117
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Electrospun Electret Fibers for Air Filtration

, , &
Pages 336-350 | Received 29 Jun 2023, Accepted 05 Nov 2023, Published online: 04 Dec 2023

REFERENCES

  • Li, X. D.; Jin, L.; Kan, H. D. Air pollution: A Global Problem Needs Local Fixes. Nature. 2019, 570, 437–439. DOI: 10.1038/d41586-019-01960-7.
  • Hamanaka, R. B.; Mutlu, G. M. Particulate Matter Air Pollution: Effects on the Cardiovascular System, Front. Endocrinol. 2018, 9, 680. DOI: 10.3389/fendo.2018.00680.
  • Qi, Y.; Chen, Y. C.; Yan, X.; Liu, W.; Ma, L.; Liu, Y. C.; Ma, Q. X.; Liu, S. J. Co-Exposure of Ambient Particulate Matter and Airborne Transmission Pathogens: The Impairment of the Upper Respiratory Systems. Environ. Sci. Technol. 2022, 56, 15892–15901. DOI: 10.1021/acs.est.2c03856.
  • Han, S.; Kim, J.; Ko, S. H. Advances in Air Filtration Technologies: Structure-Based and Interaction-Based Approaches, Mater. Today. Adv. 2021, 9, 100134. DOI: 10.1016/j.mtadv.2021.100134.
  • Laumbach, R. J.; Cromar, K. R. Personal Interventions to Reduce Exposure to Outdoor Air Pollution. Annu. Rev. Public. Health. 2022, 43, 293–309. DOI: 10.1146/annurev-publhealth-052120-103607.
  • Liu, H.; Cao, C. Y.; Huang, J. Y.; Chen, Z.; Chen, G. Q.; Lai, Y. K. Progress on Particulate Matter Filtration Technology: Basic Concepts, Advanced Materials, and Performances. Nanoscale. 2020, 12, 437–453. DOI: 10.1039/c9nr08851b.
  • Zhao, X. L.; Li, Y. Y.; Hua, T.; Jiang, P.; Yin, X.; Yu, J. Y.; Ding, B. Low-Resistance Dual-Purpose Air Filter Releasing Negative Ions and Effectively Capturing PM2.5. ACS Appl. Mater. Interfaces. 2017, 9, 12054–12063. DOI: 10.1021/acsami.7b00351.
  • Payen, J.; Vroman, P.; Lewandowski, M.; Perwuelz, A.; Calle-Chazelet, S.; Thomas, D. Influence of Fiber Diameter, Fiber Combinations and Solid Volume Fraction on Air Filtration Properties in Nonwovens. Text. Res. J. 2012, 82(19), 1948–1959. DOI: 10.1177/0040517512449066.
  • Li, Y. Y.; Yin, X.; Si, Y.; Yu, J. Y.; Ding, B. All-Polymer Hybrid Electret Fibers for High-Efficiency and Low-Resistance Filter Media. Chem. Eng. J. 2020, 398, 125626. DOI: 10.1016/j.cej.2020.125626.
  • Quan, Z. Z.; Zu, Y.; Wang, Y. H.; Zhou, M. J.; Qin, X. H.; Yu, J. Y. Slip Effect Based Bimodal Nanofibrous Membrane for High-Efficiency and Low-Resistance Air Purification, Sep. Purif. Technol. 2021, 275, 119258. DOI: 10.1016/j.seppur.2021.119258.
  • Rud, H.; Mauschitz, G.; Hoflinger, W. Investigation of the Influence of Fibre Cross Section Shape on Filtration Behaviour of Cleanable Dust Filter Media. Gefahrst. Reinhalt. Luft. 2006, 66 5, 226–231.
  • Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Y. A Mini Review on the Generation of Crimped Ultrathin Fibers via Electrospinning: Materials, Strategies, and Applications. Polym. Adv. Technol. 2020, 31(7), 1449–1462. DOI: 10.1002/pat.4876.
  • Tang, M.; Chen, S. C.; Chang, D. Q.; Xie, X. F.; Sun, J.; Pui, D. Y. H. Filtration Efficiency and Loading Characteristics of PM2.5 Through Composite Filter Media Consisting of Commercial HVAC Electret Media and Nanofiber Layer. Sep. Purif. Technol. 2018, 198, 137–145. DOI: 10.1016/j.seppur.2017.03.040.
  • Chen, S. C.; Chang, D. Q.; Pei, C.; Tsai, C. J.; Pui, D. Y. H. Removal Efficiency of Bimodal PM2.5 and PM10 by Electret Respirators and Mechanical Engine Intake Filters. Aerosol. Air Qual. Res. 2016, 16(7), 1722–1729. DOI: 10.4209/aaqr.2015.08.0494.
  • Gao, H. C.; He, W. D.; Zhao, Y. B.; Opris, D. M.; Xu, G. B.; Wang, J. Electret Mechanisms and Kinetics of Electrospun Nanofiber Membranes and Lifetime in Filtration Applications in Comparison with Corona-Charged Membranes. J. Membr. Sci. 2020, 600, 117879. DOI: 10.1016/j.memsci.2020.117879.
  • Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S. H. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. Nano. Lett. 2017, 17, 4339–4346. DOI: 10.1021/acs.nanolett.7b01404.
  • Han, S.; Kim, J.; Lee, Y.; Bang, J.; Kim, C. G.; Choi, J.; Min, J.; Ha, I.; Yoon, Y.; Yun, C. H., et al. Transparent Air Filters with Active Thermal Sterilization. Nano. Lett. 2022, 22, 524–532. DOI: 10.1021/acs.nanolett.1c02737.
  • Jung, W.; Lee, J. S.; Han, S.; Ko, S. H.; Kim, T.; Kim, Y. H. An Efficient Reduced Graphene-Oxide Filter for PM2.5 Removal. J. Mater. Chem. A. 2018, 6, 16975–16982. DOI: 10.1039/c8ta04587a.
  • Shin, J.; Jeong, S.; Kim, J.; Choi, Y. Y.; Choi, J.; Lee, J. G.; Kim, S.; Kim, M.; Rho, Y.; Hong, S., et al. Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection. ACS .Nano. 2021, 15, 15730–15740. DOI: 10.1021/acsnano.1c06204.
  • Liu, H.; Huang, J. Y.; Mao, J. J.; Chen, Z.; Chen, G. Q.; Lai, Y. K. Transparent Antibacterial Nanofiber Air Filters with Highly Efficient Moisture Resistance for Sustainable Particulate Matter Capture, Iscience. 2019, 19, 214–223. DOI: 10.1016/j.isci.2019.07.020.
  • Cai, R. R.; Zhang, L. Z.; Bao, A. B. PM Collection Performance of Electret Filters Electrospun with Different Dielectric Materials-A Numerical Modeling and Experimental Study. Build. Environ. 2018, 131, 210–219. DOI: 10.1016/j.buildenv.2017.12.036.
  • Guo, Z. F.; Patil, Y.; Shinohara, A.; Nagura, K.; Yoshida, M.; Nakanishi, T. Organic Molecular and Polymeric Electrets Toward Soft Electronics. Mol. Syst. Des. Eng. 2022, 7(6), 537–552. DOI: 10.1039/d1me00180a.
  • Li, X.; Wang, Y. R.; Xu, M. X.; Shi, Y. Q.; Wang, H. M.; Yang, X.; Ying, H. T.; Zhang, Q. Polymer Electrets and Their Applications. J. Appl. Polym. Sci. 2021, 138(19), 50406. DOI: 10.1002/app.50406.
  • Chang, L.; Luo, J. B.; Zhang, W. Mechanical Characteristics of SiO2 Electrets. Sci. China Ser. E-Technol. Sci. 2002, 45(4), 444–448. DOI: 10.1360/02ye9051.
  • Yuan, N. Y.; Li, J. H. SiO2 Film Electret with High Surface Potential Stability, Appl. Surf. Sci. 2005, 252(2), 455–460. DOI: 10.1016/j.apsusc.2005.01.025.
  • Kilic, A.; Shim, E.; Yeom, B. Y.; Pourdeyhimi, B. Improving Electret Properties of PP Filaments with Barium Titanate. J. Electrostat. 2013, 71(1), 41–47. DOI: 10.1016/j.elstat.2012.11.005.
  • Zhang, X. Q.; Sessler, G. M.; Xia, X. F.; Zhang, Y. W. Charge Storage and Transportation in Double Layers of Si3N4/SiO2 Electret Film Based on Si Substrate. Acta Phys. Sin. 2001, 50(2), 293–298. DOI: 10.7498/aps.50.293.
  • Zhang, H. F.; Liu, J. X.; Zhang, X.; Huang, C.; Jin, X. Y. Design of Electret Polypropylene Melt Blown Air Filtration Material Containing Nucleating Agent for Effective PM2.5 Capture. R.S.C. Adv. 2018, 8, 7932–7941. DOI: 10.1039/c7ra10916d.
  • Eisenmenger, W.; Schmidt, H.; Dehlen, B. Space charge and dipoles in polyvinylidenefluoride. Braz. J. Phys. 1999, 29(2), 295–305. DOI: 10.1590/S0103-97331999000200011.
  • Han, K. S.; Lee, S.; Kim, M.; Park, P.; Lee, M. H.; Nah, J. Electrically Activated Ultrathin PVDF-Trfe Air Filter for High-Efficiency PM1.0 Filtration. Adv. Funct. Mater. 2019, 29(37), 1903633. DOI: 10.1002/adfm.201903633.
  • Chen, B. D.; Tang, W.; Zhang, C.; Xu, L.; Zhu, L. P.; Yang, L. J.; He, C.; Chen, J.; Liu, L.; Zhou, T., et al. Au Nanocomposite Enhanced Electret Film for Triboelectric Nanogenerator. Nano. Res. 2018, 11, 3096–3105. DOI: 10.1007/s12274-017-1716-y.
  • Xi, Z. F.; Qiu, X. L.; Zhang, Y. W.; Wedel, A.; Danz, R. The Charge Storage Stability of Porous Polytetrafluoroethy Lene Film Electret. Acta Phys. Sin. 2002, 51, 389–394. DOI: 10.7498/aps.51.389.
  • Thakur, R.; Das, D.; Das, A. Electret Air Filters. Sep. Purif. Rev. 2013, 42(2), 87–129. DOI: 10.1080/15422119.2012.681094.
  • Thakur, R.; Das, D.; Das, A. Study of Charge Decay in Corona-Charged Fibrous Electrets. Fibers. Polym. 2014, 15, 1436–1443. DOI: 10.1007/s12221-014-1436-9.
  • Chen, G. J.; Lei, M. F.; Xiao, H. M.; Wu, L. Unique Charge Storage Characteristics of FEP/THV/FEP Sandwich Electret Membrane Polarized by Thermally Charging Technology. Chinese Phys. Lett. 2014, 31, 127702. DOI: 10.1088/0256-307x/31/12/127702.
  • Tan, W. K.; Araki, Y.; Yokoi, A.; Kawamura, G.; Matsuda, A.; Muto, H. Micro- and Nano-Assembly of Composite Particles by Electrostatic Adsorption. Nanoscale Res. Lett. 2019, 14(1), 297. DOI: 10.1186/s11671-019-3129-1.
  • Gao, Y. L.; Tian, E. Z.; Zhang, Y. P.; Mo, J. H. Utilizing Electrostatic Effect in Fibrous Filters for Efficient Airborne Particles Removal: Principles, Fabrication, and Material Properties. Appl. Mater. Today. 2022, 26, 101369. DOI: 10.1016/j.apmt.2022.101369.
  • Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; United States of America: John Wiley & Sons, 1999.
  • Motyl, E.; Lowkis, B. Effect of Air Humidity on Charge Decay and Lifetime of PP Electret Nonwovens. Fibres Text. East. Eur. 2006, 14, 39–42.
  • Lee, J.; Kim, J. Material Properties Influencing the Charge Decay of Electret Filters and Their Impact on Filtration Performance. Polymers. 2020, 12(3), 721. DOI: 10.3390/polym12030721.
  • Heinert, C.; Sankaran, R. M.; Lacks, D. J. Decay of Electrostatic Charge on Surfaces Due Solely to Gas Phase Interactions. J. Electrost. 2022, 115, 103663. DOI: 10.1016/j.elstat.2021.103663.
  • Yovcheva, T. A.; Mekishev, G. A.; Marinov, A. T. A Percolation Theory Analysis of Surface Potential Decay Related to Corona Charged Polypropylene (PP) Electrets. J. Phys. Condens. Matter. 2004, 16, 455–464. DOI: 10.1088/0953-8984/16/3/021.
  • Bao, L.; Seki, K.; Niinuma, H.; Otani, Y.; Balgis, R.; Ogi, T.; Gradon, L.; Okuyama, K. Verification of Slip Flow in Nanofiber Filter Media Through Pressure Drop Measurement at Low-Pressure Conditions. Sep. Purif. Technol. 2016, 159, 100–107. DOI: 10.1016/j.seppur.2015.12.045.
  • Shou, D. H.; Ye, L.; Fan, J. T. Gas Transport Properties of Electrospun Polymer Nanofibers. Polymer. 2014, 55, 3149–3155. DOI: 10.1016/j.polymer.2014.05.016.
  • Al-Attabi, R.; Dumee, L. F.; Schutz, J. A.; Morsi, Y. Pore Engineering Towards Highly Efficient Electrospun Nanofibrous Membranes for Aerosol Particle Removal. Sci. Total. Environ. 2018, 625, 706–715. DOI: 10.1016/j.scitotenv.2017.12.342.
  • Cui, J. X.; Li, F. H.; Wang, Y. L.; Zhang, Q. L.; Ma, W. J.; Huang, C. B. Electrospun Nanofiber Membranes for Wastewater Treatment Applications. Sep. Purif. Technol. 2020, 250, 117116. DOI: 10.1016/j.seppur.2020.117116.
  • Zong, D. D.; Zhang, X. X.; Yin, X.; Wang, F.; Yu, J. Y.; Zhang, S. C.; Ding, B. Electrospun Fibrous Sponges: Principle, Fabrication, and Applications. Adv. Fiber Mater. 2022, 4, 1434–1462. DOI: 10.1007/s42765-022-00202-2.
  • Zhang, J. F.; Chen, G. J.; Bhat, G. S.; Azari, H.; Pen, H. L. Electret Characteristics of Melt-Blown Polylactic Acid Fabrics for Air Filtration Application. J. Appl. Polym. Sci. 2020, 137(4), 48309. DOI: 10.1002/app.48309.
  • Zhou, Y. J.; Liu, Y. A.; Zhang, M. X.; Feng, Z. B.; Yu, D. G.; Wang, K. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomater. 2022, 12(7), 1077. DOI: 10.3390/nano12071077.
  • Wang, S.; Zhao, X. L.; Yin, X.; Yu, J. Y.; Ding, B. Electret Polyvinylidene Fluoride Nanofibers Hybridized by Polytetrafluoroethylene Nanoparticles for High-Efficiency Air Filtration. ACS Appl. Mater. Interfaces. 2016, 8, 23985–23994. DOI: 10.1021/acsami.6b08262.
  • He, H.; Wu, M. A.; Zhu, J. W.; Yang, Y. Y.; Ge, R. L.; Yu, D. G. Engineered Spindles of Little Molecules Around Electrospun Nanofibers for Biphasic Drug Release. Adv. Fiber Mater. 2022, 2, 305–317. DOI: 10.1007/s42765-021-00112-9.
  • Seanor, D. A. Electrical Properties of Polymers; Elsevier Inc: New York, 1982.
  • Li, Y. Y.; Yin, X.; Yu, J. Y.; Ding, B. Electrospun Nanofibers for High-Performance Air Filtration. Compos.Commun. 2019, 15, 6–19. DOI: 10.1016/j.coco.2019.06.003.
  • Collins, G.; Federici, J.; Imura, Y.; Catalani, L. H. Charge Generation, Charge Transport, and Residual Charge in the Electrospinning of Polymers: A Review of Issues and Complications. J. Appl. Phys. 2012, 111, 044701. DOI: 10.1063/1.3682464.
  • Ding, X. X.; Li, Y. Y.; Si, Y.; Yin, X.; Yu, J. Y.; Ding, B. Electrospun Polyvinylidene fluoride/SiO2 Nanofibrous Membranes with Enhanced Electret Property for Efficient Air Filtration. Compos.Commun. 2019, 13, 57–62. DOI: 10.1016/j.coco.2019.02.008.
  • Jiang, X. Z. P.; Li, Y.; Liao, T.; Hua, Y.; Yin, J.; Yu, X.; Ding, B.; Ding, B. Moisture and Oily Molecules Stable Nanofibrous Electret Membranes for Effectively Capturing PM2.5. Compos. Commun. 2017, 6, 34–40. DOI: 10.1016/j.coco.2017.08.004.
  • Sanyal, A.; Sinha-Ray, S. Ultrafine PVDF Nanofibers for Filtration of Air-Borne Particulate Matters: A Comprehensive Review. Polymers. 2021, 13(11), 1864. DOI: 10.3390/polym13111864.
  • Cheng, X.; Zhao, L.; Zhang, Z. W.; Deng, C.; Li, C.; Du, Y. H.; Shi, J. W.; Zhu, M. F. Highly Efficient, Low-Resistant, Well-Ordered PAN Nanofiber Membranes for Air Filtration. Colloids Surf.A.Physicochem. Eng. Asp. 2022, 655, 130302. DOI: 10.1016/j.colsurfa.2022.130302.
  • Cho, B. M.; Nam, Y. S.; Cheon, J. Y.; Park, W. H. Residual Charge and Filtration Efficiency of Polycarbonate Fibrous Membranes Prepared by Electrospinning. J. Appl. Polym. Sci. 2015, 132(1), 41340. DOI: 10.1002/app.41340.
  • Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N. A.; Li, W. Y.; Cui, Y. Transparent Air Filter for High-Efficiency PM2.5 Capture. Nat. Commun. 2015, 6, 6205. DOI: 10.1038/ncomms7205.
  • Sun, Q. Q.; Leung, W. W. F. Charged PVDF Multi-Layer Filters with Enhanced Filtration Performance for Filtering Nano-Aerosols. Sep. Purif. Technol. 2019, 212, 854–876. DOI: 10.1016/j.seppur.2018.11.063.
  • Liu, H.; Zhang, S. C.; Liu, L. F.; Yu, J. Y.; Ding, B. High-Performance PM0.3 Air Filters Using Self-Polarized Electret Nanofiber/Nets. Adv. Funct. Mater. 2020, 30(13), 1909554. DOI: 10.1002/adfm.201909554.
  • Yeom, B. Y.; Shim, E. Boehmite Nanoparticles Incorporated Electrospun Nylon-6 Nanofiber Web for New Electret Filter Media. Macromol. Res. 2010, 18, 884. DOI: 10.1007/s13233-010-0910-5.
  • Yang, X.; Pu, Y.; Li, S. X.; Liu, X. F.; Wang, Z. S.; Yuan, D.; Ning, X. Electrospun Polymer Composite Membrane with Superior Thermal Stability and Excellent Chemical Resistance for High-Efficiency PM2.5 Capture. ACS Appl. Mater. Interfaces. 2019, 11, 43188–43199. DOI: 10.1021/acsami.9b15219.
  • Zhang, H.; Zhang, X. W.; Wang, P. J.; Chen, R. W.; Gu, G. W.; Hu, S. Q.; Tian, R. Y. Laminated polyacrylonitrile nanofiber membrane codoped with boehmite nanoparticles for efficient electrostatic capture of particulate matters. Nanotechnol. 2021, 32, 235601. DOI: 10.1088/1361-6528/abeadc.
  • Mescheder, U.; Muller, B.; Baborie, S.; Urbanovic, P. Properties of SiO2 Electret Films Charged by Ion Implantation for MEMS-Based Energy Harvesting Systems. J. Micromech. Microeng. 2009, 19, 094003. DOI: 10.1088/0960-1317/19/9/094003.
  • Li, X. Q.; Wang, N.; Fan, G.; Yu, J. Y.; Gao, J.; Sun, G.; Ding, B. Electreted Polyetherimide-Silica Fibrous Membranes for Enhanced Filtration of Fine Particles. J. Colloid. Interface. Sci. 2015, 439, 12–20. DOI: 10.1016/j.jcis.2014.10.014.
  • Gobi, N.; Vijayalakshmi, E.; Robert, B.; Srinivasan, N. R. Development of PAN Nano Fibrous Filter Hybridized by SiO2 Nanoparticles Electret for High Efficiency Air Filtration. J. Polym. Res. 2018, 35(3), 317–328. DOI: 10.32381/jpm.2018.35.03.6.
  • Xu, R. X.; Feng, J. Y.; Zhang, L. X.; Li, S. Q. Low Viscosity of Spinning Liquid to Prepare Organic-Inorganic Hybrid Ultrafine Nanofiber Membrane for High-Efficiency Filtration Application. Sep. Purif. Technol. 2022, 303, 122224. DOI: 10.1016/j.seppur.2022.122224.
  • Gade, H.; Nikam, S.; Chase, G. G.; Reneker, D. H. Effect of Electrospinning Conditions on Beta-Phase and Surface Charge Potential of PVDF Fibers. Polymer. 2021, 228, 123902. DOI: 10.1016/j.polymer.2021.123902.
  • Liu, F.; Li, M. Y.; Li, F.; Weng, K.; Qi, K.; Liu, C. H.; Ni, Q. Q.; Tao, X. J.; Zhang, J.; Shao, W. L., et al. Preparation and Properties of PVDF/Fe3O4 Nanofibers with Magnetic and Electret Effects and Their Application in Air Filtration. Macromol. Mater. Eng. 2020, 305(4), 1900856. DOI: 10.1002/mame.201900856.
  • Wang, N.; Cai, M.; Yang, X.; Yang, Y. Y. Electret Nanofibrous Membrane with Enhanced Filtration Performance and Wearing Comfortability for Face Mask. J. Colloid. Interface. Sci. 2018, 530, 695–703. DOI: 10.1016/j.jcis.2018.07.021.
  • Li, Y. Y.; Cao, L. T.; Yin, X.; Si, Y.; Yu, J. Y.; Ding, B. Ultrafine, Self-Crimp, and Electret Nano-Wool for Low-Resistance and High-Efficiency Protective Filter Media Against PM0.3. J. Colloid. Interface. Sci. 2020, 578, 565–573. DOI: 10.1016/j.jcis.2020.05.123.
  • Zoroddu, M. A.; Medici, S.; Ledda, A.; Nurchi, V. M.; Lachowicz, J. I.; Peana, M. Toxicity of Nanoparticles. Curr. Med. Chem. 2014, 21(33), 3837–3853. DOI: 10.2174/0929867321666140601162314.
  • Pang, C. X.; Wang, H. J.; Lin, X. Y. Ultralight Ethyl Cellulose-Based Electret Fiber Membrane for Low-Resistance and High-Efficient Capture of PM2.5. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127643. DOI: 10.1016/j.colsurfa.2021.127643.
  • Lin, S. Z.; Wang, S. X.; Yang, W.; Chen, S. W.; Xu, Z. S.; Mo, X. W.; Zhou, H.; Duan, J. J.; Hu, B.; Huang, L. Trap-Induced Dense Monocharged Perfluorinated Electret Nanofibers for Recyclable Multifunctional Healthcare Mask. ACS Nano. 2021, 15, 5486–5494. DOI: 10.1021/acsnano.1c00238.
  • Lakshmanan, A.; Gavali, D. S.; Venkataprasanna, K. S.; Thapa, R.; Sarkar, D. Low-Basis Weight Polyacrylonitrile/Polyvinylpyrrolidone Blend Nanofiber Membranes for Efficient Particulate Matter Capture. ACS Appl. Polym. Mater. 2022, 4(5), 3971–3981. DOI: 10.1021/acsapm.2c00422.
  • Kim, H. J.; Park, S. J.; Kim, D. I.; Lee, S.; Kwon, O. S.; Kim, I. K. Moisture Effect on Particulate Matter Filtration Performance using Electro-Spun Nanofibers including Density Functional Theory Analysis. Sci. Rep. 2019, 9, 7015. DOI: 10.1038/s41598-019-43127-4.
  • Liu, F.; Li, M. Y.; Shao, W. L.; Yue, W. L.; Hu, B. J.; Weng, K.; Chen, Y. K.; Liao, X.; He, J. X. Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance. J. Colloid Interface Sci. 2019, 557, 318–327. DOI: 10.1016/j.jcis.2019.08.099.
  • Lou, C. W.; Shih, Y. H.; Huang, C. H; Lee, S. A.; Chen, Y. S.; Lin, J. H. Filtration Efficiency of Electret Air Filters Reinforced by Titanium Dioxide. Appl. Sci. 2020, 10(8), 2686. DOI: 10.3390/app10082686.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.