228
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Applications of Nanoadsorbents for the Removal of Fluoride from Water: Recent Advancements and Future Perspectives

, ORCID Icon, , , , , & ORCID Icon show all
Pages 311-335 | Received 02 Jan 2023, Accepted 02 Nov 2023, Published online: 14 Nov 2023

REFERENCES

  • Araya, D.; Podgorski, J.; Kumi, M.; MainooM, P. A.; Berg, M. Fluoride Contamination of Groundwater Resources in Ghana: Country-Wide Hazard Modeling and Estimated Population at Risk. Water. Res. 2022, 212, 118083. DOI: 10.1016/j.watres.2022.118083.
  • Zuo, H.; Chen, L.; Kong, M.; Qiu, L.; Lü, P.; Wu, P.; Yang, Y.; Chen, K. Toxic Effects of Fluoride on Organisms. Life. sci. 2018, 198, 18–24. DOI: 10.1016/j.lfs.2018.02.001.
  • Yadav, K.; Kumar, S.; Pham, Q. B.; Gupta, N.; Rezania, S.; Kamyab, H.; Yadav, S.; Vymazal, J.; Kumar, V.; Tri, D. Q., et al. Fluoride Contamination, Health Problems and Remediation Methods in Asian Groundwater: A Comprehensive Review. Ecotoxicol. Environ. Saf. 2019, 182, 109362. DOI: 10.1016/j.ecoenv.2019.06.045.
  • Hegde, R. M.; Rego, R. M.; Potla, K. M.; Kurkuri, M. D.; Kigga, M. Bio-Inspired Materials for Defluoridation of Water: A Review. Chemosphere. 2020, 2020, 253, 126657. DOI: 10.1016/j.chemosphere.2020.126657.
  • Zhu, X.; Vo, C.; Taylor, M.; Smith, B. R. Correction: Non-Spherical Micro-and Nanoparticles in Nanomedicine. Mater. Horiz. 2020, 7(5), 1436–1436. DOI: 10.1039/D0MH90013C.
  • Wu, J.; Xuan, X.; Zhang, S.; Li, Z.; Li, H.; Zhao, B.; Ye, H.; Xiao, Z.; Zhao, X.; Xu, X., et al. N, P-doped Carbon Nanorings for High-Performance Capacitive Deionization. Chem. Eng. J. 2023, 473, 145421. DOI: 10.1016/j.cej.2023.145421.
  • Tolkou, A. K.; Manousi, N.; Zachariadis, G. A.; Katsoyiannis, I. A.; Deliyanni, E. A. Recently Developed Adsorbing Materials for Fluoride Removal from Water and Fluoride Analytical Determination Techniques: A Review. Sustainability. 2021, 13(13). DOI: 10.3390/su13137061.
  • He, J.; Yang, Y.; Wu, Z.; Xie, C.; Zhang, K.; Kong, L.; Liu, J. Review of Fluoride Removal from Water Environment by Adsorption. J. Environ. Chem. Eng. 2020, 8(6), 104516. DOI: 10.1016/j.jece.2020.104516.
  • Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of Applying Nanofiltration and How to Avoid Them: A Review. Sep. Purif. Technol. 2008, 63(2), 251–263. DOI: 10.1016/j.seppur.2008.05.010.
  • Wang, J.; Li, H.; Yue, D. Enhanced Adsorption of Humic/Fulvic Acids Onto Urea-Derived Graphitic Carbon Nitride. J. Hazard. Mater. 2022, 424, 127643. DOI: 10.1016/j.jhazmat.2021.127643.
  • Wang, J.; Yue, D.; Li, M.; Wang, H.; Wang, J.; Wang, C.; Wang, H. Application of Carbon Nitride Nanosheets for Adsorption of Various Humic Substances from Aqueous Solutions. Chem. Eng. J. 2023, 454, 140296. DOI: 10.1016/j.cej.2022.140296.
  • Jian, S.; Shi, F.; Hu, R.; Liu, Y.; Chen, Y.; Jiang, W.; Yuan, X.; Hu, J.; Zhang, K.; Jiang, S., et al. Electrospun Magnetic La2O3-CeO2-Fe3O4 Composite Nanofibers for Removal of Fluoride from Aqueous Solution. Compos. Commun. 2022, 33, 101194. DOI: 10.1016/j.coco.2022.101194.
  • Yao, G.; Zhu, X.; Wang, M.; Qiu, Z.; Zhang, T.; Qiu, F. Controlled Fabrication of the Biomass Cellulose-CeO2 Nanocomposite Membrane as Efficient and Recyclable Adsorbents for Fluoride Removal. Ind. Eng. Chem. Res. 2021, 60(16), 5914–5923. DOI: 10.1021/acs.iecr.1c00012.
  • Zhu, R.; Wang, X.; Panther, J. G.; Wang, Q.; Chakir, S.; Ding, Y.; Huang, Y.; Wang, H. Micro/Nanostructured MgO Hollow Spheres with Selective Adsorption Performance and Their Application for Fluoride Monitoring in Water. Sep. Purif. Technol. 2022, 299, 121703. DOI: 10.1016/j.seppur.2022.121703.
  • Osagie, A. U.; Adelaja, O. O. Fluoride Ions Sorption Using Functionalized Magnetic Metal Oxides Nanocomposites: A Review. Environ. Sci. Pollut. Res. 2022, 29(7), 29. DOI: 10.1007/s11356-021-17571-7.
  • Kumar, R.; Sharma, P.; Yang, W.; Sillanpää, M.; Shang, J.; Bhattacharya, P.; Vithanage, M.; Maity, J. P. State-Of-The-Art of Research Progress on Adsorptive Removal of Fluoride-Contaminated Water Using Biochar-Based Materials: Practical Feasibility Through Reusability and Column Transport Studies. Environ. Res. 2022, 214, 114043. DOI: 10.1016/j.envres.2022.114043.
  • Chaudhary, M.; Rawat, S.; Maiti, A. Defluoridation by Bare Nanoadsorbents, Nanocomposites, and Nanoadsorbent Loaded Mixed Matrix Membranes. Sep. & Purif. Rev. 2023, 52(2), 135–153. DOI: 10.1080/15422119.2022.2045610.
  • Sun, Y.; Han, T.; Lu, W.; Wang, Y.; Jiang, D.; Abbasi, H. N.; Guo, Z.; Li, B.; Wang, X.; Dai, H. Effects of Nano Metal Oxide Particles on Denitrifying Phosphorus Removal System: Potential Stress Mechanism and Recovery Strategy. Sci. Total Environ. 2023, 875, 162706. DOI: 10.1016/j.scitotenv.2023.162706.
  • Yang, M.; Jin, H.; Sun, Z.; Gui, R. Experimental Synthesis, Functionalized Modifications and Potential Applications of Monoelemental Zero-Dimensional Boron Nanomaterials. J. Mater. Chem. A. 2022, 10(10), 5111–5146. DOI: 10.1039/D1TA10132C.
  • Tirkey, P.; Bhattacharya, T.; Chakraborty, S. Optimization of Fluoride Removal from Aqueous Solution Using Jamun (Syzygium Cumini) Leaf Ash. Process Saf. Environ. Prot. 2018, 115, 125–138. DOI: 10.1016/j.psep.2017.10.022.
  • Changmai, M.; Priyesh, J. P.; Purkait, M. K. Al2O3 Nanoparticles Synthesized Using Various Oxidizing Agents: Defluoridation Performance. J. Sci. Adv. Mater. Dev. 2017, 2(4), 483–492. DOI: 10.1016/j.jsamd.2017.09.001.
  • Saikia, J.; Sarmah, S.; Saikia, P.; Goswamee, R. L. Harmful Weed to Prospective Adsorbent: Low-Temperature-Carbonized Ipomoea Carnea Stem Carbon Coated with Aluminum Oxyhydroxide Nanoparticles for Defluoridation. Environ. Sci. Pollut. Res. 2019, 26(1), 721–737. DOI: 10.1007/s11356-018-3572-z.
  • Tomar, G.; Thareja, A.; Sarkar, S. Enhanced Fluoride Removal by Hydroxyapatite-Modified Activated Alumina. Int. J. Environ. Sci. Technol. 2015, 12(9), 2809–2818. DOI: 10.1007/s13762-014-0653-5.
  • Ekka, B.; Dhaka, R. S.; Patel, R. K.; Dash, P. Fluoride Removal in Waters Using Ionic Liquid-Functionalized Alumina as a Novel Adsorbent. J. Clean. Prod. 2017, 151, 303–318. DOI: 10.1016/j.jclepro.2017.03.061.
  • Sha, Q.; Xie, H.; Liu, W.; Yang, D.; He, Y.; Yang, C.; Wang, N.; Ge, C. Removal of Fluoride Using Platanus Acerifoli Leaves Biochar – an Efficient and Low-Cost Application in Wastewater Treatment. Environ. Technol. 2023, 2021(1), 1–15. DOI: 10.1080/09593330.2021.1964002.
  • Pillai, P.; Dharaskar, S.; Khalid, M. Optimization of Fluoride Removal by Al Doped ZnO Nanoparticles Using Response Surface Methodology from Groundwater. Chemosphere. 2021, 284, 131317. DOI: 10.1016/j.chemosphere.2021.131317.
  • Kumar, E.; Bhatnagar, A.; Kumar, U.; Sillanpää, M. Defluoridation from Aqueous Solutions by Nano-Alumina: Characterization and Sorption Studies. J. Hazard. Mater. 2011, 186(2), 1042–1049. DOI: 10.1016/j.jhazmat.2010.11.102.
  • Chinnakoti, P.; Chunduri, A. L. A.; Vankayala, R. K.; Patnaik, S.; Kamisetti, V. Enhanced Fluoride Adsorption by Nano Crystalline γ-Alumina: Adsorption Kinetics, Isotherm Modeling and Thermodynamic Studies. Appl. Water. Sci. 2017, 7(5), 2413–2423. DOI: 10.1007/s13201-016-0437-9.
  • Wang, S. G.; Ma, Y.; Shi, Y. J.; Gong, W. X. Defluoridation Performance and Mechanism of Nano-Scale Aluminum Oxide Hydroxide in Aqueous Solution. J. Chem. Technol. Biotechnol. 2009, 84(7), 1043–1050. DOI: 10.1002/jctb.2131.
  • Gao, Y.; You, K.; Fu, J.; Wang, J.; Qian, W. Manganese Modified Activated Alumina Through Impregnation for Enhanced Adsorption Capacity of Fluoride Ions. Water. 2022, 14(17), 2673. DOI: 10.3390/w14172673.
  • Yu, C.; Liu, L.; Wang, X.; Fu, J.; Wu, Y.; Feng, C.; Wu, Y.; Shen, J. Fluoride Removal Performance of Highly Porous Activated Alumina. J. Sol-Gel Sci. Technol. 2022, 106(2), 471–479. DOI: 10.1007/s10971-022-05722-2.
  • Choudhary, D.; Tavar, D.; Singh, P.; Raizada, P.; Ashiq, M.; Srivastava, A. K.; Singh, A. Nanoalumina-Supported Mn2O3 as Efficient Adsorbent for Removal of Fluoride and Arsenic from Water: A Study from Lab to Field. J. Mater. Sci. 2022, 57(28), 13326–13344. DOI: 10.1007/s10853-022-07466-4.
  • Kumari, U.; Mishra, A.; Siddiqi, H.; Meikap, B. C. Effective Defluoridation of Industrial Wastewater by Using Acid Modified Alumina in Fixed-Bed Adsorption Column: Experimental and Breakthrough Curves Analysis. J. Clean. Prod. 2021, 279, 123645. DOI: 10.1016/j.jclepro.2020.123645.
  • Xia, Y.; Huang, X.; Li, W.; Zhang, Y.; Li, Z. Facile Defluoridation of Drinking Water by Forming Shell@fluorapatite Nanoarray During Boiling Egg Shell. J. Hazard. Mater. 2019, 361, 321–328. DOI: 10.1016/j.jhazmat.2018.09.007.
  • Maliyekkal, S. M.; Anshup; Antony, K. R.; Pradeep, T. High Yield Combustion Synthesis of Nanomagnesia and Its Application for Fluoride Removal. Sci. Total Environ. 2010, 408(10), 2273–2282. DOI: 10.1016/j.scitotenv.2010.01.062.
  • Oladoja, N. A.; Seifert, M. L.; Drewes, J. E.; Helmreich, B. Influence of Organic Load on the Defluoridation Efficiency of Nano-Magnesium Oxide in Groundwater. Sep. Purif. Technol. 2017, 174, 116–125. DOI: 10.1016/j.seppur.2016.10.006.
  • Oladoja, N. A.; Chen, S.; Drewes, J. E.; Helmreich, B. Characterization of Granular Matrix Supported Nano Magnesium Oxide as an Adsorbent for Defluoridation of Groundwater. Chem. Eng. J. 2015, 281, 632–643. DOI: 10.1016/j.cej.2015.07.007.
  • Zuo, G.; Wei, X.; Sun, H.; Liu, S.; Zong, P.; Zeng, X.; Shen, Y. Morphology Controlled Synthesis of Nano-Hydroxyapatite Using Polyethylene Glycol as a Template. J. Alloys Compd. 2017, 692, 693–697. DOI: 10.1016/j.jallcom.2016.09.117.
  • Sanosh, K. P.; Chu, M. C.; Balakrishnan, A.; Lee, Y. J.; Kim, T. N.; Cho, S. J. Synthesis of Nano Hydroxyapatite Powder That Simulate Teeth Particle Morphology and Composition. Curr. Appl. Phys. 2009, 9(6), 1459–1462. DOI: 10.1016/j.cap.2009.03.024.
  • Chaudhry, A. A.; Haque, S.; Kellici, S.; Boldrin, P.; Rehman, I.; Khalid, F. A.; Darr, J. A. Instant Nano-Hydroxyapatite: A Continuous and Rapid Hydrothermal Synthesis. Chem. Commun. 2006, 21, 2286–2288. DOI: 10.1039/B518102J.
  • Mehta, D.; Mondal, P.; Saharan, V. K.; George, S. Synthesis of Hydroxyapatite Nanorods for Application in Water Defluoridation and Optimization of Process Variables: Advantage of Ultrasonication with Precipitation Method Over Conventional Method. Ultrason. Sonochem. 2017, 37, 56–70. DOI: 10.1016/j.ultsonch.2016.12.035.
  • Zhang, D.; Luo, H.; Zheng, L.; Wang, K.; Li, H.; Wang, Y.; Feng, H. Utilization of Waste Phosphogypsum to Prepare Hydroxyapatite Nanoparticles and Its Application Towards Removal of Fluoride from Aqueous Solution. J. Hazard. Mater. 2012, 2012, 241-242, 418–426. DOI: 10.1016/j.jhazmat.2012.09.066.
  • Jayarathne, A.; Weerasooriya, R.; Chandrajith, R. A Rapid Method for the Removal of Fluoride in Contaminated Groundwater Using Natural Crystalline Apatite: A Laboratory and Field Study. Environ. Earth Sci. 2015, 73(12), 8369–8377. DOI: 10.1007/s12665-014-3998-7.
  • Wagutu, A. W.; Machunda, R.; Jande, Y. A. C. Crustacean Derived Calcium Phosphate Systems: Application in Defluoridation of Drinking Water in East African Rift Valley. J. Hazard. Mater. 2018, 347, 95–105. DOI: 10.1016/j.jhazmat.2017.12.049.
  • Zhu, J.; Wang, Y.; Zhang, Y.; Huang, K. Defluoridation Efficiency Assessment of Spiny Hierarchical-Structured Calcium Hydroxyphosphate Particles. Colloids Surf. A. 2021, 627, 127219. DOI: 10.1016/j.colsurfa.2021.127219.
  • Pillai, P.; Dharaskar, S.; Sinha, M. K.; Sillanpää, M.; Khalid, M. Iron Oxide Nanoparticles Modified with Ionic Liquid as an Efficient Adsorbent for Fluoride Removal from Groundwater. Environ. Technol. Innov. 2020, 19, 100842. DOI: 10.1016/j.eti.2020.100842.
  • Chaudhary, M.; Bhattacharya, P.; Maiti, A. Synthesis of Iron Oxyhydroxide Nanoparticles and Its Application for Fluoride Removal from Water. J. Environ. Chem. Eng. 2016, 4(4), 4897–4903. DOI: 10.1016/j.jece.2016.05.018.
  • Na, C. K.; Park, H. J. Defluoridation from aqueous solution by lanthanum hydroxide. J. Hazard. Mater. 2010, 183(1), 512–520. DOI: 10.1016/j.jhazmat.2010.07.054.
  • Sahu, S.; Mallik, L.; Pahi, S.; Barik, B.; Sahu, U. K.; Sillanpää, M.; Patel, R. K. Facile Synthesis of Poly O-Toluidine Modified Lanthanum Phosphate Nanocomposite as a Superior Adsorbent for Selective Fluoride Removal: A Mechanistic and Kinetic Study. Chemosphere. 2020, 2020, 252, 126551. DOI: 10.1016/j.chemosphere.2020.126551.
  • Zhang, Y.; Qian, Y.; Li, W.; Gao, X.; Pan, B. Fluoride Uptake by Three Lanthanum Based Nanomaterials: Behavior and Mechanism Dependent Upon Lanthanum Species. Sci. Total Environ. 2019, 683, 609–616. DOI: 10.1016/j.scitotenv.2019.05.185.
  • Nomura, J.; Imai, H.; Miyake, T. Removal of Fluoride Ion from Wastewater by a Hydrous Cerium Oxide Adsorbent, in Emerging Technologies in Hazardous Waste Management. J. Am. Chem. Soc. 1990, 422, 157–172. DOI: 10.1021/bk-1990-0422.ch010.
  • Chi, Y.; Chen, Y.; Hu, C.; Wang, Y.; Liu, C. Preparation of Mg-Al-Ce Triple-Metal Composites for Fluoride Removal from Aqueous Solutions. J. Mol. Liq. 2017, 242, 416–422. DOI: 10.1016/j.molliq.2017.07.026.
  • Tao, W.; Zhong, H.; Pan, X.; Wang, P.; Wang, H.; Huang, L. Removal of Fluoride from Wastewater Solution Using Ce-AlOoh with Oxalic Acid as Modification. J. Hazard. Mater. 2020, 384, 121373. DOI: 10.1016/j.jhazmat.2019.121373.
  • Tang, X.; Xia, W.; Qu, X.; Wang, C.; Wang, W.; Liang, Y.; Zeng, Y.; Xiong, W.; Cheng, M.; Song, B., et al. Structure-Performance Correlation Guided Cerium-Based Metal-Organic Frameworks: Superior Adsorbents for Fluoride Removal in Water. Chemosphere. 2023, 312, 137335. DOI: 10.1016/j.chemosphere.2022.137335.
  • Mohan, S.; Singh, D. K.; Kumar, V.; Hasan, S. H. Effective Removal of Fluoride Ions by rGO/ZrO2 Nanocomposite from Aqueous Solution: Fixed Bed Column Adsorption Modelling and Its Adsorption Mechanism. J. Fluorine Chem. 2017, 194, 40–50. DOI: 10.1016/j.jfluchem.2016.12.014.
  • Hiremath, P. G.; Ganganagappa, N.; Udayabhanu; Suresh, S. S.; Sajjan, S.; Nanjundappa, R. K. Comparative Study of Defluoridation of Water Using Green Synthesized Zirconia Nanoparticles and Zirconia–Graphene Oxide Nanocomposite. J.INST.ENG.india ser. c. 2022, 104(1), 29–35. DOI: 10.1007/s40034-022-00263-3.
  • Zhang, W.; Mao, Y.; Lu, Y.; Al-Ghouti, M. A. Development of a novel Artemia eggshell-zirconium nanocomposite for efficient fluoride removal. PLoS. One. 2021, 16(1), 0244711. DOI: 10.1371/journal.pone.0244711.
  • Zhang, K.; Wei, X.; Ling, C.; Deng, Z.; Zhang, X. Revisiting Regeneration Performance and Mechanism of Anion Exchanger-Supported Nano-Hydrated Zirconium Oxides for Cyclic Water Defluoridation. Sep. Purif. Technol. 2022, 301, 121906. DOI: 10.1016/j.seppur.2022.121906.
  • Qiu, T.; Chu, P. K. Self-Selective Electroless Plating: An Approach for Fabrication of Functional 1D Nanomaterials. Mater. Sci. Eng. R Rep. 2008, 61(1), 59–77. DOI: 10.1016/j.mser.2008.03.001.
  • He, J.; Zhang, K.; Wu, S.; Cai, X.; Chen, K.; Li, Y.; Sun, B.; Jia, Y.; Meng, F.; Jin, Z., et al. Performance of Novel Hydroxyapatite Nanowires in Treatment of Fluoride Contaminated Water. J. Hazard. Mater. 2016, 303, 119–130. DOI: 10.1016/j.jhazmat.2015.10.028.
  • Jiang, D.; Chen, M.; Li, D.; Zhu, J.; Lü, X.; Xie, J. One-Pot Synthesis of Hierarchical Fluorapatite Hollow Microparticles. Mater. Lett. 2009, 63(30), 2639–2642. DOI: 10.1016/j.matlet.2009.09.030.
  • Kuang, L.; Liu, Y.; Fu, D.; Zhao, Y. FeOoh-Graphene Oxide Nanocomposites for Fluoride Removal from Water: Acetate Mediated Nano FeOoh Growth and Adsorption Mechanism. J. Colloid. Interface. Sci. 2017, 490, 259–269. DOI: 10.1016/j.jcis.2016.11.071.
  • Chinnakoti, P.; Kurdekar, A. D.; LA, A. C.; Aditha, S.; Biswas, A.; Mthukonda, S. V.; Kamisetti, V. Titanate Nanobelts-A Promising Nanosorbent for Defluoridation of Drinking Water. Sep. Sci. Technol. 2020, 55(6), 1023–1035. DOI: 10.1080/01496395.2019.1580733.
  • Suriyaraj, S. P.; Vijayaraghavan, T.; BijiR, P.; Selvakumar; Selvakumar, R. Adsorption of Fluoride from Aqueous Solution Using Different Phases of Microbially Synthesized TiO2 Nanoparticles. J. Environ. Chem. Eng. 2014, 2(1), 444–454. DOI: 10.1016/j.jece.2014.01.013.
  • Kaur, I.; Gupta, A.; Singh, B. P.; Kumar, R.; Chawla, J. Defluoridation of Water Using Micelle Templated MCM-41: Adsorption and RSM Studies. J. Water Supply Res. Technol. 2019, 68(4), 282–294. DOI: 10.2166/aqua.2019.013.
  • Jin, Z.; Jia, Y.; Zhang, K. S.; Kong, L. T.; Sun, B.; Shen, W.; Meng, F. L.; Liu, J. H. Effective Removal of Fluoride by Porous MgO Nanoplates and Its Adsorption Mechanism. J. Alloys Compd. 2016, 675, 292–300. DOI: 10.1016/j.jallcom.2016.03.118.
  • Dhillon, A.; Sapna; Kumar, D. Dual adsorption behaviour of fluoride from drinking water on Ca-Zn(OH)2CO3 adsorbent. Surf. Interfaces. 2017, 6, 154–161. DOI: 10.1016/j.surfin.2017.01.006.
  • Zhang, Y. X.; Jia, Y. Fluoride Adsorption on Manganese Carbonate: Ion-Exchange Based on the Surface Carbonate-Like Groups and Hydroxyl Groups. J. Colloid. Interface. Sci. 2018, 510, 407–417. DOI: 10.1016/j.jcis.2017.09.090.
  • Wimalasiri, A. K. D. V. K.; Fernando, M. S.; Williams, G. R.; Dissanayake, D. P.; Silva de, K. M. N.; Silva, R. M. D. Microwave Assisted Accelerated Fluoride Adsorption by Porous Nanohydroxyapatite. Mat. Chem. Phy. 2021, 2021, 257, 123712. DOI: 10.1016/j.matchemphys.2020.123712.
  • Shen, J.; Evangelista, M. F.; Mkongo, G.; Wen, H.; Langford, R.; Rosair, G.; McCoustra, M. R.; Arrighi, V. Efficient Defluoridation of Water by Monetite Nanorods. Adsorption. 2018, 24(2), 135–145. DOI: 10.1007/s10450-017-9928-8.
  • Chaudhary, M.; Maiti, A. Defluoridation by Highly Efficient Calcium Hydroxide Nanorods from Synthetic and Industrial Wastewater. Colloids Surf. A. 2019, 561, 79–88. DOI: 10.1016/j.colsurfa.2018.10.052.
  • Shao, S.; Ma, B.; Chen, Y.; Zhang, W.; Wang, C. Behavior and Mechanism of Fluoride Removal from Aqueous Solutions by Using Synthesized CaSO4·2H2O Nanorods. Chem. Eng. J. 2021, 426, 131364. DOI: 10.1016/j.cej.2021.131364.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354(6348), 56–58. DOI: 10.1038/354056a0.
  • Ansari, M.; Kazemipour, M.; Dehghani, M.; Kazemipour, M. The Defluoridation of Drinking Water Using Multi-Walled Carbon Nanotubes. J. Fluorine Chem. 2011, 132(8), 516–520. DOI: 10.1016/j.jfluchem.2011.05.008.
  • Dehghani, M. H.; Haghighat, G. A.; Yetilmezsoy, K.; McKay, G.; Heibati, B.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Adsorptive Removal of Fluoride from Aqueous Solution Using Single- and Multi-Walled Carbon Nanotubes. J. Mol. Liq. 2016, 216, 401–410. DOI: 10.1016/j.molliq.2016.01.057.
  • Ruan, Z.; Tian, Y.; Ruan, J.; Cui, G.; Iqbal, K.; Iqbal, A.; Ye, H.; Yang, Z.; Yan, S. Synthesis of Hydroxyapatite/multi-Walled Carbon Nanotubes for the Removal of Fluoride Ions from Solution. Appl. Surf. Sci. 2017, 412, 578–590. DOI: 10.1016/j.apsusc.2017.03.215.
  • Affonso, L. N.; Marques, J. L.; Lima, V. V. C.; Gonçalves, J. O.; Barbosa, S. C.; Primel, E. G.; Burgo, T. A. L.; Dotto, G. L.; Pinto, L. A. A.; Cadaval, T. R. S. Removal of Fluoride from Fertilizer Industry Effluent Using Carbon Nanotubes Stabilized in Chitosan Sponge. J. Hazard. Mater. 2020, 388, 122042. DOI: 10.1016/j.jhazmat.2020.122042.
  • Zhang, M.; Ma, L.; Han, X.; Gao, Y.; Zhang, Y.; Han, R.; Li, S.; Wei, W.; Zhang, Y. Enhanced Removal of Fluoride from Simulated Groundwater by Hydrochloric Acid Activated Natural Sepiolite Nanofibers. J. Dispersion. Sci. Technol. 2021, 42(14), 2143–2153. DOI: 10.1080/01932691.2020.1805332.
  • Araga, R.; Sharma, C. S. Amine Functionalized Electrospun Cellulose Nanofibers for Fluoride Adsorption from Drinking Water. J Polym. Environ. 2019, 27(4), 816–826. DOI: 10.1007/s10924-019-01394-2.
  • Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Trends. Biotechnol. 2011, 29(5), 205–212. DOI: 10.1016/j.tibtech.2011.01.008.
  • He, J.; Chen, K.; Cai, X.; Li, Y.; Wang, C.; Zhang, K.; Jin, Z.; Meng, F.; Wang, X.; Kong, L., et al. A Biocompatible and Novelly-Defined Al-HAP Adsorption Membrane for Highly Effective Removal of Fluoride from Drinking Water. J. Coll. Interf. Sci. 2017, 490, 97–107. DOI: 10.1016/j.jcis.2016.11.009.
  • Chaudhary, M.; Maiti, A. Fe-AlMn@chitosan Based Metal Oxides Blended Cellulose Acetate Mixed Matrix Membrane for Fluoride Decontamination from Water: Removal Mechanisms and Antibacterial Behavior. J. Membr. Sci. 2020, 611, 118372. DOI: 10.1016/j.memsci.2020.118372.
  • Song, Q.; Fang, Y.; Wang, J.; Liang, J.; Hu, Q.; Liu, Z.; Huang, Y.; Xue, Y.; Lin, J.; Tang, C. Enhanced Adsorption of Fluoride on Al-Modified Boron Nitride Nanosheets from Aqueous Solution. J. Alloys Compd. 2019, 793, 512–518. DOI: 10.1016/j.jallcom.2019.04.205.
  • Su, J.; Yuan, M.; Han, L.; Deng, H.; Chang, J.; Zhuang, Y.; Wang, J.; Zhang, Y. Ultrathin Metal Organic Framework Nanosheets with Rich Defects for Enhanced Fluoride Removal. Chem. Eng. J. 2023, 451, 138989. DOI: 10.1016/j.cej.2022.138989.
  • Zhang, Y.; Xu, G. S.; Xu, M. D.; Wang, D. C.; Wang, H.; Zhan, Y.; Jin, Z. Preparation of MgO Porous Nanoplates Modified Pumice and Its Adsorption Performance on Fluoride Removal. J. Alloys Compd. 2021, 884, 160953. DOI: 10.1016/j.jallcom.2021.160953.
  • Gao, C.; Yu, X. Y.; Luo, T.; Jia, Y.; Sun, B.; Liu, J. H.; Huang, X. J. Millimeter-Sized Mg-Al-LDH Nanoflake Impregnated Magnetic Alginate Beads (LDH-N-MABs): A Novel Bio-Based Sorbent for the Removal of Fluoride in Water. J. Mater. Chem. A. 2014, 2(7), 2119–2128. DOI: 10.1039/c3ta13526h.
  • Li, W.; Huang, Y.; Liu, Y.; Tekell, M. C.; Fan, D. Three Dimensional Nanosuperstructures Made of Two-Dimensional Materials by Design: Synthesis, Properties, and Applications. Nano. Today. 2019, 29, 100799. DOI: 10.1016/j.nantod.2019.100799.
  • Gao, M.; Wang, W.; Cao, M.; Yang, H.; Li, Y. Constructing Hydrangea-Like Hierarchical Zinc-Zirconium Oxide Microspheres for Accelerating Fluoride Elimination. J. Mol. Liq. 2020, 317, 114133. DOI: 10.1016/j.molliq.2020.114133.
  • Wang, T.; Chen, P.; Li, M.; Luo, X.; Liu, L.; Zeng, G.; Jiang, J.; Huang, K.; Xu, X.; Li, S.; et al. Synthesis of La2(C2O4)3 Nanoprisms Decorated with Fe3O4@m(ZrO2-CeO2) Nanospheres and Their Application for Effective Fluoride Removal. J. Chem. Technol. Biotechnol. 2019, 94(11), 3650–3660. DOI: 10.1002/jctb.6170.
  • Kumar, N.; Gusain, R.; Pandey, S.; Ray, S. S. Hydrogel Nanocomposite Adsorbents and Photocatalysts for Sustainable Water Purification. Adv. Mater. Interfaces. 2023, 10(2), 2201375. DOI: 10.1002/admi.202201375.
  • Gusain, R.; Kumar, N.; Ray, S. S. Recent Advances in Carbon Nanomaterial-Based Adsorbents for Water Purification. Coord. Chem. Rev. 2020, 405, 213111. DOI: 10.1016/j.ccr.2019.213111.
  • Joshi, P.; Sharma, O. P.; Srivastava, M.; Khatri, O. P. Fibrous Aerogel-Templated Nanostructured Boron Carbon Oxynitride Networks for Preferential Adsorptive Separation of Cationic Dyes. Acs Appl. Nano Mater. 2022, 5(12), 18093–18105. DOI: 10.1021/acsanm.2c04007.
  • He, J.; Cui, A.; Ni, F.; Deng, S.; Shen, F.; Yang, G. A Novel 3D Yttrium Based-Graphene Oxide-Sodium Alginate Hydrogel for Remarkable Adsorption of Fluoride from Water. J. Colloid. Interface. Sci. 2018, 531, 37–46. DOI: 10.1016/j.jcis.2018.07.017.
  • Liu, Y.; Fan, Q.; Wang, S.; Liu, Y.; Zhou, A.; Fan, L. Adsorptive Removal of Fluoride from Aqueous Solutions Using Al-Humic Acid-La Aerogel Composites. Chem. Eng. J. 2016, 306, 174–185. DOI: 10.1016/j.cej.2016.07.036.
  • Jeyaseelan, A.; Aswin Kumar, I.; Viswanathan, N.; Naushad, M. Development and Characterization of Hydroxyapatite Layered Lanthanum Organic Frameworks by Template Method for Defluoridation of Water. J. Colloid. Interface. Sci. 2022, 622, 228–238. DOI: 10.1016/j.jcis.2022.04.097.
  • Xu, N.; Liu, Z.; Dong, Y.; Hong, T.; Dang, L.; Li, W. Controllable Synthesis of Mesoporous Alumina with Large Surface Area for High and Fast Fluoride Removal. Ceram. Int. 2016, 42(14), 15253–15260. DOI: 10.1016/j.ceramint.2016.06.164.
  • Thakre, D.; Jagtap, S.; Sakhare, N.; Labhsetwar, N.; Meshram, S.; Rayalu, S. Chitosan Based Mesoporous Ti-Al Binary Metal Oxide Supported Beads for Defluoridation of Water. Chem. Eng. J. 2010, 158(2), 315–324. DOI: 10.1016/j.cej.2010.01.008.
  • Prabhu, S. M.; Subaramanian, M.; Meenakshi, S. A Simple One-Pot in-Situ Method for the Synthesis of Aluminum and Lanthanum Binary Oxyhydroxides in Chitosan Template Towards Defluoridation of Water. Chem. Eng. J. 2016, 283, 1081–1089. DOI: 10.1016/j.cej.2015.08.005.
  • Lv, G.; Wu, L.; Liao, L.; Zhang, Y.; Li, Z. Preparation and Characterization of Red Mud Sintered Porous Materials for Water Defluoridation. Appl. Clay Sci. 2013, 74, 95–101. DOI: 10.1016/j.clay.2012.10.004.
  • Chen, C. L.; Shih, Y. J.; Su, J. F.; Chen, K. L.; Huang, C. P. Mesoporous Zirconium Pyrophosphate for the Adsorption of Fluoride from Dilute Aqueous Solutions. Chem. Eng. J. 2022, 427, 132034. DOI: 10.1016/j.cej.2021.132034.
  • Wang, J.; Wang, C.; Shi, A.; Shi, Y.; Yue, D.; Zhang, L.; Wang, J.; Wang, H.; Wang, C.; Cui, D. An Innovative Approach for Landfill Leachate Treatment Based on Selective Adsorption of Humic Acids with Carbon Nitride. Chem. Eng. J. 2023, 461, 142090. DOI: 10.1016/j.cej.2023.142090.
  • Barczyk, K.; Mozgawa, W.; Krol, M. Studies of Anions Sorption on Natural Zeolites. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 133, 876–882. DOI: 10.1016/j.saa.2014.06.065.
  • Sahu, N.; Brahme, N.; Sharma, R. Effect of Capping Agent on the Particle Size of CdSe Nanoparticles. Luminescence. 2016, 31(7), 1400–1406. DOI: 10.1002/bio.3123.
  • Zhao, X.; Song, Y.; Zhao, Z.; Gao, W.; Peng, Q.; Zhang, Q. Efficient Fluoride Removal from Water by Amino Acid-Enriched Artemia Cyst Motivated Sub-10 Nm La(OH)3 Confined Inside Superporous Skeleton. Sep. Purif. Technol. 2022, 283, 120205. DOI: 10.1016/j.seppur.2021.120205.
  • Yavuz, C. T.; Mayo, J.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L.; Shipley, H. J.; Kan, A.; Tomson, M. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science. 2006, 314(5801), 964–967. DOI: 10.1126/science.1131475.
  • Fang, Z.; Deng, Z.; Liu, A.; Zhang, X.; Lv, L.; Pan, B. Enhanced Removal of Arsenic from Water by Using Sub-10 Nm Hydrated Zirconium Oxides Confined Inside Gel-Type Anion Exchanger. J. Hazard. Mater. 2021, 414, 125505. DOI: 10.1016/j.jhazmat.2021.125505.
  • Vences-Alvarez, E.; Velazquez-Jimenez, L. H.; Chazaro-Ruiz, L. F.; Diaz-Flores, P. E.; Rangel-Mendez, J. R. Fluoride Removal in Water by a Hybrid Adsorbent Lanthanum-Carbon. J. Colloid. Interface. Sci. 2015, 455, 194–202. DOI: 10.1016/j.jcis.2015.05.048.
  • Velazquez-Peña, G. C.; Olguín-Gutiérrez, M. T.; Solache-Ríos, M. J.; Fall, C. Significance of FeZr-Modified Natural Zeolite Networks on Fluoride Removal. J. Fluorine Chem. 2017, 202, 41–53. DOI: 10.1016/j.jfluchem.2017.09.004.
  • Jian, S.; Cheng, Y.; Ma, X.; Guo, H.; Hu, J.; Zhang, K.; Jiang, S.; Yang, W.; Duan, G. Excellent fluoride removal performance by electrospun La-Mn bimetal oxide nanofibers. New. J. Chem. 2022, 46(2), 490–497. DOI: 10.1039/d1nj04976c.
  • Wang, X.; Pan, S.; Zhang, M.; Qi, J.; Sun, X.; Gu, C.; Wang, L.; Li, J. Modified Hydrous Zirconium Oxide/PAN Nanofibers for Efficient Defluoridation from Groundwater. Sci. Total Environ. 2019, 685, 401–409. DOI: 10.1016/j.scitotenv.2019.05.380.
  • Wu, X. P.; Gong, X. Q. Clustering of Oxygen Vacancies at CeO2(111): Critical Role of Hydroxyls. Phys. Rev. Lett. 2016, 116(8), 086102. DOI: 10.1103/PhysRevLett.116.086102.
  • Kullgren, J.; Wolf, M. J.; Castleton, C. W. M.; Mitev, P.; Briels, W. J.; Hermansson, K. Oxygen Vacancies versus Fluorine at CeO2(111): A Case of Mistaken Identity? Phys. Rev. Lett. 2014, 112(15), 156102. DOI: 10.1103/PhysRevLett.112.156102.
  • Kang, D.; Yu, X.; Ge, M. Morphology-Dependent Properties and Adsorption Performance of CeO2 for Fluoride Removal. Chem. Eng. J. 2017, 330, 36–43. DOI: 10.1016/j.cej.2017.07.140.
  • Zhang, Q.; Li, Y.; Phanlavong, P.; Wang, Z.; Jiao, T.; Qiu, H.; Peng, Q. Highly Efficient and Rapid Fluoride Scavenger Using an Acid/Base Tolerant Zirconium Phosphate Nanoflake: Behavior and Mechanism. J. Clean. Prod. 2017, 161, 317–326. DOI: 10.1016/j.jclepro.2017.05.120.
  • Li, L. X.; Xu, D.; Li, X. Q.; Liu, W. C.; Jia, Y. Excellent Fluoride Removal Properties of Porous Hollow MgO Microspheres. New. J. Chem. 2014, 38(11), 5445–5452. DOI: 10.1039/c4nj01361a.
  • Zhao, X.; Liu, D.; Huang, H.; Zhang, W.; Yang, Q.; Zhong, C. The Stability and Defluoridation Performance of MOFs in Fluoride Solutions. Micropor. Mesopor. Mater. 2014, 185, 72–78. DOI: 10.1016/j.micromeso.2013.11.002.
  • Dayananda, D.; Sarva, V. R.; Prasad, S. V.; Arunachalam, J.; Ghosh, N. N. Preparation of CaO Loaded Mesoporous Al2O3: Efficient Adsorbent for Fluoride Removal from Water. Chem. Eng. J. 2014, 248, 430–439. DOI: 10.1016/j.cej.2014.03.064.
  • Zhao, B.; Zhang, Y.; Dou, X.; Wu, X.; Yang, M. Granulation of Fe–Al–Ce Trimetal Hydroxide as a Fluoride Adsorbent Using the Extrusion Method. Chem. Eng. J. 2012, 2012, 185-186, 211–218. DOI: 10.1016/j.cej.2012.01.085.
  • Tangsir, S.; Hafshejani, L. D.; Lähde, A.; Maljanen, M.; Hooshmand, A.; Naseri, A. A.; Moazed, H.; Jokiniemi, J.; Bhatnagar, A. Water Defluoridation Using Al2O3 Nanoparticles Synthesized by Flame Spray Pyrolysis (FSP) Method. Chem. Eng. J. 2016, 288, 198–206. DOI: 10.1016/j.cej.2015.11.097.
  • Kumar Patel, R.; Kumar Chawla, A.; Loulergue, P.; Teychene, B.; Pandey, J. K. 3D Printed Microchannel Loaded with Hematite Nanoadsorbent for Fluoride Removal from Water. Mater. Lett. 2019, 2019(254), 190–193. DOI: 10.1016/j.matlet.2019.07.061.
  • Ayinde, W. B.; Gitari, W. M.; Munkombwe, M.; Samie, A.; Smith, J. A. Green Synthesis of AgMgonhap Nanoparticles Supported on Chitosan Matrix: Defluoridation and Antibacterial Effects in Groundwater. J. Environ. Chem. Eng. 2020, 8(5), 104026. DOI: 10.1016/j.jece.2020.104026.
  • Tang, D.; Zhang, G. Efficient Removal of Fluoride by Hierarchical Ce-Fe Bimetal Oxides Adsorbent: Thermodynamics, Kinetics and Mechanism. Chem. Eng. J. 2016, 283, 721–729. DOI: 10.1016/j.cej.2015.08.019.
  • Cai, J.; Zhao, X.; Zhang, Y.; Zhang, Q.; Pan, B. Enhanced Fluoride Removal by La-Doped Li/Al Layered Double Hydroxides. J. Colloid. Interface. Sci. 2018, 509, 353–359. DOI: 10.1016/j.jcis.2017.09.038.
  • Zhou, J.; Zhu, W.; Yu, J.; Zhang, H.; Zhang, Y.; Lin, X.; Luo, X. Highly Selective and Efficient Removal of Fluoride from Ground Water by Layered Al-Zr-La Tri-Metal Hydroxide. Appl. Surf. Sci. 2018, 435, 920–927. DOI: 10.1016/j.apsusc.2017.11.108.
  • Wang, J.; Xu, W.; Chen, L.; Jia, Y.; Wang, L.; Huang, X. J.; Liu, J. Excellent Fluoride Removal Performance by CeO2-ZrO2 Nanocages in Water Environment. Chem. Eng. J. 2013, 231, 198–205. DOI: 10.1016/j.cej.2013.07.022.
  • Xie, D.; Gu, Y.; Wang, H.; Wang, Y.; Qin, W.; Wang, G.; Zhang, H.; Zhang, Y. Enhanced Fluoride Removal by Hierarchically Porous Carbon Foam Monolith with High Loading of UiO-66. J. Colloid. Interface. Sci. 2019, 542, 269–280. DOI: 10.1016/j.jcis.2019.02.027.
  • Dong, H.; Tang, H.; Shi, X.; Yang, W.; Chen, W.; Li, H.; Zhao, Y.; Zhang, Z.; Hua, M. Enhanced Fluoride Removal from Water by Nanosized Cerium Oxides Impregnated Porous Polystyrene Anion Exchanger. Chemosphere. 2022, 2022, 287, 131932. DOI: 10.1016/j.chemosphere.2021.131932.
  • Boyjoo, Y.; Wang, M.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and Applications of Porous Non-Silica Metal Oxide Submicrospheres. Chem. Soc. Rev. 2016, 45(21), 6013–6047. DOI: 10.1039/c6cs00060f.
  • Yu, L.; Yu, X. Y.; Lou, X. W. The Design and Synthesis of Hollow Micro-Nanostructures: Present and Future Trends. Adv. Mater. 2018, 30(38), 1800939. DOI: 10.1002/adma.201800939.
  • Karki, H. P.; Kafle, L.; Ojha, D. P.; Song, J. H.; Kim, H. J. Cellulose/Polyacrylonitrile Electrospun Composite Fiber for Effective Separation of the Surfactant-Free Oil-In-Water Mixture Under a Versatile Condition. Sep. Purif. Technol. 2019, 210, 913–919. DOI: 10.1016/j.seppur.2018.08.053.
  • Rana, A.; Sudhaik, A.; Raizada, P.; Nguyen, V. H.; Xia, C.; Parwaz Khan, A. A.; Thakur, S.; Nguyen-Tri, P.; Nguyen, C. C.; Kim, S. Y., et al. Graphitic Carbon Nitride Based Immobilized and Non-Immobilized Floating Photocatalysts for Environmental Remediation. Chemosphere. 2022, 297, 134229. DOI: 10.1016/j.chemosphere.2022.134229.
  • Kang, D.; Tong, S.; Yu, X.; Ge, M. Template-Free Synthesis of 3D Hierarchical Amorphous Aluminum Oxide Microspheres with Broccoli-Like Structure and Their Application in Fluoride Removal. R.S.C. Adv. 2015, 5(25), 19159–19165. DOI: 10.1039/c4ra13688h.
  • Gao, M.; Wang, W.; Yang, H.; Ye, B. C. Efficient Removal of Fluoride from Aqueous Solutions Using 3D Flower-Like Hierarchical Zinc-Magnesium-Aluminum Ternary Oxide Microspheres. Chem. Eng. J. 2020, 380, 122459. DOI: 10.1016/j.cej.2019.122459.
  • Chen, L.; Zhang, K.; He, J.; Cai, X. G.; Xu, W.; Liu, J. H. Performance and Mechanism of Hierarchically Porous Ce-Zr Oxide Nanospheres Encapsulated Calcium Alginate Beads for Fluoride Removal from Water. R.S.C. Adv. 2016, 6(43), 36296–36306. DOI: 10.1039/c6ra01337f.
  • Yin, C.; Huang, Q.; Zhu, G.; Liu, L.; Li, S.; Yang, X.; Wang, S. High-Performance Lanthanum-Based Metal-Organic Framework with Ligand Tuning of the Microstructures for Removal of Fluoride from Water. J. Colloid. Interface. Sci. 2022, 607, 1762–1775. DOI: 10.1016/j.jcis.2021.09.108.
  • Thakur, S.; Sharma, B.; Thakur, A.; Kumar Gupta, V.; Alsanie, W. F.; Makatsoris, C.; Kumar Thakur, V. Synthesis and Characterisation of Zinc Oxide Modified Biorenewable Polysaccharides Based Sustainable Hydrogel Nanocomposite for Hg2+ Ion Removal: Towards a Circular Bioeconomy. Biores. Technol. 2022, 348, 126708. DOI: 10.1016/j.biortech.2022.126708.
  • Gholamipour, N.; Sadeghi, M.; Shafiei, M. Effect of Silica Nanoparticles on the Performance of Polysulfone Membranes for Olefin-Paraffin Separation. Chem. Eng. Technol. 2019, 42(11), 2292–2301. DOI: 10.1002/ceat.201800147.
  • Ren, L. F.; Al Yousif, E.; Xia, F.; Wang, Y.; Guo, L.; Tu, Y.; Zhang, X.; Shao, J.; He, Y. Novel Electrospun TPU/PDMS/PMMA Membrane for Phenol Separation from Saline Wastewater via Membrane Aromatic Recovery System. Sep. Purif. Technol. 2019, 212, 21–29. DOI: 10.1016/j.seppur.2018.11.006.
  • Ling, S.; Jin, K.; Kaplan, D. L.; Buehler, M. J. Ultrathin Free-Standing Bombyx Mori Silk Nanofibril Membranes. Nano. Lett. 2016, 16(6), 3795–3800. DOI: 10.1021/acs.nanolett.6b01195.
  • Zhang, Q.; Bolisetty, S.; Cao, Y.; Handschin, S.; Adamcik, J.; Peng, Q.; Mezzenga, R. Selective and Efficient Removal of Fluoride from Water: In situ Engineered Amyloid fibril/ZrO2 Hybrid Membranes. Angew. Chem. Int. Ed. 2019, 58(18), 6012–6016. DOI: 10.1002/anie.201901596.
  • Tang, Q.; Duan, T.; Li, P.; Zhang, P.; Wu, D. Enhanced Defluoridation Capacity from Aqueous Media via Hydroxyapatite Decorated with Carbon Nanotube. Front. Chem. 2018, 6, 104. DOI: 10.3389/fchem.2018.00104.
  • Nagaraj, A.; Munusamy, M. A.; Ahmed, M.; Kumar, S. S.; Rajan, M. Hydrothermal Synthesis of a Mineral-Substituted Hydroxyapatite Nanocomposite Material for Fluoride Removal from Drinking Water. New. J. Chem. 2018, 42(15), 12711–12721. DOI: 10.1039/c8nj02401d.
  • Díaz, I.; Gómez-Hortigüela, L.; Gálvez, P.; Pérez-Pariente, J.; Ólavsdóttir, J. Composite Materials Based on Zeolite Stilbite from Faroe Islands for the Removal of Fluoride from Drinking Water. Am. Mineral. 2019, 104(11), 1556–1564. DOI: 10.2138/am-2019-7076.
  • Arcibar-Orozco, J. A.; Flores-Rojas, A. I.; Rangel-Mendez, J. R.; Díaz-Flores, P. E. Synergistic Effect of Zeolite/Chitosan in the Removal of Fluoride from Aqueous Solution. Environ. Technol. 2018, 41(12), 1554–1567. DOI: 10.1080/09593330.2018.1542033.
  • Liang, S.; Xue, Y.; Gao, B.; Yang, K. Removal of Fluoride from Aqueous Solution by TiO2-based Composites. J. Taiwan. Inst. Chem. E. 2017, 74, 205–210. DOI: 10.1016/j.jtice.2017.02.015.
  • Chai, L.; Wang, Y.; Zhao, N.; Yang, W.; You, X. Sulfate-Doped Fe3O4/Al2O3 Nanoparticles as a Novel Adsorbent for Fluoride Removal from Drinking Water. Water. Res. 2013, 47(12), 4040–4049. DOI: 10.1016/j.watres.2013.02.057.
  • Aktar, J. M. R.; Ray, M. Iron-Polyphenol Nanomaterial Removes Fluoride and Methylene Blue Dye from Water and Promotes Plant Growth. J. Environ. Chem. Eng. 2022, 10(3), 107707. DOI: 10.1016/j.jece.2022.107707.
  • Kumar, A.; Paul, P.; Nataraj, S. K. Bionanomaterial Scaffolds for Effective Removal of Fluoride, Chromium, and Dye. ACS Sustain. Chem. Eng. 2017, 5(1), 895–903. DOI: 10.1021/acssuschemeng.6b02227.
  • Zhang, X.; Zhang, L.; Li, Z.; Jiang, Z.; Zheng, Q.; Lin, B.; Pan, B. Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water. Environ. Sci. Technol. 2017, 51(22), 13363–13371. DOI: 10.1021/acs.est.7b04164.
  • Guo, Y.; Xu, X.; Shang, Y.; Gao, B. Removal of Fluoride by Carbohydrate-Based Material Embedded with Hydrous Zirconium Oxide Nanoparticles. Environ. Sci. Pollut. Res. 2018, 25(28), 27982–27991. DOI: 10.1007/s11356-018-2851-z.
  • Singh, S.; German, M.; Chaudhari, S.; Sengupta, A. K. Fluoride Removal from Groundwater Using Zirconium Impregnated Anion Exchange Resin. J. Environ. Manage. 2020, 263, 110415. DOI: 10.1016/j.jenvman.2020.110415.
  • Li, J.; Liu, Q.; Huang, R.; Wang, G. Synthesis of a Novel Ce(iii)-Incorporated Cross-Linked Chitosan and Its Effective Removal of Fluoride from Aqueous Solution. J. Rare Earths. 2016, 34(10), 1053–1061. DOI: 10.1016/S1002-0721(16)60134-5.
  • Liu, L.; Cui, Z.; Ma, Q.; Cui, W.; Zhang, X. One-Step Synthesis of Magnetic Iron-Aluminum Oxide/Graphene Oxide Nanoparticles as a Selective Adsorbent for Fluoride Removal from Aqueous Solution. R.S.C. Adv. 2016, 6(13), 10783–10791. DOI: 10.1039/c5ra23676b.
  • Xu, C.; Li, J.; He, F.; Cui, Y.; Huang, C.; Jin, H.; Hou, S. Al2O3-Fe3O4 Expanded Graphite Nano-Sandwich Structure for Fluoride Removal from Aqueous Solution. R.S.C. Adv. 2016, 6(99), 97376–97384. DOI: 10.1039/c6ra19390k.
  • Cai, H.; Chen, G.; Peng, C.; Xu, L.; Zhang, Z.; Ke, F.; Wan, X. Enhanced Fluoride Removal by Loading Al/Zr Onto Carboxymethyl Starch Sodium: Synergistic Interactions Between Al and Zr. R.S.C. Adv. 2015, 5(123), 101819–101825. DOI: 10.1039/C5RA18167D.
  • Hasija, V.; Singh, P.; Thakur, S.; Stando, K.; Nguyen, V.-H.; Le, Q. V.; Alshehri, S. M.; Ahamad, T.; Kevin, C. W.; Raizada, P. Oxygen Doping Facilitated N-Vacancies in g-C3N4 Regulates Electronic Band Gap Structure for Trimethoprim and Cr (VI) Mitigation: Simulation Studies and Photocatalytic Degradation Pathways. Appl. Mater. Today. 2022, 29, 101676. DOI: 10.1016/j.apmt.2022.101676.
  • Hasija, V.; Raizada, P.; Thakur, V. K.; Ahamad, T.; Alshehri, S. M.; Thakur, S.; Nguyen, V.-H.; Van Le, Q.; Singh, P. An Overview on Photocatalytic Sulfate Radical Formation via Doped Graphitic Carbon Nitride for Water Remediation. Curr. Opin. Chem. Eng. 2022, 37, 100841. DOI: 10.1016/j.coche.2022.100841.
  • Bessiere, J.; Bazine, F. Variation of Fluoride Ion Solvation and pF− Buffer Properties of HF2−/HF and HF/H+ Pairs in Acetonitrile-Water Mixtures. J. Fluorine Chem. 1989, 44(1), 45–58. DOI: 10.1016/S0022-1139(00)84370-5.
  • Zhao, Y.; Tong, X.; Kim, J.; Tong, T.; Huang, C. H.; Chen, Y. J. E. S. Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute–Solute Separation. Environ. Sci. Technol. 2022, 56(9), 5849–5859. DOI: 10.1021/acs.est.2c01728.
  • Puri, N.; Gupta, A.; Mishra, A. Recent Advances on Nano-Adsorbents and Nanomembranes for the Remediation of Water. J. Clean. Prod. 2021, 322, 129051. DOI: 10.1016/j.jclepro.2021.129051.
  • Huang, L.; Yang, Z.; He, Y.; Chai, L.; Yang, W.; Deng, H.; Wang, H.; Chen, Y.; Crittenden, J. Adsorption Mechanism for Removing Different Species of Fluoride by Designing of Core-Shell Boehmite. J. Hazard. Mater. 2020, 394, 122555. DOI: 10.1016/j.jhazmat.2020.122555.
  • Huang, L.; Yang, Z.; Lei, D.; Liu, F.; He, Y.; Wang, H.; Luo, J. Experimental and modeling studies for adsorbing different species of fluoride using lanthanum-aluminum perovskite. Chemosphere. 2021, 263, 128089. DOI: 10.1016/j.chemosphere.2020.128089.
  • Wang, X.; Wei, J.; Peng, W.; Dan, J.; Wang, J.; Zhang, J. Evaluation and DFT Analysis of 3D Porous Rhombohedral Fe-Modified MgO for Removing Fluoride Efficiently. Appl. Surf. Sci. 2021, 552, 149423. DOI: 10.1016/j.apsusc.2021.149423.
  • Egor, M.; Kumar, A. A.; Ahuja, T.; Mukherjee, S.; Chakraborty, A.; Sudhakar, C.; Srikrishnarka, P.; Bose, S.; Ravindran, S. J.; Pradeep, T. Cellulosic Ternary Nanocomposite for Affordable and Sustainable Fluoride Removal. ACS Sustain. Chem. Eng. 2021, 9(38), 12788–12799. DOI: 10.1021/acssuschemeng.1c03272.
  • Zhang, W.; Liu, C.; Zheng, T.; Ma, J.; Zhang, G.; Ren, G.; Wang, L.; Liu, Y. Efficient Oxidation and Sorption of Arsenite Using a Novel Titanium(iv)-Manganese(iv) Binary Oxide Sorbent. J. Hazard. Mater. 2018, 353, 410–420. DOI: 10.1016/j.jhazmat.2018.04.034.
  • Zhang, C.; Li, Y.; Wang, T.-J.; Jiang, Y.; Fok, J. Synthesis and Properties of a High-Capacity Iron Oxide Adsorbent for Fluoride Removal from Drinking Water. Appl. Surf. Sci. 2017, 425, 272–281. DOI: 10.1016/j.apsusc.2017.06.159.
  • Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Single, Binary and Multi-Component Adsorption of Some Anions and Heavy Metals on Environmentally Friendly Carpobrotus Edulis Plant. Colloids Surf. B Biointerfaces. 2011, 82(2), 267–276. DOI: 10.1016/j.colsurfb.2010.09.013.
  • Thakur, S.; Chaudhary, J.; Thakur, A.; Gunduz, O.; Alsanie, W. F.; Makatsoris, C.; Thakur, V. K. Highly Efficient Poly(acrylic Acid-Co-Aniline) Grafted Itaconic Acid Hydrogel: Application in Water Retention and Adsorption of Rhodamine B Dye for a Sustainable Environment. Chemosphere. 2022, 303, 134917. DOI: 10.1016/j.chemosphere.2022.134917.
  • Alhassan, S. I.; Wang, H.; He, Y.; Yan, L.; Jiang, Y.; Wu, B.; Wang, T.; Gang, H.; Huang, L.; Jin, L., et al. Fluoride Remediation from On-Site Wastewater Using Optimized Bauxite Nanocomposite (Bx-Ce-La@500): Synthesis Maximization, and Mechanism of F− Removal. J. Hazard. Mater. 2022, 430, 128401. DOI: 10.1016/j.jhazmat.2022.128401.
  • Zhao, F.; Peydayesh, M.; Ying, Y.; Mezzenga, R.; Ping, J. Transition Metal Dichalcogenide-Silk Nanofibril Membrane for One-Step Water Purification and Precious Metal Recovery. ACS Appl. Mater. Interfaces. 2020, 12(21), 24521–24530. DOI: 10.1021/acsami.0c07846.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.