342
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Simulations of Physically Surface-Patterned Membranes for Water Treatment: Recent Advances

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 250-275 | Received 22 Mar 2023, Accepted 07 Sep 2023, Published online: 09 Oct 2023

References

  • Ben Mordechay, E.; Sinai, T.; Berman, T.; Dichtiar, R.; Keinan-Boker, L.; Tarchitzky, J.; Maor, Y.; Mordehay, V.; Manor, O.; Chefetz, B. Wastewater-Derived Organic Contaminants in Fresh Produce: Dietary Exposure and Human Health Concerns. Water Res. 2022, 223 (August), 118986. DOI: 10.1016/j.watres.2022.118986.
  • Desiante, W. L.; Carles, L.; Wullschleger, S.; Joss, A.; Stamm, C.; Fenner, K. Wastewater Microorganisms Impact the Micropollutant Biotransformation Potential of Natural Stream Biofilms. Water Res. 2022, 217(October 2021), 118413. DOI: 10.1016/j.watres.2022.118413.
  • Goh, P. S.; Wong, K. C.; Ismail, A. F. Membrane Technology: A Versatile Tool for Saline Wastewater Treatment and Resource Recovery. Desalination. 2022, 521(October 2021), 115377. DOI: 10.1016/j.desal.2021.115377.
  • Bremere, I.; Kennedy, M.; Stikker, A.; Schippers, J. How Water Scarcity Will Effect the Growth in the Desalination Market in the Coming 25 Years. Desalination. 2001, 138(1–3), 7–15. DOI: 10.1016/S0011-9164(01)00239-9.
  • Daims, H.; Taylor, M. W.; Wagner, M. Wastewater Treatment: A Model System for Microbial Ecology. Trends Biotechnol. 2006, 24(11), 483–489. DOI: 10.1016/j.tibtech.2006.09.002.
  • Gude, V. G. Desalination and Water Reuse to Address Global Water Scarcity. Rev. Environ. Sci. Biotechnol. 2017, 16(4), 591–609. DOI: 10.1007/s11157-017-9449-7.
  • Hughes, Z. E.; Gale, J. D. A Computational Investigation of the Properties of a Reverse Osmosis Membrane. J. Mater. Chem. 2010, 20(36), 7788–7799. DOI: 10.1039/c0jm01545h.
  • Raghava Rao, J.; Chandrababu, N. K.; Muralidharan, C.; Nair, B. U.; Rao, P. G.; Ramasami, T. Recouping the Wastewater: A Way Forward for Cleaner Leather Processing. J. Clean. Prod. 2003, 11(5), 591–599. DOI: 10.1016/S0959-6526(02)00095-1.
  • Salehi, M. Global Water Shortage and Potable Water Safety; Today’s Concern and Tomorrow’s Crisis. Environ. Int. 2022, 158, 106936. DOI: 10.1016/j.envint.2021.106936.
  • Watson, S. B.; Lawrence, J. Overview - Drinking Water Quality and Sustainability. Water Qual. Res. J. Canada. 2003, 38(1), 3–13. DOI: 10.2166/wqrj.2003.002.
  • Yao, L.; Yang, H.; Chen, Z.; Qiu, M.; Hu, B.; Wang, X. Chemosphere Bismuth Oxychloride-Based Materials for the Removal of Organic Pollutants in Wastewater. Chemosphere. 2021, 273, 128576. DOI: 10.1016/j.chemosphere.2020.128576.
  • Ajith, M. P.; Aswathi, M.; Priyadarshini, E.; Rajamani, P. Bioresource Technology Recent Innovations of Nanotechnology in Water Treatment: A Comprehensive Review. Bioresources Technol. 2021, 342(September), 126000. DOI: 10.1016/j.biortech.2021.126000.
  • Liu, L.; Zhang, K. Nanopore-Based Strategy for Sequential Separation of Heavy-Metal Ions in Water. Environ. Sci. Technol. 2018, 52, 5884–5891. DOI: 10.1021/acs.est.7b06706.
  • Saleh, T. A. Environmental Technology & Innovation Protocols for Synthesis of Nanomaterials, Polymers, and Green Materials as Adsorbents for Water Treatment Technologies. Environ. Technol. Innovations. 2021, 24, 101821. DOI: 10.1016/j.eti.2021.101821.
  • Saleh, T. A.; Mustaqeem, M.; Khaled, M. Environmental Nanotechnology, Monitoring & Management Water Treatment Technologies in Removing Heavy Metal Ions from Wastewater: A Review. Environ. Nanotechnol. Monit. Manage. 2022, 17(December 2021), 100617. DOI: 10.1016/j.enmm.2021.100617.
  • Ezugbe, E. O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membr. (Basel). 2020, 10, 5. DOI: 10.3390/membranes10050089.
  • Gryta, M.; Tomaszewska, M.; Karakulski, K. Wastewater Treatment by Membrane Distillation. Desalination. 2006, 198(1–3), 67–73. DOI: 10.1016/j.desal.2006.09.010.
  • Guo, W.; Ngo, H. H.; Li, J. A Mini-Review on Membrane Fouling. Bioresources Technol. 2012, 122, 27–34. DOI: 10.1016/j.biortech.2012.04.089.
  • Sonune, A.; Ghate, R. Developments in Wastewater Treatment Methods. Desalination. 2004, 167(1–3), 55–63. DOI: 10.1016/j.desal.2004.06.113.
  • Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A Review of Pressure-Driven Membrane Processes in Wastewater Treatment and Drinking Water Production. Environ. Prog. 2003, 22(1), 46–56. DOI: 10.1002/ep.670220116.
  • Cheng, D.; Ngo, H. H.; Guo, W.; Liu, Y.; Chang, S. W.; Nguyen, D. D.; Nghiem, L. D.; Zhou, J.; Ni, B. Anaerobic Membrane Bioreactors for Antibiotic Wastewater Treatment: Performance and Membrane Fouling Issues. Bioresources Technol. 2018, 267(July), 714–724. DOI: 10.1016/j.biortech.2018.07.133.
  • Chong, T. H.; Loo, S. L.; Krantz, W. B. Energy-Efficient Reverse Osmosis Desalination Process. J. Memb. Sci. 2015, 473, 177–188. DOI: 10.1016/j.memsci.2014.09.005.
  • Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination. 2015, 356, 226–254. DOI: 10.1016/j.desal.2014.10.043.
  • Zhang, Y.; Fu, Q. Algal Fouling of Microfiltration and Ultrafiltration Membranes and Control Strategies: A Review. Sep. Purif. Technol. 2018, 203(February), 193–208. DOI: 10.1016/j.seppur.2018.04.040.
  • Goh, P. S.; Ismail, A. F. A Review on Inorganic Membranes for Desalination and Wastewater Treatment. Desalination. 2018, 434(July 2017), 60–80. DOI: 10.1016/j.desal.2017.07.023.
  • Jamaly, S.; Giwa, A.; Hasan, S. W. Recent Improvements in Oily Wastewater Treatment: Progress, Challenges, and Future Opportunities. J. Environ. Sci. (China). 2015, 37, 15–30. DOI: 10.1016/j.jes.2015.04.011.
  • Khanzada, N. K.; Farid, M. U.; Kharraz, J. A.; Choi, J.; Tang, C. Y.; Nghiem, L. D.; Jang, A.; An, A. K. Removal of Organic Micropollutants Using Advanced Membrane-Based Water and Wastewater Treatment: A Review. J. Memb. Sci. 2020, 598(November 2019), 117672. DOI: 10.1016/j.memsci.2019.117672.
  • Lesjean, B.; Rosenberger, S.; Laabs, C.; Jekel, M.; Gnirss, R.; Amy, G. Correlation Between Membrane Fouling and Soluble/Colloidal Organic Substances in Membrane Bioreactors for Municipal Wastewater Treatment. Water Sci. Technol. 2005, 51(6–7), 1–8. DOI: 10.2166/wst.2005.0615.
  • Ma, H.; Bowman, C. N.; Davis, R. H. Membrane Fouling Reduction by Backpulsing and Surface Modification. J. Memb. Sci. 2000, 173(2), 191–200. DOI: 10.1016/S0376-7388(00)00360-4.
  • Xie, M.; Shon, H. K.; Gray, S. R.; Elimelech, M. Membrane-Based Processes for Wastewater Nutrient Recovery: Technology, Challenges, and Future Direction. Water Res. 2016, 89, 210–221. DOI: 10.1016/j.watres.2015.11.045.
  • Zhao, Y. J.; Wu, K. F.; Wang, Z. J.; Zhao, L.; Li, S. S. Fouling and Cleaning of Membrane - a Literature Review. J. Environ. Sci. (China) English Ed. 2000, 12, 241–251.
  • Bilal, M.; Zhang, Z. Ceramic Membrane Technology for Water and Wastewater Treatment: A Critical Review of Performance, Full-Scale Applications, Membrane Fouling and Prospects. Chem. Eng. J. 2021, 418(January), 129481. DOI: 10.1016/j.cej.2021.129481.
  • Chang, Y. R.; Lee, Y. J.; Lee, D. J. Membrane Fouling During Water or Wastewater Treatments: Current Research Updated. J. Taiwan Inst. Chem. Eng. 2019, 94, 88–96. DOI: 10.1016/j.jtice.2017.12.019.
  • Ullah, A.; Tanudjaja, H. J.; Ouda, M.; Hasan, S. W.; Chew, J. W. Membrane Fouling Mitigation Techniques for Oily Wastewater: A Short Review. J. Water Process Eng. 2021, 43 (August), 102293. DOI: 10.1016/j.jwpe.2021.102293.
  • Williams, C.; Wakeman, R. Membrane Fouling and Alternative Techniques for Its Alleviation. Membr. Technol. 2000, 2000(124), 4–10. DOI: 10.1016/S0958-2118(00)80017-8.
  • Julian, H.; Nurgirisia, N.; Qiu, G.; Ting, Y. P.; Wenten, I. G. Membrane Distillation for Wastewater Treatment: Current Trends, Challenges and Prospects of Dense Membrane Distillation. J. Water. Process. Eng. 2022, 46(December 2021), 102615. DOI: 10.1016/j.jwpe.2022.102615.
  • Awad, E. S.; Sabirova, T. M.; Tretyakova, N. A.; Alsalhy, Q. F.; Figoli, A.; Salih, I. K. A Mini-Review of Enhancing Ultrafiltration Membranes (Uf) for Wastewater Treatment: Performance and Stability. ChemEngineering. 2021, 5(3), 3. DOI: https://doi.org/10.3390/chemengineering5030034.
  • Jhaveri, J. H.; Murthy, Z. V. P. A Comprehensive Review on Anti-Fouling Nanocomposite Membranes for Pressure Driven Membrane Separation Processes. Desalination. 2016, 379, 137–154. DOI: 10.1016/j.desal.2015.11.009.
  • She, Q.; Wang, R.; Fane, A. G.; Tang, C. Y. Membrane Fouling in Osmotically Driven Membrane Processes: A Review. J. Memb. Sci. 2016, 499, 201–233. DOI: 10.1016/j.memsci.2015.10.040.
  • Kharraz, J. A.; An, A. K. Patterned Superhydrophobic Polyvinylidene Fluoride (PVDF) Membranes for Membrane Distillation: Enhanced Flux with Improved Fouling and Wetting Resistance. J. Memb. Sci. 2020, 595(October 2019), 117596. DOI: 10.1016/j.memsci.2019.117596.
  • Ilyas, A.; Mertens, M.; Oyaert, S.; Vankelecom, I. F. J. Synthesis of Patterned PVDF Ultrafiltration Membranes: Spray-Modified Non-Solvent Induced Phase Separation. J. Memb. Sci. 2020, 612(June), 118383. DOI: 10.1016/j.memsci.2020.118383.
  • Alshwairekh, A. M.; Alghafis, A. A.; Alwatban, A. M.; Alqsair, U. F.; Oztekin, A. The Effects of Membrane and Channel Corrugations in Forward Osmosis Membrane Modules – Numerical Analyses. Desalination. 2019, 460(March), 41–55. DOI: 10.1016/j.desal.2019.03.003.
  • Bhoj, Y.; Tharmavaram, M.; Rawtani, D. A Comprehensive Approach to Antifouling Strategies in Desalination, Marine Environment, and Wastewater Treatment. Chem. Phys. Impact. 2021, 2(August 2020), 100008. DOI: 10.1016/j.chphi.2020.100008.
  • Gu, Q.; Ng, T. C. A.; Bao, Y.; Ng, H. Y.; Tan, S. C.; Wang, J. Developing Better Ceramic Membranes for Water and Wastewater Treatment: Where Microstructure Integrates with Chemistry and Functionalities. Chem. Eng. J. 2021, 428(March 2021), 130456. DOI: 10.1016/j.cej.2021.130456.
  • Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review. Polymers (Basel). 2021, 13(6), 6. DOI: https://doi.org/10.3390/polym13060846.
  • Heinz, O.; Aghajani, M.; Greenberg, A. R.; Ding, Y. Surface-Patterning of Polymeric Membranes: Fabrication and Performance. Curr. Opin. Chem. Eng. 2018, 20, 1–12. DOI: 10.1016/j.coche.2018.01.008.
  • Sutariya, B.; Sargaonkar, A.; Raval, H. Methods of Visualizing Hydrodynamics and Fouling in Membrane Filtration Systems: Recent Trends. Sep. Sci. Technol. 2022, 58(1), 101–130. DOI: 10.1080/01496395.2022.2089585.
  • Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K. F.; Bjarnadóttir, B.; Bjarnadóttir, M. Á.; Axelsdóttir, S.; Wu, B. Direct Membrane Filtration for Wastewater Treatment and Resource Recovery: A Review. Sci. Total Environ. 2020, 710, 136375. DOI: 10.1016/j.scitotenv.2019.136375.
  • Xiang, H.; Min, X.; Tang, C. J.; Sillanpää, M.; Zhao, F. Recent Advances in Membrane Filtration for Heavy Metal Removal from Wastewater: A Mini Review. J. Water. Process. Eng. 2022, 49(July), 103023. DOI: 10.1016/j.jwpe.2022.103023.
  • Martin, K. J.; Bolster, D.; Derlon, N.; Morgenroth, E.; Nerenberg, R. Effect of Fouling Layer Spatial Distribution on Permeate Flux: A Theoretical and Experimental Study. J. Memb. Sci. 2014, 471, 130–137. DOI: 10.1016/j.memsci.2014.07.045.
  • Yogarathinam, L. T.; Velswamy, K.; Gangasalam, A.; Ismail, A. F.; Goh, P. S.; Narayanan, A.; Abdullah, M. S. Performance Evaluation of Whey Flux in Dead-End and Cross-Flow Modes via Convolutional Neural Networks. J. Environ. Manage. 2022, 301(September 2021), 113872. DOI: 10.1016/j.jenvman.2021.113872.
  • Nfor, B. K.; Verhaert, P. D. E. M.; van der Wielen, L. A. M.; Hubbuch, J.; Ottens, M. Rational and Systematic Protein Purification Process Development: The Next Generation. Trends Biotechnol. 2009, 27(12), 673–679. DOI: 10.1016/j.tibtech.2009.09.002.
  • Keir, G.; Jegatheesan, V. A Review of Computational Fluid Dynamics Applications in Pressure-Driven Membrane Filtration. Rev. Environ. Sci. Biotechnol. 2014, 13(2), 183–201. DOI: 10.1007/s11157-013-9327-x.
  • Razavi Bazaz, S.; Mashhadian, A.; Ehsani, A.; Saha, S. C.; Krüger, T.; Ebrahimi Warkiani, M. Computational Inertial Microfluidics: A Review. Lab. Chip. 2020, 20(6), 1023–1048. DOI: 10.1039/c9lc01022j.
  • Ericsson, L. E.; Reding, J. P. Dynamic Simulation Through Analytic Extrapolation. AIAA Pap. 1981, 19(2), 160–166. DOI: 10.2514/3.62227.
  • Haddadi, B.; Jordan, C.; Miltner, M.; Harasek, M. Membrane Modeling Using CFD: Combined Evaluation of Mass Transfer and Geometrical Influences in 1D and 3D. J. Memb. Sci. 2018, 563(December 2017), 199–209. DOI: 10.1016/j.memsci.2018.05.040.
  • Logtenberg, S. A.; Nijemeisland, M.; Dixon, A. G. Computational Fluid Dynamics Simulations of Fluid Flow and Heat Transfer at the Wall-Particle Contact Points in a Fixed-Bed Reactor. Chem. Eng. Sci. 1999, 54(13–14), 2433–2439. DOI: 10.1016/S0009-2509(98)00445-X.
  • Pak, A.; Mohammadi, T.; Hosseinalipour, S. M.; Allahdini, V. CFD Modeling of Porous Membranes. Desalination. 2008, 222(1–3), 482–488. DOI: 10.1016/j.desal.2007.01.152.
  • Samstag, R. W.; Ducoste, J. J.; Griborio, A.; Nopens, I.; Batstone, D. J.; Wicks, J. D.; Saunders, S.; Wicklein, E. A.; Kenny, G.; Laurent, J. CFD for Wastewater Treatment: An Overview. Water Sci. Technol. 2016, 74(3), 549–563. DOI: 10.2166/wst.2016.249.
  • Samstag, R. W.; Ducoste, J. J.; Griborio, A.; Nopens, I.; Batstone, D. J.; Wicks, J. D.; Saunders, S.; Wicklein, E. A.; Kenny, G.; Laurent, J. Verification and Validation of CFD Simulations by Iowa Institute of Hydraulic Research Mechanical and Aerospace Engineering Department University of Alabama in Huntsville Huntsville AL 35899 Sponsored by Office of Naval Research Iowa Institute of Hydrauli. No. 407.
  • Chang, H.; Hsu, J. A.; Chang, C. L.; Ho, C. D.; Cheng, T. W. Simulation Study of Transfer Characteristics for Spacer-Filled Membrane Distillation Desalination Modules. Appl. Energy. 2017, 185, 2045–2057. DOI: 10.1016/j.apenergy.2015.12.030.
  • Wang, J.; Ying, X. B.; Huang, Y. H.; Chen, Y. Q.; Shen, D. S.; Zhang, X.; Feng, H. J. Numerical Study of Hydrodynamic Characteristics in a Moving Bed Biofilm Reactor. Environ. Res. 2021, 194(November 2020), 110614. DOI: 10.1016/j.envres.2020.110614.
  • Yue, C.; Zhang, Q.; Zhai, Z. Numerical Simulation of the Filtration Process in Fibrous Filters Using CFD-DEM Method. J. Aerosol. Sci. 2016, 101, 174–187. DOI: 10.1016/j.jaerosci.2016.08.004.
  • Zhang, T.; Wei, C.; Feng, C.; Zhu, J. A Novel Airlift Reactor Enhanced by Funnel Internals and Hydrodynamics Prediction by the CFD Method. Bioresources Technol. 2012, 104, 600–607. DOI: 10.1016/j.biortech.2011.11.008.
  • Schröder, K.; Gelbe, H. Two- and Three-Dimensional CFD-Simulation of Flow-Induced Vibration Excitation in Tube Bundles. Chem. Eng. Process. Process Intensif. 1999, 38(4–6), 621–629. DOI: 10.1016/S0255-2701(99)00063-X.
  • Thomas, J. L.; Krist, S. T.; Anderson, W. K. Navier-Stokes Computations of Vortical Flows Over Low-Aspect-Ratio Wings. Aiaa J. 1990, 28(2), 205–212. DOI: 10.2514/3.10376.
  • Chen, L.; Pannala, S.; Broekhuis, R.; Gautam, P.; Gu, T.; West, D.; Balakotaiah, V. Three-Dimensional CFD Simulation of Pattern Formation in a Shallow Packed-Bed Reactor for Oxidative Coupling of Methane. Chem. Eng. J. 2020, 400(June), 125979. DOI: 10.1016/j.cej.2020.125979.
  • Jafari, A.; Zamankhan, P.; Mousavi, S. M.; Pietarinen, K. Modeling and CFD Simulation of Flow Behavior and Dispersivity Through Randomly Packed Bed Reactors. Chem. Eng. J. 2008, 144(3), 476–482. DOI: 10.1016/j.cej.2008.07.033.
  • Zawawi, M. H.; Saleha, A.; Salwa, A.; Hassan, N. H.; Zahari, N. M.; Ramli, M. Z.; Muda, Z. C. A Review: Fundamentals of Computational Fluid Dynamics (CFD). AIP Conf. Proc. 2018, 2030. DOI: 10.1063/1.5066893.
  • Ranganathan, P.; Pandey, A. K.; Sirohi, R.; Tuan Hoang, A.; Kim, S. H. Recent Advances in Computational Fluid Dynamics (CFD) Modelling of Photobioreactors: Design and Applications. Bioresources Technol. 2022, 350(January), 126920. DOI: 10.1016/j.biortech.2022.126920.
  • Tafarroj, M. M.; Daneshazarian, R.; Kasaeian, A. CFD Modeling and Predicting the Performance of Direct Absorption of Nanofluids in Trough Collector. Appl. Therm. Eng. 2019, 148(September 2017), 256–269. DOI: 10.1016/j.applthermaleng.2018.11.020.
  • Ladd, A. J. C.; Kekre, R.; Butler, J. E. Comparison of the Static and Dynamic Properties of a Semiflexible Polymer Using Lattice Boltzmann and Brownian-Dynamics Simulations. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2009, 80(3), 1–10. DOI: 10.1103/PhysRevE.80.036704.
  • Carmesin, C.; Kremer, K. The Bond Fluctuation Method: A New Effective Algorithm for the Dynamics of Polymers in All Spatial Dimensions. Macromolecules. 1988, 21(9), 2819–2823. DOI: 10.1021/ma00187a030.
  • Gooneie, A.; Schuschnigg, S.; Holzer, C. A Review of Multiscale Computational Methods in Polymeric Materials. Polymers (Basel). 2017, 9, 1. DOI: 10.3390/polym9010016.
  • Ermak, D. L.; McCammon, J. A. Brownian Dynamics with Hydrodynamic Interactions. J. Chem. Phys. 1978, 69(4), 1352–1360. DOI: 10.1063/1.436761.
  • Berti, C.; Furini, S.; Gillespie, D.; Boda, D.; Eisenberg, R. S.; Sangiorgi, E.; Fiegna, C. Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation Through Membrane Pores. J. Chem. Theory Comput. 2014, 10(8), 2911–2926. DOI: 10.1021/ct4011008.
  • Foss, D. R.; Brady, J. F. Brownian Dynamics Simulation of Hard-Sphere Colloidal Dispersions. J. Rheol. 2000, 44(3), 629–651. DOI: 10.1122/1.551104.
  • Park, H.; Kim, S.; Chang, H. Brownian Dynamic Simulation for the Aggregation of Charged Particles. J. Aerosol. Sci. 2001, 32(11), 1369–1388. DOI: 10.1016/S0021-8502(01)00063-5.
  • Banchio, A. J.; Brady, J. F. Accelerated Stokesian Dynamics: Brownian Motion Accelerated Stokesian Dynamics: Brownian Motion. J. Chem. Phys. 2012, 10323(2003), 10323–10332. DOI: 10.1063/1.1571819.
  • Doyle, P. S.; Underhill, P. T. Brownian Dynamics Simulations of Polymers and Soft Matter. Handb. Mater. Model, 2005, 2619–2630. DOI: 10.1007/1-4020-3286-2_140.
  • Northrup, S. H.; Allison, S. A.; Andrew McCammon, J. Brownian Dynamics Simulation of Diffusion-Influenced Bimolecular Reactions. J. Chem. Phys. 1983, 80(4), 1517–1524. DOI: 10.1063/1.446900.
  • Jung, S. Y.; Jeong, J.; Park, J. D.; Ahn, K. H. Interplay Between Particulate Fouling and Its Flow Disturbance: Numerical and Experimental Studies. J. Memb. Sci. 2021, 635(June), 119497. DOI: 10.1016/j.memsci.2021.119497.
  • Pandey, H.; Underhill, P. T. Coarse-Grained Model of Conformation-Dependent Electrophoretic Mobility and Its Influence on DNA Dynamics. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2015, 92(5), 1–8. DOI: 10.1103/PhysRevE.92.052301.
  • Pandey, H.; Szafran, S. A.; Underhill, P. T. Passive Trapping of Rigid Rods Due to Conformation-Dependent Electrophoretic Mobility. Soft Matter. 2016, 12(12), 3121–3126. DOI: 10.1039/c5sm02816g.
  • Bacchin, P.; Aimar, P.; Sanchez, V. Influence of Surface Interaction on Transfer During Colloid Ultrafiltration. J. Memb. Sci. 1996, 115(1), 49–63. DOI: 10.1016/0376-7388(95)00279-0.
  • Brant, J. A.; Childress, A. E. Membrane-Colloid Interactions: Comparison of Extended DLVO Predictions with AFM Force Measurements. Environ. Eng. Sci. 2002, 19(6), 413–427. DOI: 10.1089/109287502320963409.
  • Ding, Y.; Tian, Y.; Li, Z.; Wang, H.; Chen, L. Microfiltration (MF) Membrane Fouling Potential Evaluation of Protein with Different Ion Strengths and Divalent Cations Based on Extended DLVO Theory. Desalination. 2013, 331, 62–68. DOI: 10.1016/j.desal.2013.10.017.
  • Hoek, E. M. V.; Bhattacharjee, S.; Elimelech, M. Effect of Membrane Surface Roughness on Colloid-Membrane DLVO Interactions. Langmuir. 2003, 19(11), 4836–4847. DOI: 10.1021/la027083c.
  • Van Der Meeren, P.; Saveyn, H.; Bogale Kassa, S.; Doyen, W.; Leysen, R. Colloid-Membrane Interaction Effects on Flux Decline During Cross-Flow Ultrafiltration of Colloidal Silica on Semi-Ceramic Membranes. Phys. Chem. Chem. Phys. 2004, 6(7), 1408–1412. DOI: 10.1039/b315220k.
  • Chen, J. C.; Kim, A. S. B. D. Brownian Dynamics, Molecular Dynamics, and Monte Carlo Modeling of Colloidal Systems. Adv. Colloid Interface Sci. 2004, 112(1–3), 159–173. DOI: 10.1016/j.cis.2004.10.001.
  • Brańka, A. C.; Heyes, D. M. Algorithms for Brownian Dynamics Simulation. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 1998, 58(2), 2611–2615. DOI: 10.1103/PhysRevE.58.2611.
  • Lee, Y. K.; Won, Y. J.; Yoo, J. H.; Ahn, K. H.; Lee, C. H. Flow Analysis and Fouling on the Patterned Membrane Surface. J. Memb. Sci. 2013, 427, 320–325. DOI: 10.1016/j.memsci.2012.10.010.
  • Jang, J. H.; Lee, J.; Jung, S. Y.; Choi, D. C.; Won, Y. J.; Ahn, K. H.; Park, P. K.; Lee, C. H. Correlation Between Particle Deposition and the Size Ratio of Particles to Patterns in Nano- and Micro-Patterned Membrane Filtration Systems. Sep. Purif. Technol. 2015, 156, 608–616. DOI: 10.1016/j.seppur.2015.10.056.
  • Jung, S. Y.; Won, Y. J.; Jang, J. H.; Yoo, J. H.; Ahn, K. H.; Lee, C. H. Particle Deposition on the Patterned Membrane Surface: Simulation and Experiments. Desalination. 2015, 370, 17–24. DOI: 10.1016/j.desal.2015.05.014.
  • Won, Y. J.; Jung, S. Y.; Jang, J. H.; Lee, J. W.; Chae, H. R.; Choi, D. C.; Hyun Ahn, K.; Lee, C. H.; Park, P. K. Correlation of Membrane Fouling with Topography of Patterned Membranes for Water Treatment. J. Memb. Sci. 2016, 498, 14–19. DOI: 10.1016/j.memsci.2015.09.058.
  • Jung, S. Y.; Ahn, K. H. Transport and Deposition of Colloidal Particles on a Patterned Membrane Surface: Effect of Cross-Flow Velocity and the Size Ratio of Particle to Surface Pattern. J. Memb. Sci. 2019, 572(November 2018), 309–319. DOI: 10.1016/j.memsci.2018.11.011.
  • Ilyas, A.; Mertens, M.; Oyaert, S.; Vankelecom, I. F. J. Anti-Fouling Behavior of Micro-Patterned PVDF Membranes Prepared via Spray-Assisted Phase Inversion: Influence of Pattern Shapes and Flow Configuration. Sep. Purif. Technol. 2021, 259(September 2020), 118041. DOI: 10.1016/j.seppur.2020.118041.
  • Shang, W.; Yang, S.; Liu, W.; Wong, P. W.; Wang, R.; Li, X.; Sheng, G.; Lau, W.; An, A. K.; Sun, F. Understanding the Influence of Hydraulic Conditions on Colloidal Fouling Development by Using the Micro-Patterned Nanofiltration Membrane: Experiments and Numerical Simulation. J. Memb. Sci. 2022, 654(November 2021), 120559. DOI: 10.1016/j.memsci.2022.120559.
  • Mazinani, S.; Al-Shimmery, A.; Chew, Y. M. J.; Mattia, D. 3D Printed Nanofiltration Composite Membranes with Reduced Concentration Polarisation. J. Memb. Sci. 2022, 644(November 2021), 120137. DOI: 10.1016/j.memsci.2021.120137.
  • Schwinge, J.; Wiley, D. E.; Fletcher, D. F. Simulation of the Flow Around Spacer Filaments Between Channel Walls. 2. Mass-Transfer Enhancement. Ind. Eng. Chem. Res. 2002, 41(19), 4879–4888. DOI: 10.1021/ie011015o.
  • Wiley, D. E.; Fletcher, D. F. Computational Fluid Dynamics Modelling of Flow and Permeation for Pressure-Driven Membrane Processes. Desalination. 2002, 145(1–3), 183–186. DOI: 10.1016/S0011-9164(02)00406-X.
  • Subramani, A.; Kim, S.; Hoek, E. M. V. Pressure Flow, and Concentration Profiles in Open and Spacer-Filled Membrane Channels. J. Memb. Sci. 2006, 277(1–2), 7–17. DOI: 10.1016/j.memsci.2005.10.021.
  • Maruf, S. H.; Rickman, M.; Wang, L.; Mersch, J., IV; Greenberg, A. R.; Pellegrino, J.; Ding, Y. Influence of Sub-Micron Surface Patterns on the Deposition of Model Proteins During Active Filtration. J. Memb. Sci. 2013, 444, 420–428. DOI: 10.1016/j.memsci.2013.05.060.
  • Zhao, Z.; Ilyas, A.; Muylaert, K.; Vankelecom, I. F. J. Optimization of Patterned Polysulfone Membranes for Microalgae Harvesting. Bioresources Technol. 2020, 309(March), 123367. DOI: 10.1016/j.biortech.2020.123367.
  • Zhao, Z.; Liu, B.; Ilyas, A.; Vanierschot, M.; Muylaert, K.; Vankelecom, I. F. J. Harvesting Microalgae Using Vibrating, Negatively Charged, Patterned Polysulfone Membranes. J. Memb. Sci. 2021, 618(July 2020), 118617. DOI: 10.1016/j.memsci.2020.118617.
  • Choi, D. C.; Jung, S. Y.; Won, Y. J.; Jang, J. H.; Lee, J.; Chae, H. R.; Ahn, K. H.; Lee, S.; Park, P. K.; Lee, C. H. Three-Dimensional Hydraulic Modeling of Particle Deposition on the Patterned Isopore Membrane in Crossflow Microfiltration. J. Memb. Sci. 2015, 492, 156–163. DOI: 10.1016/j.memsci.2015.05.054.
  • Choi, W.; Lee, C.; Yoo, C. H.; Shin, M. G.; Lee, G. W.; Kim, T. S.; Jung, H. W.; Lee, J. S.; Lee, J. H. Structural Tailoring of Sharkskin-Mimetic Patterned Reverse Osmosis Membranes for Optimizing Biofouling Resistance. J. Memb. Sci. 2020, 595(October 2019), 117602. DOI: 10.1016/j.memsci.2019.117602.
  • Malakian, A.; Zhou, Z.; Messick, L.; Spitzer, T. N.; Ladner, D. A.; Husson, S. M. Understanding the Role of Pattern Geometry on Nanofiltration Threshold Flux. Membr. (Basel). 2020, 10(12), 1–12. DOI: 10.3390/membranes10120445.
  • Ilyas, A.; Yihdego Gebreyohannes, A.; Qian, J.; Reynaerts, D.; Kuhn, S.; Vankelecom, I. F. J. Micro-Patterned Membranes Prepared via Modified Phase Inversion: Effect of Modified Interface on Water Fluxes and Organic Fouling. J. Colloid. Interface. Sci. 2021, 585, 490–504. DOI: 10.1016/j.jcis.2020.10.031.
  • Zhou, Z.; Ling, B.; Battiato, I.; Husson, S. M.; Ladner, D. A. Concentration Polarization Over Reverse Osmosis Membranes with Engineered Surface Features. J. Memb. Sci. 2021, 617(December 2019), 118199. DOI: 10.1016/j.memsci.2020.118199.
  • Lyu, Z.; Ng, T. C. A.; Tran-Duc, T.; Lim, G. J. H.; Gu, Q.; Zhang, L.; Zhang, Z.; Ding, J.; Phan-Thien, N.; Wang, J., et al. 3D-Printed Surface-Patterned Ceramic Membrane with Enhanced Performance in Crossflow Filtration. J. Memb. Sci. 2020, 606(April), 118138.
  • Lee, K. J.; Wu, R. M. Simulation of Resistance of Cross-Flow Microfiltration and Force Analysis on Membrane Surface. Desalination. 2008, 233(1–3), 239–246. DOI: 10.1016/j.desal.2007.09.048.
  • Vrouwenvelder, J. S.; Picioreanu, C.; Kruithof, J. C.; van Loosdrecht, M. C. M. Biofouling in Spiral Wound Membrane Systems: Three-Dimensional CFD Model Based Evaluation of Experimental Data. J. Memb. Sci. 2010, 346(1), 71–85. DOI: 10.1016/j.memsci.2009.09.025.
  • Choi, D. C.; Jung, S. Y.; Won, Y. J.; Jang, J. H.; Lee, J. W.; Chae, H. R.; Lim, J.; Ahn, K. H.; Lee, S.; Kim, J. H., et al. Effect of Pattern Shape on the Initial Deposition of Particles in the Aqueous Phase on Patterned Membranes During Crossflow Filtration. Environ. Sci. Technol. Lett. 2017, 4(2), 66–70. DOI: 10.1021/acs.estlett.6b00468.
  • Lee, C.; Lee, G. W.; Choi, W.; Yoo, C. H.; Chun, B.; Lee, J. S.; Lee, J. H.; Jung, H. W. Pattern Flow Dynamics Over Rectangular Sharklet Patterned Membrane Surfaces. Appl. Surf. Sci. 2020, 514(December 2019), 145961. DOI: 10.1016/j.apsusc.2020.145961.
  • Unni, H. N.; Yang, C. Brownian Dynamics Simulation and Experimental Study of Colloidal Particle Deposition in a Microchannel Flow. J. Colloid. Interface. Sci. 2005, 291(1), 28–36. DOI: 10.1016/j.jcis.2005.04.104.
  • Wang, X. M.; Li, X. Y. Modeling of the Initial Deposition of Individual Particles During the Cross-Flow Membrane Filtration. Colloids Surf. A Physicochem. Eng. Asp. 2014, 440, 91–100. DOI: 10.1016/j.colsurfa.2012.10.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.