1,257
Views
3
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Chemistry of Hydrometallurgical Methods

ORCID Icon, ORCID Icon & ORCID Icon
Pages 221-241 | Received 22 Dec 2021, Accepted 01 Jun 2022, Published online: 06 Jul 2022

References

  • Cheisson, T.; Schelter, E. J. Rare Earth Elements: Mendeleev’s Bane, Modern Marvels. Science. 2019, 363(6426), 489–493. DOI: 10.1126/science.aau7628.
  • Publications Office of the European. Study on the EU’s List of Critical Raw Materials (2020) : Final Report. http://op.europa.eu/en/publication-detail/-/publication/c0d5292a-ee54-11ea-991b-01aa75ed71a1/language-en (accessed Jun 6, 2021).
  • Graedel, T. E.; Barr, R.; Chandler, C.; Chase, T.; Choi, J.; Christoffersen, L.; Friedlander, E.; Henly, C.; Jun, C.; Nassar, N. T., et al. Methodology of Metal Criticality Determination. Environ. Sci. Technol. 2012, 46(2), 1063–1070. DOI: 10.1021/es203534z.
  • Graedel, T. E.; Harper, E. M.; Nassar, N. T.; Reck, B. K. On the Materials Basis of Modern Society. PNAS. 2015, 112(20), 6295–6300. DOI: 10.1073/pnas.1312752110.
  • Nassar, N. T.; Fortier, S. M. Methodology and Technical Input for the 2021 Review and Revision of the U.S. Critical Minerals List; Open-File Report; USGS Numbered Series 2021–1045; U.S. Geological Survey: Reston, VA, 2021; p 31.
  • U.S. interior Department. Final List of Critical Minerals; Department of the Interior & Office of the Secretary, 2018; pp 23295–23296.
  • U.S. Geological Survey. Interior Releases 2018ʹs Final List of 35 Minerals Deemed Critical to U.S. National Security and the Economy https://www.usgs.gov/news/interior-releases-2018-s-final-list-35-minerals-deemed-critical-us-national-security-and (accessed Nov 7, 2021).
  • Fortier, S. M.; Nassar, N. T.; Lederer, G. W.; Brainard, J.; Gambogi, J.; McCullough, E. A. Draft Critical Mineral List—Summary of Methodology and Background Information—U.S. Geological Survey Technical Input Document in Response to Secretarial Order No. 3359; Open-File Report; USGS Numbered Series 2018–1021; U.S. Geological Survey: Reston, VA, 2018; p 26.
  • Government of Canada. Canada’s List of Critical Minerals 2021 https://www.nrcan.gc.ca/our-natural-resources/minerals-mining/critical-minerals/23414 (accessed Nov 7, 2021).
  • Yan, W.; Wang, Z.; Cao, H.; Zhang, Y.; Sun, Z. Criticality Assessment of Metal Resources in China. iScience. 2021, 24(6), 102524. DOI: 10.1016/j.isci.2021.102524.
  • Mineral Commodity Summaries 2020; Mineral Commodity Summaries; USGS Unnumbered Series; U.S. Geological Survey: Reston, VA, 2020; p 204 https://doi.org/10.3133/mcs2020.
  • Gulley, A. L.; Nassar, N. T.; Xun, S. China, the United States, and Competition for Resources that Enable Emerging Technologies. PNAS. 2018, 115(16), 4111–4115. DOI: 10.1073/pnas.1717152115.
  • Mohr, S. H.; Mudd, G. M.; Giurco, D. Lithium Resources and Production: Critical Assessment and Global Projections. Minerals. 2012, 2(1), 65–84. DOI: 10.3390/min2010065.
  • Stanley, C. J.; Jones, G. C.; Rumsey, M. S.; Blake, C.; Roberts, A. C.; Stirling, J. A. R.; Carpenter, G. J. C.; Whitfield, P. S.; Grice, J. D.; Lepage, Y. J. LiNaSiB3O7(OH), a New Mineral Species from the Jadar Basin, Serbia. ejm. 2007, 19(4), 575–580. DOI: 10.1127/0935-1221/2007/0019-1741.
  • Chagnes, A.;. Chapter 5 - Lithium Battery Technologies: Electrolytes. In Lithium Process Chemistry; Chagnes, A., Światowska, J., Eds.; Elsevier: Amsterdam, 2015; pp 167–189. DOI: 10.1016/B978-0-12-801417-2.00005-0.
  • Fosu, A. Y.; Kanari, N.; Vaughan, J.; Chagnes, A. Literature Review and Thermodynamic Modelling of Roasting Processes for Lithium Extraction from Spodumene. Metals. 2020, 10(10), 1312. DOI: 10.3390/met10101312.
  • Gmar, S.; Chagnes, A. Recent Advances on Electrodialysis for the Recovery of Lithium from Primary and Secondary Resources. Hydrometallurgy. 2019, 189, 105124. DOI: 10.1016/j.hydromet.2019.105124.
  • Boualleg, M.; Burdet, F. A. P., and Soulairol, R. C. J. R. Process for Preparing an Adsorbent Material in the Absence of Binder Comprising a Hydrothermal Treatment Step and Process for Extracting Lithium from Saline Solutions Using Said Material. WO2015162272A1, October 29, 2015.
  • Lipp, J.;. LISXTM A New SX Technology for Lithium Recovery. In LISXTM A New SX Technology for Lithium Recovery; Canadian Institute of Mining, Metallurgy and Petroleum, 2014 (Hydro 2014), June 22-25, 2014, Canadian Institute of Mining, Metallurgy and Petroleum, Victoria, British Columbia, Canada; pp 395–402.
  • Cohen, L.; McCallum, T.; Tinkler, O.; Szolga, W;. Technological Advances, Challenges and Opportunities in Solvent Extraction from Energy Storage Applications. In Extraction 2018; Davis, B. R., Moats, M. S., Wang, S., Gregurek, D., Kapusta, J., Battle, T. P., Schlesinger, M. E., Alvear Flores, G. R., Jak, E., Goodall, G., Eds. The Minerals, Metals & Materials Series; Springer International Publishing: Cham, 2018; pp. 2033–2045. DOI:10.1007/978-3-319-95022-8_170.
  • Processing of Used Nuclear Fuel - World Nuclear Association https://world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx (accessed Jun 5, 2021).
  • Lyseid Authen, T.; Adnet, J.-M.; Bourg, S.; Carrott, M.; Ekberg, C.; Galán, H.; Geist, A.; Guilbaud, P.; Miguirditchian, M.; Modolo, G.;Taylor, R. . An Overview of Solvent Extraction Processes Developed in Europe for Advanced Nuclear Fuel Recycling, Part 2 — Homogeneous Recycling. Sep. Sci. Technol. 2021, 1–21. DOI: 10.1080/01496395.2021.2001531.
  • Geist, A.; Adnet, J.-M.; Bourg, S.; Ekberg, C.; Galán, H.; Guilbaud, P.; Miguirditchian, M.; Modolo, G.; Rhodes, C.; Taylor, R. An Overview of Solvent Extraction Processes Developed in Europe for Advanced Nuclear Fuel Recycling, Part 1 — Heterogeneous Recycling. Sep. Sci. Technol. 2021, 56(11), 1866–1881. DOI: 10.1080/01496395.2020.1795680.
  • Baron, P.; Cornet, S. M.; Collins, E. D.; DeAngelis, G.; Del Cul, G.; Fedorov, Y.; Glatz, J. P.; Ignatiev, V.; Inoue, T.; Khaperskaya, A., et al. A Review of Separation Processes Proposed for Advanced Fuel Cycles Based on Technology Readiness Level Assessments. Prog. Nuclear Energy 2019, 117, 103091. DOI: 10.1016/j.pnucene.2019.103091.
  • Despotopulos, J. D.; Gostic, J. M.; Bennett, M. E.; Gharibyan, N.; Henderson, R. A.; Moody, K. J.; Sudowe, R.; Shaughnessy, D. A. Characterization of Group 5 Dubnium Homologs on Diglycolamide Extraction Chromatography Resins from Nitric and Hydrofluoric Acid Matrices. J. Radioanal. Nucl. Chem. 2015, 303(1), 485–494. DOI: 10.1007/s10967-014-3398-1.
  • Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P. Actinide Targets for the Synthesis of Super-Heavy Elements. Nuclear Phys. A. 2015, 944, 99–116. DOI: 10.1016/j.nuclphysa.2015.06.009.
  • Roberto, J. B.; Rykaczewski, K. P. Discovery of Element 117: Super-Heavy Elements and the “Island of Stability”*. Sep. Sci. Technol. 2018, 53(12), 1813–1819. DOI: 10.1080/01496395.2017.1290658.
  • Kostelnik, T. I.; Orvig, C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019, 119(2), 902–956. DOI: 10.1021/acs.chemrev.8b00294.
  • Boros, E.; Packard, A. B. Radioactive Transition Metals for Imaging and Therapy. Chem. Rev. 2019, 119(2), 870–901. DOI: 10.1021/acs.chemrev.8b00281.
  • Robertson, A. K. H.; McNeil, B. L.; Yang, H.; Gendron, D.; Perron, R.; Radchenko, V.; Zeisler, S.; Causey, P.; Schaffer, P. 232Th-Spallation-Produced 225Ac with Reduced 227Ac Content. Inorg. Chem. 2020, 59(17), 12156–12165. DOI: 10.1021/acs.inorgchem.0c01081.
  • Brasse, D.; Nonat, A. Radiometals: Towards a New Success Story in Nuclear Imaging? Dalton Trans. 2015, 44(11), 4845–4858. DOI: 10.1039/C4DT02911A.
  • Kratochwil, C.; Bruchertseifer, F.; Giesel, F. L.; Weis, M.; Verburg, F. A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57(12), 1941–1944. DOI: 10.2967/jnumed.116.178673.
  • Radchenko, V.; Engle, J. W.; Wilson, J. J.; Maassen, J. R.; Nortier, F. M.; Taylor, W. A.; Birnbaum, E. R.; Hudston, L. A.; John, K. D.; Fassbender, M. E. Application of Ion Exchange and Extraction Chromatography to the Separation of Actinium from Proton-Irradiated Thorium Metal for Analytical Purposes. J. Chromatogr. A. 2015, 1380, 55–63. DOI: 10.1016/j.chroma.2014.12.045.
  • Boll, R. A.; Malkemus, D.; Mirzadeh, S. Production of Actinium-225 for Alpha Particle Mediated Radioimmunotherapy. Appl Rad. Isotop. 2005, 62(5), 667–679. DOI: 10.1016/j.apradiso.2004.12.003.
  • Borchardt, P. E.; Yuan, R. R.; Miederer, M.; McDevitt, M. R.; Scheinberg, D. A. Targeted Actinium-225 in Vivo Generators for Therapy of Ovarian Cancer. Cancer Res. 2003, 63(16), 5084–5090.
  • Grimm, T.; Grimm, A.; Peters, W.; Zamiara, M. High-Purity Actinium-225 Production from Radium-226 Using a Superconducting Electron Linac. J. Med. Imag. Radiat. Sci. 2019, 50(1), S12–S13. DOI: 10.1016/j.jmir.2019.03.040.
  • Stein, B. W.; Morgenstern, A.; Batista, E. R.; Birnbaum, E. R.; Bone, S. E.; Cary, S. K.; Ferrier, M. G.; John, K. D.; Pacheco, J. L.; Kozimor, S. A., et al. Advancing Chelation Chemistry for Actinium and Other +3 F-Elements, Am, Cm, and La. J. Am. Chem. Soc. 2019, 141(49), 19404–19414. DOI: 10.1021/jacs.9b10354.
  • Abou, D. S.; Pickett, J.; Mattson, J. E.; Thorek, D. L. J. A Radium-223 Microgenerator from Cyclotron-Produced Trace Actinium-227. Appl. Radiat. Isotop. 2017, 119, 36–42. DOI: 10.1016/j.apradiso.2016.10.015.
  • Deblonde, G. J.-P.; Zavarin, M.; Kersting, A. B. The Coordination Properties and Ionic Radius of Actinium: A 120-Year-Old Enigma. Coordination Chem. Rev. 2021, 446, 214130. DOI: 10.1016/j.ccr.2021.214130.
  • Aldrich, K. E.; Lam, M. N.; Eiroa-Lledo, C.; Kozimor, S. A.; Lilley, L. M.; Mocko, V.; Stein, B. W. Preparation of an Actinium-228 Generator. Inorg. Chem. 2020, 59(5), 3200–3206. DOI: 10.1021/acs.inorgchem.9b03563.
  • Deblonde, G. J.-P.; Mattocks, J. A.; Dong, Z.; Wooddy, P. T.; Cotruvo, J. A.; Zavarin, M. Capturing an Elusive but Critical Element: Natural Protein Enables Actinium Chemistry. Science Advances. 2021, 7(43), eabk0273. DOI: 10.1126/sciadv.abk0273.
  • Ferrier, M. G.; Batista, E. R.; Berg, J. M.; Birnbaum, E. R.; Cross, J. N.; Engle, J. W.; Pierre, H. S. L.; Kozimor, S. A.; Pacheco, J. S. L.; Stein, B. W., et al. Spectroscopic and Computational Investigation of Actinium Coordination Chemistry. Nat. Commun. 2016, 7(1), 1–8. DOI: 10.1038/ncomms12312.
  • Ferrier, M. G.; Stein, B. W.; Batista, E. R.; Berg, J. M.; Birnbaum, E. R.; Engle, J. W.; John, K. D.; Kozimor, S. A.; Lezama Pacheco, J. S.; Redman, L. N. Synthesis and Characterization of the Actinium Aquo Ion. ACS Cent. Sci. 2017, 3(3), 176–185. DOI: 10.1021/acscentsci.6b00356.
  • Li, L.; Rousseau, J.; Jaraquemada-Peláez, M. D. G.; Wang, X.; Robertson, A.; Radchenko, V.; Schaffer, P.; Lin, K.-S.; Bénard, F.; Orvig, C. 225Ac-H4py4pa for Targeted Alpha Therapy. Bioconjugate Chem. 2021, 32(7), 1348–1363. DOI: 10.1021/acs.bioconjchem.0c00171.
  • Akcil, A.; Sun, Z.; Panda, S. COVID-19 Disruptions to Tech-Metals Supply are a Wake-up Call. Nature. 2020, 587(7834), 365–367. DOI: 10.1038/d41586-020-03190-8.
  • Cote, G. Extraction liquide-liquide - Définition du Procédé – Réactifs Industriels. Opérations unitaires. Génie de la réaction chimique. 2016. DOI: 10.51257/a-v2-j2762.
  • Stamberga, D.; Healy, M. R.; Bryantsev, V. S.; Albisser, C.; Karslyan, Y.; Reinhart, B.; Paulenova, A.; Foster, M.; Popovs, I.; Lyon, K., et al. Structure Activity Relationship Approach toward the Improved Separation of Rare-Earth Elements Using Diglycolamides. Inorg. Chem. 2020, 59(23), 17620–17630. DOI: 10.1021/acs.inorgchem.0c02861.
  • Turgis, R.; Leydier, A.; Arrachart, G.; Burdet, F.; Dourdain, S.; Bernier, G.; Miguirditchian, M.; Pellet-Rostaing, S. Carbamoylalkylphosphonates for Dramatic Enhancement of Uranium Extraction from Phosphates Ores. Solv Extrac. Ion Exch. 2014, 32(7), 685–702. DOI: 10.1080/07366299.2014.951279.
  • Chen, B.; He, M.; Zhang, H.; Jiang, Z.; Hu, B. Chromatographic Techniques for Rare Earth Elements Analysis. Phys. Sci. Rev. 2017, 2(4), 20160057. DOI: 10.1515/psr-2016-0057.
  • Lundberg, D.; Persson, I. The Size of Actinoid(III) Ions – Structural Analysis Vs. Common Misinterpretations. Coordin. Chem. Rev. 2016, 318, 131–134. DOI: 10.1016/j.ccr.2016.04.003.
  • Heres, X.; Baron, P. Increase in the Separation Factor between Americium and Curium and/or between Lanthanides in a Liquid-Liquid Extraction Process. US patent WO2011012579A1, February 3, 2011.
  • Vanel, V.; Berthon, L.; Miguirditchian, J. M. M.; Burdet, F. Modelling of Americium Stripping in the EXAm Process. Procedia Chem. 2012, 7, 404–410. DOI: 10.1016/j.proche.2012.10.063.
  • Chapron, S.; Marie, C.; Arrachart, G.; Miguirditchian, M.; Pellet-Rostaing, S. New Insight into the Americium/Curium Separation by Solvent Extraction Using Diglycolamides. Solv. Extract. Ion Exch. 2015, 33(3), 236–248. DOI: 10.1080/07366299.2014.1000792.
  • Chapron, S.; Marie, C.; Pacary, V.; Duchesne, M.-T.; Arrachart, G.; Pellet-Rostaing, S.; Miguirditchian, M. Separation of Americium by Liquid-Liquid Extraction Using Diglycolamides Water-Soluble Complexing Agents. Procedia Chem. 2016, 21, 133–139. DOI: 10.1016/j.proche.2016.10.019.
  • Vanel, V.; Bollesteros, M.-J.; Marie, C.; Montuir, M.; Pacary, V.; Antégnard, F.; Costenoble, S.; Boyer-Deslys, V. Consolidation of the EXAm Process: Towards the Reprocessing of a Concentrated PUREX Raffinate. Procedia Chem. 2016, 21, 190–197. DOI: 10.1016/j.proche.2016.10.027.
  • Miguirditchian, M.; Vanel, V.; Marie, C.; Pacary, V.; Charbonnel, M.-C.; Berthon, L.; Hérès, X.; Montuir, M.; Sorel, C.; Bollesteros, M.-J., et al. Americium Recovery from Highly Active PUREX Raffinate by Solvent Extraction: The EXAm Process. A Review of 10 Years of R&D. Solv. Extract. Ion Exch.2020, 38(4), 365–387. DOI: 10.1080/07366299.2020.1753922.
  • Rostaing, C.; Poinssot, C.; Warin, D.; Baron, P.; Lorraina, B. Development and Validation of the EXAm Separation Process for Single Am Recycling. Procedia Chem. 2012, 7, 367–373. DOI: 10.1016/j.proche.2012.10.057.
  • Bollesteros, M.-J.; Calor, J.-N.; Costenoble, S.; Montuir, M.; Pacary, V.; Sorel, C.; Burdet, F.; Espinoux, D.; Hérès, X.; Eysseric, C. Implementation of Americium Separation from a PUREX Raffinate. Procedia Chemi. 2012, 7, 178–183. DOI: 10.1016/j.proche.2012.10.030.
  • Jensen, M. P.; Chiarizia, R.; Shkrob, I. A.; Ulicki, J. S.; Spindler, B. D.; Murphy, D. J.; Hossain, M.; Roca-Sabio, A.; Platas-Iglesias, C.; de Blas, A., et al. Aqueous Complexes for Efficient Size-Based Separation of Americium from Curium. Inorg. Chem. 2014, 53(12), 6003–6012. DOI: 10.1021/ic500244p.
  • Hu, A.; MacMillan, S. N.; Wilson, J. J. Macrocyclic Ligands with an Unprecedented Size-Selectivity Pattern for the Lanthanide Ions. J. Am. Chem. Soc. 2020, 142(31), 13500–13506. DOI: 10.1021/jacs.0c05217.
  • Thiele, N. A.; Fiszbein, D. J.; Woods, J. J.; Wilson, J. J. Tuning the Separation of Light Lanthanides Using a Reverse-Size Selective Aqueous Complexant. Inorg. Chem. 2020, 59(22), 16522–16530. DOI: 10.1021/acs.inorgchem.0c02413.
  • Grimes, T. S.; Heathman, C. R.; Jansone-Popova, S.; Ivanov, A. S.; Roy, S.; Bryantsev, V. S.; Zalupski, P. R. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants. Inorg. Chem. 2018, 57(3), 1373–1385. DOI: 10.1021/acs.inorgchem.7b02792.
  • Grimes, T. S.; Heathman, C. R.; Jansone-Popova, S.; Bryantsev, V. S.; Goverapet Srinivasan, S.; Nakase, M.; Zalupski, P. R. Thermodynamic, Spectroscopic, and Computational Studies of f-Element Complexation by N-Hydroxyethyl-Diethylenetriamine-N,N′,N″,N″-Tetraacetic Acid. Inorg. Chem. 2017, 56(3), 1722–1733. DOI: 10.1021/acs.inorgchem.6b02897.
  • Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chaleogenides. Acta Crystal. 1976, A32, 751–767. DOI: 10.1107/S0567739476001551.
  • McDevitt, M. R.; Thorek, D. L. J.; Hashimoto, T.; Gondo, T.; Veach, D. R.; Sharma, S. K.; Kalidindi, T. M.; Abou, D. S.; Watson, P. A.; Beattie, B. J., et al. Feed-Forward Alpha Particle Radiotherapy Ablates Androgen Receptor-Addicted Prostate Cancer. Nat. Commun. 2018, 9(1), 1–11. DOI: 10.1038/s41467-018-04107-w.
  • Thiele, N. A.; Brown, V.; Kelly, J. M.; Amor‐Coarasa, A.; Jermilova, U.; MacMillan, S. N.; Nikolopoulou, A.; Ponnala, S.; Ramogida, C. F.; Robertson, A. K. H.;Wilson, J.J., . An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angewandte Chemie Int. Ed.2017, 56(46), 14712–14717. DOI: 10.1002/anie.201709532.
  • Deblonde, G. J.-P.; Ricano, A.; Abergel, R. J. Ultra-Selective Ligand-Driven Separation of Strategic Actinides. Nat. Commun. 2019, 10(1), 2438. DOI: 10.1038/s41467-019-10240-x.
  • Deblonde, G. J.-P.; Sturzbecher-Hoehne, M.; Rupert, P. B.; An, D. D.; Illy, M.-C.; Ralston, C. Y.; Brabec, J.; de Jong, W. A.; Strong, R. K.; Abergel, R. J. Chelation and Stabilization of Berkelium in Oxidation State +IV. Nat. Chem. 2017, 9(9), 843–849. DOI: 10.1038/nchem.2759.
  • Deblonde, G. J.-P.; Lohrey, T. D.; Abergel, R. J. Inducing Selectivity and Chirality in Group IV Metal Coordination with High-Denticity Hydroxypyridinones. Dalton Trans. 2019, 48(23), 8238–8247. DOI: 10.1039/C9DT01031A.
  • Nelson, J. J. M.; Cheisson, T.; Rugh, H. J.; Gau, M. R.; Carroll, P. J.; Schelter, E. J. High-Throughput Screening for Discovery of Benchtop Separations Systems for Selected Rare Earth Elements. Commun. Chem. 2020, 3(1), 1–6. DOI: 10.1038/s42004-019-0253-x.
  • Bogart, J. A.; Cole, B. E.; Boreen, M. A.; Lippincott, C. A.; Manor, B. C.; Carroll, P. J.; Schelter, E. J. Accomplishing Simple, Solubility-Based Separations of Rare Earth Elements with Complexes Bearing Size-Sensitive Molecular Apertures. PNAS. 2016, 113(52), 14887–14892. DOI: 10.1073/pnas.1612628113.
  • Bogart, J. A.; Lippincott, C. A.; Carroll, P. J.; Schelter, E. J. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium. Angewandte Chemie Int. Ed. 2015, 54(28), 8222–8225. DOI: 10.1002/anie.201501659.
  • Higgins, R. F.; Cheisson, T.; Cole, B. E.; Manor, B. C.; Carroll, P. J.; Schelter, E. J. Magnetic Field Directed Rare-Earth Separations. Angewandte Chemie Int. Ed. 2020, 59(5), 1851–1856. DOI: 10.1002/anie.201911606.
  • Wongsawa, T.; Traiwongsa, N.; Pancharoen, U.; Nootong, K. A Review of the Recovery of Precious Metals Using Ionic Liquid Extractants in Hydrometallurgical Processes. Hydrometallurgy. 2020, 198, 105488. DOI: 10.1016/j.hydromet.2020.105488.
  • Wang, L. Y.; Guo, Q. J.; Lee, M. S. Recent Advances in Metal Extraction Improvement: Mixture Systems Consisting of Ionic Liquid and Molecular Extractant. Sep. Purif. Technol. 2019, 210, 292–303. DOI: 10.1016/j.seppur.2018.08.016.
  • Prusty, S.; Pradhan, S.; Mishra, S. Ionic Liquid as an Emerging Alternative for the Separation and Recovery of Nd, Sm and Eu Using Solvent Extraction Technique-A Review. Sustain. Chem. Pharm. 2021, 21, 100434. DOI: 10.1016/j.scp.2021.100434.
  • Dietz, M. L. Ionic Liquids as Extraction Solvents: Where Do We Stand? Sep. Sci. Technol. 2006, 41(10), 2047–2063. DOI: 10.1080/01496390600743144.
  • Costa, A. J. L.; Soromenho, M. R. C.; Shimizu, K.; Marrucho, I. M.; Esperança, J. M. S. S.; Lopes, J. N. C.; Rebelo, L. P. N. D. Thermal Expansion and Viscosity of Cholinium-Derived Ionic Liquids. ChemPhysChem. 2012, 13(7), 1902–1909. DOI: 10.1002/cphc.201100852.
  • Wang, X.; Ohlin, C. A.; Lu, Q.; Fei, Z.; Hu, J.; Dyson, P. J. Cytotoxicity of Ionic Liquids and Precursor Compounds Towards Human Cell Line HeLa. Green Chem. 2007, 9(11), 1191–1197. DOI: 10.1039/B704503D.
  • Cao, Y.; Mu, T. Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis. Ind. Eng. Chem. Res. 2014, 53(20), 8651–8664. DOI: 10.1021/ie5009597.
  • Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Are Ionic Liquids Chemically Stable? Chem. Rev. 2017, 117(10), 7113–7131. DOI: 10.1021/acs.chemrev.6b00594.
  • Xue, Z.; Qin, L.; Jiang, J.; Mu, T., and Gao, G. T. Thermal, Electrochemical, and Radiolytic Stabilities of Ionic Liquids. Phys. Chem. Chem. Phys. 2018, 20(13), 8382–8402. DOI: 10.1039/C7CP07483B.
  • Matsumiya, M.;. Electrodeposition of Rare Earth Metal in Ionic Liquids. In Application of Ionic Liquids on Rare Earth Green Sep. Utilization; Chen, J., Ed.; Green Chemistry and Sustainable Technology; Springer: Berlin, Heidelberg, 2016; pp 117–153. DOI: 10.1007/978-3-662-47510-2_6.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. doi: 10.1039/B210714G.
  • Hammond, O. S.; Bowron, D. T.; Edler, K. J. Liquid Structure of the Choline Chloride-Urea Deep Eutectic Solvent (Reline) from Neutron Diffraction and Atomistic Modelling. Green Chem. 2016, 18(9), 2736–2744. DOI: 10.1039/C5GC02914G.
  • Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc. Rev. 2012, 41(21), 7108–7146. DOI: 10.1039/C2CS35178A.
  • Bahadori, L.; Chakrabarti, M. H.; Mjalli, F. S.; AlNashef, I. M.; Manan, N. S. A.; Hashim, M. A. Physicochemical Properties of Ammonium-Based Deep Eutectic Solvents and Their Electrochemical Evaluation Using Organometallic Reference Redox Systems. Electrochim. Acta. 2013, 113, 205–211. DOI: 10.1016/j.electacta.2013.09.102.
  • Jenkin, G. R. T.; Al-Bassam, A. Z. M.; Harris, R. C.; Abbott, A. P.; Smith, D. J.; Holwell, D. A.; Chapman, R. J.; Stanley, C. J. The Application of Deep Eutectic Solvent Ionic Liquids for Environmentally-Friendly Dissolution and Recovery of Precious Metals. Miner. Eng. 2016, 87, 18–24. DOI: 10.1016/j.mineng.2015.09.026.
  • Anggara, S.; Bevan, F.; Harris, R. C.; Hartley, J. M.; Frisch, G.; Jenkin, G. R. T.; Abbott, A. P. Direct Extraction of Copper from Copper Sulfide Minerals Using Deep Eutectic Solvents. Green Chem. 2019, 21(23), 6502–6512. DOI: 10.1039/C9GC03213D.
  • Pateli, I. M.; Abbott, A. P.; Jenkin, G. R. T.; Hartley, J. M. Electrochemical Oxidation as Alternative for Dissolution of Metal Oxides in Deep Eutectic Solvents. Green Chem. 2020, 22(23), 8360–8368. DOI: 10.1039/D0GC03491F.
  • Abbott, A. P.; Ballantyne, A.; Harris, R. C.; Juma, J. A.; Ryder, K. S. Bright Metal Coatings from Sustainable Electrolytes: The Effect of Molecular Additives on Electrodeposition of Nickel from a Deep Eutectic Solvent. Phys. Chem. Chem. Phys. 2017, 19(4), 3219–3231. DOI: 10.1039/C6CP08720E.
  • Alesary, H. F.; Cihangir, S.; Ballantyne, A. D.; Harris, R. C.; Weston, D. P.; Abbott, A. P.; Ryder, K. S. Influence of Additives on the Electrodeposition of Zinc from a Deep Eutectic Solvent. Electrochim. Acta. 2019, 304, 118–130. DOI: 10.1016/j.electacta.2019.02.090.
  • Alesary, H. F.; Ismail, H. K.; Shiltagh, N. M.; Alattar, R. A.; Ahmed, L. M.; Watkins, M. J.; Ryder, K. S. Effects of Additives on the Electrodeposition of ZnSn Alloys from Choline Chloride/Ethylene Glycol-Based Deep Eutectic Solvent. J. Electroanal Chem. 2020, 874, 114517. DOI: 10.1016/j.jelechem.2020.114517.
  • Osch, D. J. G. P. V.; Zubeir, L. F.; Bruinhorst, A. V. D.; Rocha, M. A. A.; Kroon, M. C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants. Green Chem. 2015, 17(9), 4518–4521. DOI: 10.1039/C5GC01451D.
  • Zante, G.; Boltoeva, M. Review on Hydrometallurgical Recovery of Metals with Deep Eutectic Solvents. Sustain. Chem. 2020, 1(3), 238–255. DOI: 10.3390/suschem1030016.
  • Dwamena, A. K. Recent Advances in Hydrophobic Deep Eutectic Solvents for Extraction. Separations. 2019, 6(1), 9. DOI: 10.3390/separations6010009.
  • Tereshatov, E. E.; Boltoeva, M. Y.; Folden, C. M. First Evidence of Metal Transfer into Hydrophobic Deep Eutectic and Low-Transition-Temperature Mixtures: Indium Extraction from Hydrochloric and Oxalic Acids. Green Chem. 2016, 18(17), 4616–4622. DOI: 10.1039/C5GC03080C.
  • Volia, M. F.; Tereshatov, E. E.; Boltoeva, M.; Folden, C. M. Indium and Thallium Extraction into Betainium Bis(Trifluoromethylsulfonyl)Imide Ionic Liquid from Aqueous Hydrochloric Acid Media. New J. Chem. 2020, 44(6), 2527–2537. DOI: 10.1039/C9NJ04879K.
  • He, Y.; Guo, S.; Chen, K.; Li, S.; Zhang, L.; Yin, S. Sustainable Green Production: A Review of Recent Development on Rare Earths Extraction and Separation Using Microreactors. ACS Sustainable Chem. Eng. 2019, 7(21), 17616–17626. DOI: 10.1021/acssuschemeng.9b03384.
  • Zhong, J.; Alibakhshi, M. A.; Xie, Q.; Riordon, J.; Xu, Y.; Duan, C.; Sinton, D. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. Acc. Chem. Res. 2020, 53(2), 347–357. DOI: 10.1021/acs.accounts.9b00411.
  • Santana, H. S.; Silva, J. L.; Aghel, B.; Ortega-Casanova, J. Review on Microfluidic Device Applications for Fluids Separation and Water Treatment Processes. SN Appl. Sci. 2020, 2(3), 395. DOI: 10.1007/s42452-020-2176-7.
  • Maurice, A.; Theisen, J.; Gabriel, J.-C. P. Microfluidic Lab-on-Chip Advances for Liquid–Liquid Extraction Process Studies. Curr. Opin. Colloid Interface Sci. 2020, 46, 20–35. DOI: 10.1016/j.cocis.2020.03.001.
  • Angeli, P.; Ortega, E. G.; Tsaoulidis, D.; Earle, M. Intensified Liquid-Liquid Extraction Technologies in Small Channels: A Review. Johnson Matthey Techno. Rev. 2019, 63(4), 299–310. DOI: 10.1595/205651319X15669171624235.
  • Sattari-Najafabadi, M.; Nasr Esfahany, M.; Wu, Z.; Sunden, B. Mass Transfer between Phases in Microchannels: A Review. Chem Eng Proces - Process Intensification. 2018, 127, 213–237. DOI: 10.1016/j.cep.2018.03.012.
  • Sen, N.; Darekar, M.; Sirsat, P.; Singh, K. K.; Mukhopadhyay, S.; Shirsath, S. R.; Shenoy, K. T. Recovery of Uranium from Lean Streams by Extraction and Direct Precipitation in Microchannels. Sep. Purif. Tec. 2019, 227, 115641. DOI: 10.1016/j.seppur.2019.05.083.
  • Wang, K.; Luo, G. Microflow Extraction: A Review of Recent Development. Chem. Eng. Sci. 2017, 169, 18–33. DOI: 10.1016/j.ces.2016.10.025.
  • Kurniawan, Y. S.; Sathuluri, R. R.; Iwasaki, W.; Morisada, S.; Kawakita, H.; Ohto, K.; Miyazaki, M.; Jumina. Microfluidic Reactor for Pb(II) Ion Extraction and Removal with an Amide Derivative of Calix[4]Arene Supported by Spectroscopic Studies. Microchem. J. 2018, 142, 377–384. DOI: 10.1016/j.microc.2018.07.001.
  • Ciceri, D.; Perera, J. M.; Stevens, G. W. The Use of Microfluidic Devices in Solvent Extraction. J. Chem. Technol. Biotechnol. 2014, 89(6), 771–786. DOI: 10.1002/jctb.4318.
  • Nelson, G. L.; Asmussen, S. E.; Lines, A. M.; Casella, A. J.; Bottenus, D. R.; Clark, S. B.; Bryan, S. A. Micro-Raman Technology to Interrogate Two-Phase Extraction on a Microfluidic Device. Anal. Chem. 2018, 90(14), 8345–8353. DOI: 10.1021/acs.analchem.7b04330.
  • Rahimi, M.; Jafari, O.; Mohammdifar, A. Intensification of Liquid-Liquid Mass Transfer in Micromixer Assisted by Ultrasound Irradiation and Fe3O4 Nanoparticles. Chem. Eng. Proces.: Process Intensification. 2017, 111, 79–88. DOI: 10.1016/j.cep.2016.11.003.
  • Corne, F.; Lélias, A.; Magnaldo, A.; Sorel, C.; Raimondi, N. D. M.; Prat, L. Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device. Chem. Eng. Technol. 2019, 42(10), 2223–2230. DOI: 10.1002/ceat.201900111.
  • Nakajima, N.; Yamada, M.; Kakegawa, S.; Seki, M. Microfluidic System Enabling Multistep Tuning of Extraction Time Periods for Kinetic Analysis of Droplet-Based Liquid–Liquid Extraction. Anal. Chem. 2016, 88(11), 5637–5643. DOI: 10.1021/acs.analchem.6b00176.
  • Liu, X.; Li, X.; Ju, S.; Gu, Y.; Tan, W.; Li, X.; Wang, S. Miniaturized Application of 3D-Printed Large-Flow Microreactor in Extraction and Separation of Platinum, Palladium and Rhodium. J. Chem. Technol. Biotechnol. 2021, 96(4), 1007–1015. DOI: 10.1002/jctb.6611.
  • Hellé, G.; Mariet, C.; Cote, G. Liquid–Liquid Microflow Patterns and Mass Transfer of Radionuclides in the Systems Eu(III)/HNO3/DMDBTDMA and U(VI)/HCl/Aliquat® 336. Microfluid. Nanofluid. 2014, 17(6), 1113–1128. DOI: 10.1007/s10404-014-1403-1.
  • Vansteene, A.; Jasmin, J.-P.; Cote, G.; Mariet, C. Segmented Microflows as a Tool for Optimization of Mass Transfer in Liquid−Liquid Extraction: Application at the Extraction of Europium(III) by a Malonamide. Ind. Eng. Chem. Res. 2018, 57(34), 11572–11582. DOI: 10.1021/acs.iecr.8b02079.
  • Vansteene, A.; Jasmin, J.-P.; Cavadias, S.; Mariet, C.; Cote, G. Towards Chip Prototyping: A Model for Droplet Formation at Both T and X-Junctions in Dripping Regime. Microfluid. Nanofluid. 2018, 22(6), 61. DOI: 10.1007/s10404-018-2080-2.
  • Servis, A. G.; Parsons-Davis, T.; Moody, K. J.; Gharibyan, N. 3D Printed Microfluidic Supported Liquid Membrane Module for Radionuclide Separations. Ind. Eng. Chem. Res. 2021, 60(1), 629–638. DOI: 10.1021/acs.iecr.0c05349.
  • Ahn, G.-N.; Yu, T.; Lee, H.-J.; Gyak, K.-W.; Kang, J.-H.; You, D.; Kim, D.-P. A Numbering-up Metal Microreactor for the High-Throughput Production of A Commercial Drug by Copper Catalysis. Lab Chip. 2019, 19(20), 3535–3542. DOI: 10.1039/C9LC00764D.
  • Darekar, M.; Singh, K. K.; Sapkale, P.; Goswami, A. K.; Mukhopadhyay, S.; Shenoy, K. T. On Microfluidic Solvent Extraction of Uranium. Chem. Eng. Proces. - Process Intensification. 2018, 132, 65–74. DOI: 10.1016/j.cep.2018.08.007.
  • Kriel, F. H.; Binder, C.; Priest, C. A Multi-Stream Microchip for Process Intensification of Liquid-Liquid Extraction. Chem. Eng. Technol. 2017, 40(6), 1184–1189. DOI: 10.1002/ceat.201600728.
  • Xie, T.; Jing, S.; Xu, C. Design Guideline for Passive Microextractors: From Cocurrent Flow to Countercurrent Flow. Ind. Eng. Chem. Res. 2019, 58(20), 8750–8762. DOI: 10.1021/acs.iecr.8b05639.
  • Deblonde, G. J.-P.; Bengio, D.; Beltrami, D.; Bélair, S.; Cote, G.; Chagnes, A. Niobium and Tantalum Processing in Oxalic-Nitric Media: Nb2O5·nH2O and Ta2O5·nH2O Precipitation with Oxalates and Nitrates Recycling. Sep. Purif. Technol. 2019, 226, 209–217. DOI: 10.1016/j.seppur.2019.05.087.
  • Deblonde, G. J.-P.; Bengio, D.; Beltrami, D.; Bélair, S.; Cote, G.; Chagnes, A. A Fluoride-Free Liquid-Liquid Extraction Process for the Recovery and Separation of Niobium and Tantalum from Alkaline Leach Solutions. Sep. Purif. Technol. 2019, 215, 634–643. DOI: 10.1016/j.seppur.2019.01.052.
  • Wang, X.; Zheng, S.; Xu, H.; Zhang, Y. Leaching of Niobium and Tantalum from a Low-Grade Ore Using a KOH Roast–Water Leach System. Hydrometallurgy. 2009, 98(3), 219–223. DOI: 10.1016/j.hydromet.2009.05.002.
  • Zhou, H.; Zheng, S.; Zhang, Y. Leaching of a Low-Grade Niobium–Tantalum Ore by Highly Concentrated Caustic Potash Solution. Hydrometallurgy. 2005, 80(1), 83–89. DOI: 10.1016/j.hydromet.2005.07.006.
  • Zhou, H.; Yi, D.; Zhang, Y.; Zheng, S. The Dissolution Behavior of Nb2O5, Ta2O5 and Their Mixture in Highly Concentrated KOH Solution. Hydrometallurgy. 2005, 80(1), 126–131. DOI: 10.1016/j.hydromet.2005.07.010.
  • Zhou, H.; Zheng, S.; Zhang, Y.; Yi, D. A Kinetic Study of the Leaching of A Low-Grade Niobium–Tantalum Ore by Concentrated KOH Solution. Hydrometallurgy. 2005, 80(3), 170–178. DOI: 10.1016/j.hydromet.2005.06.011.
  • Zhou, L.; Bosscher, M.; Zhang, C.; Özçubukçu, S.; Zhang, L.; Zhang, W.; Li, C. J.; Liu, J.; Jensen, M. P.; Lai, L., et al. A Protein Engineered to Bind Uranyl Selectively and with Femtomolar Affinity. Nat. Chem. 2014, 6(3), 236–241. DOI: 10.1038/nchem.1856.
  • Yuan, Y.; Yu, Q.; Wen, J.; Li, C.; Guo, Z.; Wang, X.; Wang, N. Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel-like Spidroin-Based Protein Fiber. Angewandte Chemie Int. Ed. 2019, 58(34), 11785–11790. DOI: 10.1002/anie.201906191.
  • Brewer, A.; Chang, E.; Park, D. M.; Kou, T.; Li, Y.; Lammers, L. N.; Jiao, Y. Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption. Environ. Sci. Technol. 2019, 53(13), 7714–7723. DOI: 10.1021/acs.est.9b00301.
  • Brewer, A.; Dohnalkova, A.; Shutthanandan, V.; Kovarik, L.; Chang, E.; Sawvel, A. M.; Mason, H. E.; Reed, D.; Ye, C.; Hynes, W. F., et al. Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste Leachates. Environ. Sci. Technol. 2019, 53(23), 13888–13897. DOI: 10.1021/acs.est.9b04608.
  • Cotruvo, J. A., Jr.;; Featherston, E. R.;.; Mattocks, J. A.;.; Ho, J. V.;.; Laremore, T. N. Lanmodulin: A Highly Selective Lanthanide-Binding Protein from A Lanthanide-Utilizing Bacterium. J. Am. Chem. Soc. 2018, 140(44), 15056–15061. DOI: 10.1021/jacs.8b09842.
  • Deblonde, G. J.-P.; Mattocks, J. A.; Park, D. M.; Reed, D. W.; Cotruvo, J. A.; Jiao, Y. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements Using Lanmodulin. Inorg. Chem. 2020, 59(17), 11855–11867. DOI: 10.1021/acs.inorgchem.0c01303.
  • Dong, Z.; Mattocks, J. A.; Deblonde, G. J.-P.; Hu, D.; Jiao, Y.; Cotruvo, J. A.; Park, D. M. Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements. ACS Cent. Sci. 2021, 7(11), 1798–1808. DOI: 10.1021/acscentsci.1c00724.
  • Deblonde, G. J.-P.; Mattocks, J. A.; Wang, H.; Gale, E. M.; Kersting, A. B.; Zavarin, M.; Cotruvo, J. A. Characterization of Americium and Curium Complexes with the Protein Lanmodulin: A Potential Macromolecular Mechanism for Actinide Mobility in the Environment. J. Am. Chem. Soc. 2021, 143(38), 15769–15783. DOI: 10.1021/jacs.1c07103.
  • Spooren, J.; Binnemans, K.; Björkmalm, J.; Breemersch, K.; Dams, Y.; Folens, K.; González-Moya, M.; Horckmans, L.; Komnitsas, K.; Kurylak, W., et al. Near-Zero-Waste Processing of Low-Grade, Complex Primary Ores and Secondary Raw Materials in Europe: Technology Development Trends. Resources, Conserv. Recycl 2020, 160, 104919. DOI: 10.1016/j.resconrec.2020.104919.
  • Boxall, N. J.; King, S.; Cheng, K. Y.; Gumulya, Y.; Bruckard, W.; Kaksonen, A. H. Urban Mining of Lithium-Ion Batteries in Australia: Current State and Future Trends. Minerals Eng. 2018, 128, 45–55. DOI: 10.1016/j.mineng.2018.08.030.
  • Prodius, D.; Gandha, K.; Mudring, A.-V.; Nlebedim, I. C. Sustainable Urban Mining of Critical Elements from Magnet and Electronic Wastes. ACS Sustainable Chem. Eng. 2020, 8(3), 1455–1463. DOI: 10.1021/acssuschemeng.9b05741.
  • Deng, B.; Luong, D. X.; Wang, Z.; Kittrell, C.; McHugh, E. A.; Tour, J. M. Urban Mining by Flash Joule Heating. Nat. Commun. 2021, 12(1), 5794. DOI: 10.1038/s41467-021-26038-9.
  • Lusty, P. A. J.; Gunn, A. G. Challenges to Global Mineral Resource Security and Options for Future Supply. Geological Society, London, Special Publications. 2015, 393(1), 265–276. DOI: 10.1144/SP393.13.
  • Ali, S. H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M. A.; Kinnaird, J.; Littleboy, A., et al. Mineral Supply for Sustainable Development Requires Resource Governance. Nature.2017, 543(7645), 367–372. DOI: 10.1038/nature21359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.