOI: 10.1039/C3CP43854F.
  • Lin, S.; Buehler, M. J. Mechanics and Molecular Filtration Performance of Graphyne Nanoweb Membranes for Selective Water Purification. Nanoscale 2013, 5(23), 11801–11807. DOI: 10.1039/C3NR03241H.
  • Jafarzadeh, R.; Azamat, J.; Erfan-Niya, H.; Hosseini, M. Molecular Insights into Effective Water Desalination through Functionalized Nanoporous Boron Nitride Nanosheet Membranes. Appl. Surf. Sci. 2019, 471, 921–928. DOI: 10.1016/j.apsusc.2018.12.069.
  • Chatterjee, S.; Mukherjee, M.; De, S. Groundwater Defluoridation and Disinfection Using Carbonized Bone Meal Impregnated Polysulfone Mixed Matrix hollow-fiber Membranes. J. Water Process. Eng. 2020, 33, 101002. DOI: 10.1016/j.jwpe.2019.101002.
  • Chatterjee, S.; De, S. Adsorptive Removal of Fluoride by Activated Alumina Doped Cellulose Acetate Phthalate (CAP) Mixed Matrix Membrane. Sep. Purif. Technol. 2014, 125, 223–238. DOI: 10.1016/j.seppur.2014.01.055.
  • Mondal, M.; De, S. Purification of Polyphenols from Green Tea Leaves and Performance Prediction Using the Blend Hollow Fiber Ultrafiltration Membrane. Food. Bioprocess. Tech. 2019, 12(6), 933–953. DOI: 10.1007/s11947-019-02262-6.
  • Panda, S. R.; De, S. Preparation, Characterization and Antifouling Properties of polyacrylonitrile/polyurethane Blend Membranes for Water Purification. RSC Adv. 2015, 5(30), 23599–23612. DOI: 10.1039/C5RA00736D.
  • De, S.; Mukherjee, R.; Saini, P.; Sharma, R. Nanostructured Polyaniline Incorporated Ultrafiltration Membrane for Desalination of Brackish Water. Environ. Sci. 2015, 1. DOI: 10.1039/C5EW00163C.
  • Pham-Huu, C.; Keller, N.; Ehret, G.; Ledoux, M. J. The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential. J. Catal. 2001, 200(2), 400–410. DOI: 10.1006/jcat.2001.3216.
  • Taguchi, T.; Igawa, N.; Yamamoto, H.; Jitsukawa, S. Synthesis of Silicon Carbide Nanotubes. J. Am. Ceram. Soc. 2005, 88(2), 459–461. DOI: 10.1111/j.1551-2916.2005.00066.x.
  • Xie, Z.; Tao, D.; Wang, J. Synthesis of Silicon Carbide Nanotubes by Chemical Vapor Deposition. J. Nanosci. Nanotechnol. 2007, 7(2), 647–652. DOI: 10.1166/jnn.2007.142.
  • Nayak, B.; Sahu, R.; Dash, T.; Pradhan, S. Growth of Silicon Carbide Nanotubes in Arc Plasma Treated Silicon Carbide Grains and Their Microstructural Characterizations. Ceram. Int. 2018, 44(2), 1512–1517. DOI: 10.1016/j.ceramint.2017.10.062.
  • Tony, V. C. S.; Voon, C. H.; Lee, C. C.; Lim, B. Y.; Gopinath, S. C. B.; Foo, K. L.; Arshad, M. K. M.; Ruslinda, A. R.; Hashim, U.; Nashaain, M. N. Effective Synthesis of Silicon Carbide Nanotubes by Microwave Heating of Blended Silicon Dioxide and multi-walled Carbon Nanotube. Mater. Res. 2017, 20(6), 1658–1668. DOI: 10.1590/1980-5373-MR-2017-0277.
  • Tony, V. C. S.; Voon, C. H.; Lim, B. Y.; Al-Douri, Y.; Gopinath, S. C. B.; Arshad, M. K. M.; Ten, S. T.; Parmin, N. A.; Ruslinda, A. R. Synthesis of Silicon Carbide Nanomaterials by Microwave Heating: Effect of Types of Carbon Nanotubes. Solid State Sci. 2019, 98, 106023. DOI: 10.1016/j.solidstatesciences.2019.106023.
  • Taguchi, T.; Yamamoto, S.; Ohba, H. Synthesis and Formation Mechanism of Novel double-thick-walled Silicon Carbide Nanotubes from Multiwalled Carbon Nanotubes. Appl. Surf. Sci. 2021, 551, 149421. DOI: 10.1016/j.apsusc.2021.149421.
  • Mpourmpakis, G.; Froudakis, G. E.; Lithoxoos, G. P.; Samios, J. Effect of Curvature and Chirality for Hydrogen Storage in single-walled Carbon Nanotubes: A Combined Ab Initio and Monte Carlo Investigation. J. Chem. Phys. 2007, 126(14), 144704. DOI: 10.1063/1.2717170.
  • Mpourmpakis, G.; Froudakis, G. E.; Lithoxoos, G. P.; Samios, J. SiC Nanotubes:  A Novel Material for Hydrogen Storage. Nano Lett. 2006, 6(8), 1581–1583. DOI: 10.1021/nl0603911.
  • Kosar, N.; Munsif, S.; Ayub, K.; Mahmood, T. Storage and Permeation of Hydrogen Molecule, Atom and Ions (H+ and H−) through Silicon Carbide Nanotube; a DFT Approach. Int. J. Hydrogen Energy 2021, 46(13), 9163–9173. DOI: 10.1016/j.ijhydene.2021.01.011.
  • Baierle, R.; Miwa, R. Hydrogen Interaction with Native Defects in SiC Nanotubes. Phys. Rev. B: Condens. Matter. 2007, 76(20), 205410. DOI: 10.1103/PhysRevB.76.205410.
  • Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M.; Soper, A. Hydration of Sodium, Potassium, and Chloride Ions in Solution and the Concept of Structure maker/breaker. J. Phys. Chem. B 2007, 111(48), 13570–13577. DOI: 10.1021/jp075913v.
  • Meng, T.; Wang, C.-Y.; Wang, S.-Y. First-principles Study of a Single Ti Atom Adsorbed on Silicon Carbide Nanotubes and the Corresponding Adsorption of Hydrogen Molecules to the Ti Atom. Chem. Phys. Lett. 2007, 437(4–6), 224–228. DOI: 10.1016/j.cplett.2007.02.024.
  • Wang, X.; Liew, K. M. Hydrogen Storage in Silicon Carbide Nanotubes by Lithium Doping. J. Phys. Chem. C 2011, 115(8), 3491–3496. DOI: 10.1021/jp106509g.
  • Yu, G.; Chen, N.; Wang, F.; Xie, Y.; Ye, X.; Gu, X. Theoretical Studies of the Lithium Atom on the Silicon Carbide Nanotubes. J. Nanopart. Res. 2014, 16(12), 2749. DOI: 10.1007/s11051-014-2749-8.
  • Darvish Ganji, M.; Dalirandeh, Z.; Khorasani, M. Lithium Absorption on single-walled Boron Nitride, Aluminum Nitride, Silicon Carbide and Carbon Nanotubes: A first-principles Study. J. Phys. Chem. Solids 2016, 90, 27–34. DOI: 10.1016/j.jpcs.2015.11.006.
  • Singh, R. S.; Solanki, A. Hydrogen Adsorption in metal-decorated Silicon Carbide Nanotubes. Chem. Phys. Lett. 2016, 660, 155–159. DOI: 10.1016/j.cplett.2016.08.021.
  • Wu, R. Q.; Yang, M.; Lu, Y. H.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y. Silicon Carbide Nanotubes as Potential Gas Sensors for CO and HCN Detection. J. Phys. Chem. C 2008, 112(41), 15985–15988. DOI: 10.1021/jp804727c.
  • Lin, W.-Q.; Li, F.; Chen, G.; Xiao, S.-T.; Wang, L.-Y.; Wang, Q. A Study on the Adsorptions of SO2 on Pristine and phosphorus-doped Silicon Carbide Nanotubes as Potential Gas Sensors. Ceram. Int. 2020, 46(16), 25171–25188. DOI: 10.1016/j.ceramint.2020.06.307.
  • Shi, W.; Lu, C.; Yang, S.; Deng, J. Study on Adsorption and Diffusion of Lithium on Nitrogen Doped Silicon Carbide Nanotubes by Density Functional Theory. Comput. Theor. Chem. 2017, 1115, 169–174. DOI: 10.1016/j.comptc.2017.06.016.
  • Hassanzadeh, K.; Akhtari, K.; Fakhraei, B.; Akhtari, G.; Hassanzadeh, H. Silicon Carbide (Sic) Nanotubes as Potential Sensors for Organophosphate Molecules. Curr. Appl. Phys. 2017, 17(5), 793–800. DOI: 10.1016/j.cap.2017.03.002.
  • Doust Mohammadi, M.; Hamzehloo, M. The Adsorption of Bromomethane onto the Exterior Surface of Aluminum Nitride, Boron Nitride, Carbon, and Silicon Carbide Nanotubes: A PBC-DFT, NBO, and QTAIM Study. Comput. Theor. Chem. 2018, 1144, 26–37. DOI: 10.1016/j.comptc.2018.10.001.
  • Yang, Y.; Sun, A.; Eslami, M. A Density Functional Theory Study on Detection of Amphetamine Drug by Silicon Carbide Nanotubes. Physica E 2021, 125, 114411. DOI: 10.1016/j.physe.2020.114411.
  • Esrafili, M. D.; Nurazar, R.; Masumi, V. Adsorption and Decomposition of Formamide over Zigzag (N,0) silicon-carbide Nanotubes (N=5–7): Investigation of Curvature Effects. Surf. Sci. 2015, 637-638, 69–76. DOI: 10.1016/j.susc.2015.03.015.
  • Esrafili, M. D.; Nematollahi, P.; Nurazar, R. A Density Functional Theory Study on Adsorption and Decomposition of Acetic Acid over Silicon Carbide Nanotubes. Synth. Met. 2016, 215, 164–169. DOI: 10.1016/j.synthmet.2016.02.019.
  • Malek, K.; Sahimi, M. Molecular Dynamics Simulations of Adsorption and Diffusion of Gases in silicon-carbide Nanotubes. J. Chem. Phys. 2010, 132(1), 014310. DOI: 10.1063/1.3284542.
  • Yang, R.; Hilder, T. A.; Chung, S.-H.; Rendell, A. First-Principles Study of Water Confined in Single-Walled Silicon Carbide Nanotubes. J. Phys. Chem. C 2011, 115(35), 17255–17264. DOI: 10.1021/jp201882d.
  • Taghavi, F.; Javadian, S.; Hashemianzadeh, S. M. Molecular Dynamics Simulation of single-walled Silicon Carbide Nanotubes Immersed in Water. J. Mol. Graphics Modell. 2013, 44, 33–43. DOI: 10.1016/j.jmgm.2013.04.012.
  • Khademi, M.; Sahimi, M. Molecular Dynamics Simulation of pressure-driven Water Flow in silicon-carbide Nanotubes. J. Chem. Phys. 2011, 135(20), 204509. DOI: 10.1063/1.3663620.
  • Khataee, A.; Bayat, G.; Azamat, J. Molecular Dynamics Simulation of Salt Rejection through Silicon Carbide Nanotubes as a Nanostructure Membrane. J. Mol. Graphics Modell. 2017, 71, 176–183. DOI: 10.1016/j.jmgm.2016.11.017.
  • Pasquarello, A.; Petri, I.; Salmon, P. S.; Parisel, O.; Car, R.; Tόth, E.; Powell, D. H.; Fischer, H. E.; Helm, L.; Merbach, A. E. First Solvation Shell of the Cu (II) Aqua Ion: Evidence for Fivefold Coordination. Science. 2001, 291(5505), 856–859. DOI: 10.1126/science.291.5505.856.
  • Khataee, A.; Azamat, J.; Bayat, G. Separation of Nitrate Ion from Water Using Silicon Carbide Nanotubes as a Membrane: Insights from Molecular Dynamics Simulation. Comput. Mater. Sci. 2016, 119, 74–81. DOI: 10.1016/j.commatsci.2016.03.046.
  • Khataee, A.; Bayat, G.; Azamat, J. Separation of Cyanide from an Aqueous Solution Using Armchair Silicon Carbide Nanotubes: Insights from Molecular Dynamics Simulations. RSC Adv. 2017, 7(13), 7502–7508. DOI: 10.1039/C6RA25991J.
  • De Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339(6119), 535–539. DOI: 10.1126/science.1222453.
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Carbon-based Sustainable Nanomaterials for Water Treatment: State-of-art and Future Perspectives. Chemosphere 2021, 263, 128005. DOI: 10.1016/j.chemosphere.2020.128005.
  • Hoet, P. H.; Brüske-Hohlfeld, I.; Salata, O. V. Nanoparticles - Known and Unknown Health Risks. J. Nanobiotechnol. 2004, 2(1), 12. DOI: 10.1186/1477-3155-2-12.
  • Ray, P. C.; Yu, H.; Fu, P. P. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ. Sci. Health 2009, 27(1), 1–35. DOI: 10.1080/10590500802708267.
  • Zhao, W.-J.; Liang, L.; Kong, Z.; Shen, J.-W. A Review on Desalination by graphene-based Biomimetic Nanopore: From the Computational Modelling Perspective. J. Mol. Liq. 2021, 342, 117582. DOI: 10.1016/j.molliq.2021.117582.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.