106
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Photo- and Bio-degradation of Selected Persistent Organic Pollutants

, ORCID Icon, , ORCID Icon, ORCID Icon, , & show all
Received 05 Mar 2023, Accepted 15 Mar 2024, Published online: 23 Mar 2024

References

  • Titchou, F. E.; Zazou, H.; Afanga, H.; Gaayda, J. E.; Akbour, R. A.; Hamdani, M. Removal of Persistent Organic Pollutants (POPs) from Water and Wastewater by Adsorption and Electrocoagulation Process. Groundw. Sustain. Dev. 2021, 13, 100575. DOI: 10.1016/j.gsd.2021.100575.
  • Singh, A. K.; Chandra, R. Pollutants Released from the Pulp Paper Industry: Aquatic Toxicity and Their Health Hazards. Aquat. Toxicol. 2019, 211, 202–216. DOI: 10.1016/j.aquatox.2019.04.007.
  • Sharma, B. M.; Bharat, G. K.; Tayal, S.; Nizzetto, L.; Larssen, T. The Legal Framework to Manage Chemical Pollution in India and the Lesson from the Persistent Organic Pollutants (POPs). Sci. Total Environ. 2014, 490, 733. DOI: 10.1016/j.scitotenv.2014.05.043.
  • Li, Y. F.; Hao, S.; Ma, W. L.; Yang, P. F.; Li, W. L.; Zhang, Z. F.; Liu, L. Y.; Macdonald, R. W. Persistent Organic Pollutants in Global Surface Soils: Distributions and Fractionations. Environ. Sci. Ecotechnol. 2023, 18, 100311. DOI: 10.1016/j.ese.2023.100311.
  • Jones, K. C. Persistent Organic Pollutants (POPs) and Related Chemicals in the Global Environment: Some Personal Reflections. Environ. Sci. Technol. 2021, 55(14), 9400. DOI: 10.1021/acs.est.0c08093.
  • Kumar, J. A.; Krithiga, T.; Sathish, S.; Renita, A. A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S. K. R.; Sillanpaa, M. Persistent Organic Pollutants in Water Resources: Fate, Occurrence, Characterization and Risk Analysis. Sci. Total Environ. 2022, 20(831), 154808. DOI: 10.1016/j.scitotenv.2022.154808.
  • Guoliang, Y.; Fang, D.; Chowdhury, A.; Aixin, Z.; Sajid, M. Persistent Organic Pollutants in Chinese Waterways: Occurrence, Remediation, and Epidemiological Perspectives. Reg. Stud. Mar. Sci. 2022, 56, 102688. DOI: 10.1016/j.rsma.2022.102688.
  • Thakur, M.; Pathania, D. Environmental Fate of Organic Pollutants and Effect on Human Health. Abatement Environ. Pollut. 2020, 12, 245. DOI: 10.1016/B978-0-12-818095-2.00012-6.
  • Zacharia, J. T. Degradation Pathways of Persistent Organic Pollutants (POPs) in the Environment. Persistent Org. Pollut. 2019, 3, 17. DOI: 10.5772/intechopen.79645.
  • Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health. 2020, 17(4), 1363. DOI: 10.3390/ijerph17041363.
  • Gupta, H.; Gupta, B. Adsorption of Polycyclic Aromatic Hydrocarbons on Banana Peel Activated Carbon. Desalin. Water. Treat. 2016, 57(20), 9498. DOI: 10.1080/19443994.2015.1029007.
  • Gupta, H.; Kumar, R. Distribution of Selected Polycyclic Aromatic Hydrocarbons in Urban Soils of Delhi, India. Environ. Technol. Innovations. 2020, 17, 100500. DOI: 10.1016/j.eti.2019.100500.
  • Basaran, B.; Ciyan, M. Y. Investigating of Primary Components and Source Apportionment of Persistent Organic Pollutants of Indoor Dust. Int. J. Environ. Sci. Technol. 2021, 18(8), 2145. DOI: 10.1007/s13762-020-02973-w.
  • Jagadeesan, A. K.; Duvuru, J. A.; Jabasingh, A.; Ponnusamy, S. K.; Kabali, V. A.; Gopakumaran, N.; Selvaraj, K. R. N.; Thangavelu, K.; Sunny, S.; Somasundaram, P. P., et al. One Pot Green Synthesis of Nano Magnesium Oxide-Carbon Composite: Preparation, Characterization and Application Towards Anthracene Adsorption. J. Clean. Prod. 2019, 237(10), 117691. DOI: 10.1016/j.jclepro.2019.117691.
  • Lu, H.; Chen, X.-H.; Mo, C. H.; Huang, Y. H.; He, M. Y.; Li, Y. W.; Feng, N. X.; Katsoyiannis, A.; Cai, Q. Y. Occurrence and Dissipation Mechanism of Organic Pollutants During the Composting of Sewage Sludge: A Critical Review. Bioresources. Technol. 2021, 328, 124847. DOI: 10.1016/j.biortech.2021.124847.
  • O’Keeffe, J.; Akunna, J. Assessment of Leachable and Persistent Dissolved Organic Carbon in Sludges and Biosolids from Municipal Wastewater Treatment Plants. J. Environ. Manage. 2022, 307, 114565. DOI: 10.1016/j.jenvman.2022.114565.
  • Panseri, S.; Chiesa, L.; Ghisleni, G.; Marano, G.; Boracchi, P.; Ranghieri, V.; Malandra, R. M.; Roccabianca, P.; Tecilla, M. Persistent Organic Pollutants in Fish: Biomonitoring and Cocktail Effect with Implications for Food Safety. Food Addit. Contam.: Part A. 2019, 36(4), 601. DOI: 10.1080/19440049.2019.1579926.
  • Barzegar, G.; Rezaei Kalantary, R.; Bashiry, M.; Jaafarzadeh, N.; Ghanbari, F.; Shakerinejad, G.; Khatebasreh, M.; Sabaghan, M. Measurement of Polycyclic Aromatic Hydrocarbons in Edible Oils and Potential Health Risk to Consumers Using Monte Carlo Simulation, Southwest Iran. Environ. Sci. Poll. Res. 2023, 30, 5126. DOI: 10.1007/s11356-022-22446-6.
  • Abad, E.; Abalos, M.; Fiedler, H. Air Monitoring with Passive Samplers for Dioxin-Like Persistent Organic Pollutants in Developing Countries (2017–2019). Chem. 2022, 287, 131931. DOI: 10.1016/j.chemosphere.2021.131931.
  • Zhang, G.; Lan, T.; Yang, G.; Li, J.; Zhang, K. Contamination, Spatial Distribution, and Source Contribution of Persistent Organic Pollutants in the Soil of Guiyang City, China: A Case Study. Environ. Geochem. Heal. 2022, 44(10), 3265. DOI: 10.1007/s10653-021-01089-5.
  • Avellan, A.; Duarte, A.; Rocha-Santos, T. Organic Contaminants in Marine Sediments and Seawater: A Review for Drawing Environmental Diagnostics and Searching for Informative Predictors. Sci. Tot. Env. 2022, 808, 152012. DOI: 10.1016/j.scitotenv.2021.152012.
  • Oyekunle, J. A. O.; Afolabi, F. P.; Adenuga, A. A.; Adekunle, A. S.; Mbaike, S. C.; Durodola, S. S.; Ogunfowokan, A. O. Determination of Levels of Polycyclic Aromatic Hydrocarbons in the Smoke Fractions of Popular Cigarette Brands Commonly Available in Nigeria. Chem. Afr. 2022, 5(1), 201. DOI: 10.1007/s42250-021-00301-4.
  • Fighir, A. D.; Teodosiu, C.; Fiore, S. Environmental and Energy Assessment of Municipal Wastewater Treatment Plants in Italy and Romania: A Comparative Study. Wat. 2019, 11(8), 1611. DOI: 10.3390/w11081611.
  • Gupta, H. PAH Determination in Effluent and Sludge Samples of Paper Industry. Environ. Tech. Inn. 2018, 9, 115–121. DOI: 10.1016/j.eti.2017.11.009.
  • Yang, J.; Qadeer, A.; Liu, M.; Zhu, J.-M.; Huang, Y.-P.; Du, W.-N.; Wei, X.-Y. O. Source, and Partition of PAHs, PCBs, and OCPs in the Multiphase System of an Urban Lake, Shanghai. App. Geochem. 2019, 106, 17–25. DOI: 10.1016/j.apgeochem.2019.04.023.
  • Kim, H. S.; Kim, J.; Choi, J.; Paik, Y.; Moon, B.; Joo, Y.-S.; Lee, K.-W. Polycyclic Aromatic Hydrocarbons in Beverage and Dairy Products in South Korea: A Risk Characterization Using the Total Diet Study. Foo. Sci. Biotech. 2021, 30(7), 989–1002. DOI: 10.1007/s10068-021-00927-7.
  • Lorbeer, L.; Schwarz, S.; Franke, H.; Lachenmeier, D. W. Toxicological Assessment of Roasted Coffee Silver Skin (Testa of Coffea Sp.) As Novel Food Ingredient. Mol. 2022, 27(20), 6839. DOI: 10.3390/molecules27206839.
  • Alshemmari, H. Inventories and Assessment of POPs in the State of Kuwait As a Basis for Stockholm Convention Implementation. Emer. Cont. 2021, 7, 88. DOI: 10.1016/j.emcon.2021.02.003.
  • Medić Pap, S.; Popović, B.; Stojić, N.; Danojević, D.; Pucarević, M.; Červenski, J.; Šperanda, M. The Environmental Issue of Pesticide Residues in Agricultural Soils in Serbia. Int. J. Environ. Sci. Technol. 2023, 20, 7263–7276. DOI: 10.1007/s13762-022-04424-0.
  • Ukalska-Jaruga, A.; Smreczak, B.; Siebielec, G. Assessment of Pesticide Residue Content in Polish Agricultural Soils. Mol. 2020, 25(3), 587. DOI: 10.3390/molecules25030587.
  • García-Nieto, E.; Juárez-Santacruz, L.; Ortiz-Ortiz, E.; Luna-Zendejas, H. S.; FríFríAs-Márquez, D. M.; Muñoz-Nava, H.; Romo-Gómez, C. Ecotoxicological Assessment of Sediment from Texcalac River and Agricultural Soil of Riverside Area, in Tlaxcala, Mexico. Chem. Eco. 2019, 35(4), 300. DOI: 10.1080/02757540.2018.1546297.
  • Konstantinova, E.; Minkina, T.; Konstantinov, A.; Sushkova, S.; Antonenko, E.; Kurasova, A.; Loiko, S. Pollution Status and Human Health Risk Assessment of Potentially Toxic Elements and Polycyclic Aromatic Hydrocarbons in Urban Street Dust of Tyumen City, Russia. Environ. Geochem. Heal. 2022, 44(2), 409–432. DOI: 10.1007/s10653-020-00692-2.
  • Gune, M. M.; Ma, W.-L.; Sampath, S.; Li, W.; Li, Y.-F.; Udayashankar, H. N.; Balakrishna, K.; Zhang, Z. Occurrence of Polycyclic Aromatic Hydrocarbons (PAHs) in Air and Soil Surrounding a Coal-Fired Thermal Power Plant in the South-West Coast of India. Environ. Sci. Poll. Res. 2019, 26, 22772. DOI: 10.1007/s11356-019-05380-y.
  • Jain, R.; Thakur, A.; Garg, N.; Devi, P. Impact of Industrial Effluents on Groundwater. In Groundwater Geochemistry; Madhav, S., Singh, P., Eds.; Wiley, 2021; pp 193–211. ISBN 978-1-119-70969-5.
  • Kumar, J. A.; Amarnath, D. J.; Kumar, P. S.; Kaushik, C. S.; Varghese, M. E.; Saravanan, A. Mass Transfer and Thermodynamic Analysis on the Removal of Naphthalene from Aqueous Solution Using Oleic Acid Modified Palm Shell Activated Carbon. Desal. Wat. Treat. 2018, 106, 238–250. DOI: 10.5004/dwt.2018.22066.
  • Singh, S.; Parveen, N.; Gupta, H. Adsorptive Decontamination of Rhodamine-B from Water Using Banana Peel Powder: A Biosorbent. Environ. Tech. Inn. 2018, 12, 189–195. DOI: 10.1016/j.eti.2018.09.001.
  • Singh, S.; Gupta, H.; Dhiman, S.; Sahu, N. K. Decontamination of Cationic Dye Brilliant Green from the Aqueous Media. App. Wat. Sci. 2022, 12(4), 61. DOI: 10.1007/s13201-022-01596-5.
  • Kumar, R.; Gupta, B.; Gupta, H.; Rani, M. Distribution of Persistent Organic Pollutants in Urban Aquatic Systems. Inter. J. Sci. Res. Environ. Sci. 2014, 3, 233. DOI: 10.12983/ijsres-2014-p0233-0243.
  • Kumar, R.; Rani, M.; Gupta, H.; Gupta, B.; Park, D.; Jeon, B.-H. Distribution of Trace Elements in Flowing Surface Waters: Effect of Seasons and Anthropogenic Practices in India. Inter. J. Environ. Anal. Chem. 2017, 97(7), 637–656. DOI: 10.1080/03067319.2017.1339035.
  • Yadav, D. K.; Kumar, A. R.; Jayaraman, S.; Lenka, S.; Gurjar, S.; Sarkar, A.; Saha, J. K.; Patra, A. K. Polycyclic Aromatic Hydrocarbons in Diverse Agricultural Soils of Central India: Occurrence, Sources, and Potential Risks. Inter. J. Environ. Anal. Chem. 2022, 15, 15. DOI: 10.1080/03067319.2022.2125307.
  • Kumar, R.; Rani, M.; Gupta, H.; Gupta, B. Trace Metal Fractionation in Water and Sediments of an Urban River Stretch. Chem. Sp. Bioavail. 2014, 26(4), 200. DOI: 10.3184/095422914X14142369069568.
  • Chawda, S.; Tarafdar, A.; Sinha, A.; Mishra, B. K. Profiling and Health Risk Assessment of PAHs Content in Tandoori and Tawa Bread from India. Poly. Arom. Comp. 2020, 40(1), 21–32. DOI: 10.1080/10406638.2017.1349679.
  • Khan, I. S.; Ali, M. N.; Hamid, R.; Ganie, S. A. Genotoxic Effect of Two Commonly Used Food Dyes Metanil Yellow and Carmoisine Using Allium Cepa L. As Indicator. Tox. Rep. 2020, 7, 370. DOI: 10.1016/j.toxrep.2020.02.009.
  • Miraji, H.; Ripanda, A.; Moto, E. A Review on the Occurrences of Persistent Organic Pollutants in Corals, Sediments, Fish and Waters of the Western Indian Ocean. The Egypt. J. Aq. Res. 2021, 47(4), 373. DOI: 10.1016/j.ejar.2021.08.003.
  • Jayakumar, S.; Muralidharan, S.; Dhananjayan, V. Organochlorine Pesticide Residues Among Colonial Nesting Birds in Tamil Nadu, India: A Maiden Assessment from Their Breeding Grounds. Arch. Environ. Contam. Toxicol. 2020, 78, 555–567. DOI: 10.1007/s00244-020-00709-y.
  • Venugopal, D.; Subramanian, M.; Rajamani, J.; Palaniyappan, J.; Samidurai, J.; Arumugam, A. Levels and Distribution Pattern of Organochlorine Pesticide Residues in Eggs of 22 Terrestrial Birds from Tamil Nadu, India. Environ. Sci. Poll. Res. 2020, 27, 39253. DOI: 10.1007/s11356-020-09978-5.
  • Prashant, V.; Vijaykumar, K. Analysis of Organochlorine Pollutants in mother’s Milk from Kalaburagi District, Karnataka, India. Inter. J. Foo. Nut. Sci. 2022, 11, 6. DOI: 10.4103/ijfans_83-21.
  • Singh, V. K.; Patel, D. K.; Ram, S.; Mathur, N.; Siddiqui, M. K. J.; Behari, J. R. Blood Levels of Polycyclic Aromatic Hydrocarbons in Children of Lucknow, India. Arch. Environ. Contam. Tox. 2008, 54(2), 348. DOI: 10.1007/s00244-007-9015-3.
  • Xia, H.; Zhang, W.; Yang, Z.; Dai, Z.; Yang, Y.; Dellacassa, E. Spectrophotometric Determination of P-Nitrophenol Under ENP Interference. J. Ana. Meth. Chem. 2021, 6, 1–9. DOI: 10.1155/2021/6682722.
  • Mahale, R. S.; Shashanka, R.; Vasanth, S.; Vinaykumar, R. Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes. Biointerface Res. Appl. Chem. 2022, 12(4), 4557. DOI: 10.33263/briac124.45574566.
  • Shin, H. S. Trace-Level Analysis of Polychlorinated Biphenyls, Organochlorine Pesticides and Polycyclic Aromatic Hydrocarbons in Human Plasma or Serum by Dispersive Liquid–Liquid Microextraction and Gas Chromatography–Tandem Mass Spectrometry. Biomed. Chromatogr. 2022, 36(6), e5360. DOI: 10.1002/bmc.5360.
  • Ferey, L.; Delaunay, N.; Rutledge, D. N.; Huertas, A.; Raoul, Y.; Gareil, P.; Vial, J.; Rivals, I. An Experimental Design Based Strategy to Optimize a Capillary Electrophoresis Method for the Separation of 19 Polycyclic Aromatic Hydrocarbons. Analytica. Chimica. Acta. 2014, 820, 195. DOI: 10.1016/j.aca.2014.02.040.
  • Smol, M.; Wlodarczyk-Makula, M.; Mielczarek, K.; Bohdziewicz, J. Comparison of the Retention of Selected PAHs from Municipal Landfill Leachate by RO and UF Processes. Desalin. Water. Treat. 2014, 52(19–21), 3889. DOI: 10.1080/19443994.2014.887451.
  • Konan, N. F. D. S.; Li, M.; Shi, S.; Liu, X.; Tang, Y.; Kojo, A. T.; Toyin, A. Simple Column Chromatography Separation Procedure for Polycyclic Aromatic Hydrocarbons: Controlling Factor(s). Arab. J. Geosci. 2022, 15(15), 1350. DOI: 10.1007/s12517-022-10625-1.
  • Li, Y.; Wang, L.; Zheng, M.; Lin, Y.; Xu, H.; Liu, A.; Hua, Y.; Jiang, Y.; Ning, K.; Hu, S. Thin-Layer Chromatography Coupled with HPLC-DAD/UHPLC-HRMS for Target and Non-Target Determination of Emerging Halogenated Organic Contaminants in Animal-Derived Foods. Food Chem. 2023, 404, 134678. DOI: 10.1016/j.foodchem.2022.134678.
  • Simsek, I.; Kuzukiran, O.; Yurdakok-Dikmen, B.; Snoj, T.; Filazi, A. Determination of Persistent Organic Pollutants (POPs) in Propolis by Solid-Phase Extraction (Spe) and Gas Chromatography – Mass Spectrometry (GC-MS). Anal. Lett. 2021, 54(10), 1668. DOI: 10.1080/00032719.2020.1821208.
  • Torres-Farradá, G.; Manzano-León, A. M.; Rineau, F.; Leal, M. R.; Thijs, S.; Jambon, I.; Put, J.; Czech, J.; Rivera, G. G.; Carleer, R., et al. Biodegradation of Polycyclic Aromatic Hydrocarbons by Native Ganoderma sp. Strains: Identification of Metabolites and Proposed Degradation Pathways. Appl. Microbiol. Biotechnol. 2019, 103(17), 7203. DOI: 10.1007/s00253-019-09968-9.
  • Zang, T.; Wu, H.; Yan, B.; Zhang, Y.; Wei, C. Enhancement of PAHs Biodegradation in Biosurfactant/Phenol System by Increasing the Bioavailability of PAHs. Chemosphere. 2021, 266, 128941. DOI: 10.1016/j.chemosphere.2020.128941.
  • Wang, X.; Jia, R.; Song, Y.; Wang, M.; Zhao, Q.; Sun, S. Determination of Pesticides and Their Degradation Products in Water Samples by Solid-Phase Extraction Coupled with Liquid Chromatography-Mass Spectrometry. Microchem. J. 2019, 149, 104013. DOI: 10.1016/j.microc.2019.104013.
  • Shi, Y.; Zhang, Y.; Song, G.; Tong, L.; Sun, Y.; Ding, G. Efficient Degradation of Organic Pollutants Using Peroxydisulfate Activated by Magnetic Carbon Nanotube. Water Sci. Technol. 2022, 89(10), 2611. DOI: 10.2166/wst.2022.371.
  • Su, Y.; Ding, H.; Sun, M.; Liu, X.; Dai, C.; Li, Y.; Xu, G.; Zeng, C. Construction of BiOio3/AgIo3 Z-Scheme Photocatalysts for the Efficient Removal of Persistent Organic Pollutants Under Natural Sunlight Illumination. Langmuir. 2022, 38(51), 16163. DOI: 10.1021/acs.langmuir.2c02903.
  • Olatunji, O. S. Evaluation of Selected Polychlorinated Biphenyls (PCBs) Congeners and Dichlorodiphenyltrichloroethane (DDT) in Fresh Root and Leafy Vegetables Using GC-MS. Sci. Rep. 2019, 9(1), 538. DOI: 10.1038/s41598-018-36996-8.
  • Oloruntoba, K.; Sindiku, O.; Osibanjo, O.; Balan, S.; Weber, R. Polybrominated Diphenyl Ethers (PBDEs) in Chicken Eggs and Cow Milk Around Municipal Dumpsites in Abuja, Nigeria. Ecotoxicol. Environ. Saf. 2019, 179, 282. DOI: 10.1016/j.ecoenv.2019.04.045.
  • Fujita, K.; Inui, H. How Does the Cucurbitaceae Family Take Up Organic Pollutants (POPs, PAHs, and PPCPs)? Rev. Environ. Sci. Biotechnol. 2021, 20(3), 751. DOI: 10.1007/s11157-021-09578-w.
  • Aaseth, J.; Javorac, D.; Djordjevic, A. B.; Bulat, Z.; Skalny, A. V.; Zaitseva, I. P.; Aschner, M.; Tinkov, A. A. The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Epidemiological Studies. Toxics. 2022, 10(2), 65. DOI: 10.3390/toxics10020065.
  • Guillotin, S.; Delcourt, N. Studying the Impact of Persistent Organic Pollutants Exposure on Human Health by Proteomic Analysis: A Systematic Review. Int. J. Mol. Sci. 2022, 23(22), 14271. DOI: 10.3390/ijms232214271.
  • Liu, B.; Niu, W.; Hu, X.; Liu, F.; Jiang, J.; Wang, H.; Wang, S. Enhanced Oxidative Activation of Chlorine Dioxide by Divalent Manganese Ion for Efficient Removal of PAHs in Industrial Soil. Chem. Eng. J. 2022, 434, 134631. DOI: 10.1016/j.cej.2022.134631.
  • Pilková, Z.; Hiller, E.; Filová, L.; Jurkovic, L. Sixteen Priority Polycyclic Aromatic Hydrocarbons in Roadside Soils at Traffic Light Intersections (Bratislava, Slovakia): Concentrations, Sources and Influencing Factors. Environ. Geochem. Health. 2022, 44(10), 3473. DOI: 10.1007/s10653-021-01122-7.
  • Ravindra, K.; Sokhi, R.; Grieken, R. V. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmos. Environ. 2007, 12, 161. DOI: 10.1016/j.atmosenv.2007.12.010.
  • Agarwal, T. Concentration Level, Pattern and Toxic Potential of PAHs in Traffic Soil of Delhi, India. J. Hazard. Mater. 2009, 171(1–3), 894. DOI: 10.1016/j.jhazmat.2009.06.081.
  • Jayaraj, R.; Megha, P.; Sreedev, P. Review Article. Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their Fate in the Environment. Interdiscip. Toxicol. 2016, 9(3–4), 90. DOI: 10.1515/intox-2016-0012.
  • Yun, S. M.; Yoon, J. K.; Kim, J. I.; Kim, I. J.; Kim, H. K.; Chung, H. M.; Kim, D. J.; Noh, H. J. Evaluation of Residual Level and Distribution Characteristics of Organochlorine Pesticides in Agricultural Soils in South Korea. Environ. Sci. Pollut. Res. 2022, 29(30), 46003. DOI: 10.1007/s11356-022-18858-z.
  • Arisekar, U.; Shakila, R. J.; Shalini, R.; Jeyasekaran, G.; Padmavathy, P. Effect of Household Culinary Processes on Organochlorine Pesticide Residues (OCPs) in the Seafood (Penaeus Vannamei) and Its Associated Human Health Risk Assessment: Our Vision and Future Scope. Chemosphere. 2022, 297, 134075. DOI: 10.1016/j.chemosphere.2022.134075.
  • Aydın, F.; Albay, M. Accumulation of Organochlorine Pesticide (OCP) Residues in Surface Water and Sediment from the İ̇znik Lake in Turkey. Environ. Monit. Assess. 2022, 194(12), 872. DOI: 10.1007/s10661-022-10505-x.
  • Hu, G.; Xiaojun, L.; Fengchao, L.; Dai, J.; Guo, J.; Chen, S.; Hong, C.; Mai, B.; Xu, M. Organochlorine Compounds and Polycyclic Aromatic Hydrocarbons in Surface Sediment from Baiyangdian Lake, North China: Concentrations, Sources Profiles and Potential Risk. J. Environ. Sci. 2010, 22(2), 176. DOI: 10.1016/S1001-0742(09)60090-5.
  • Meijer, S. N.; Halsall, C. J.; Harner, T.; Peters, A. J.; Ockenden, W. A.; Johnston, A. E.; Jones, K. C. Organochlorine Pesticide Residues in Archived UK soil. Environ. Sci. Technol. 2001, 35, 1989. DOI: 10.1021/es0000955
  • Kataoka, R. Biodegradability and Biodegradation Pathways of Chlorinated Cyclodiene Insecticides by Soil Fungi. J. Pestic. Sci. 2018, 43(4), 314. DOI: 10.1584/jpestics.J18-03.
  • Yao, S.; Xu, T.; Zhao, N.; Zhang, L.; Huo, Q.; Liu, Y. An Anionic Metal–Organic Framework with Ternary Building Units for Rapid and Selective Adsorption of Dyes. Dalton. Trans. 2017, 46(10), 3332. DOI: 10.1039/C7DT00192D.
  • Zhu, H.; Jiang, R.; Li, J.; Fu, Y.; Jiang, S.; Yao, J. Magnetically Recyclable Fe3O4/Bi2S3 Microspheres for Effective Removal of Congo Red Dye by Simultaneous Adsorption and Photo Catalytic Regeneration. Sep. Purif. Technol. 2017, 179, 184. DOI: 10.1016/j.seppur.2016.12.051.
  • Rahman, I. A.; Saad, B.; Shaidan, S.; Rizal, E. S. S. Adsorption Characteristics of Malachite Green on Activated Carbon Derived from Rice Husks Produced by Chemical–Thermal Process. Bioresources. Technol. 2005, 96(14), 1578. DOI: 10.1016/j.biortech.2004.12.015.
  • Rentz, J. A.; Alvarez, P. J. J.; Schnoor, J. L. Benzo[a]pyrene Degradation by Sphingomonasyanoikuyae JAR02. Environ. Poll. 2008, 151(3), 669. DOI: 10.1016/j.envpol.2007.02.018.
  • Gupta, H.; Gupta, B. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon Benzo[a]pyrene by Iron Oxides and Identification of Degradation Products. Chemosphere. 2014, 138, 924. DOI: 10.1016/j.chemosphere.2014.12.028.
  • Gupta, B.; Gupta, H. Iron Oxide Mediated Degradation of Mutagen Pyrene and Determination of Degradation Products. Int. J. Environ. Sci. Devel. 2015, 6(12), 908. DOI: 10.7763/ijesd.2015.v6.720.
  • Gupta, H. Photocatalytic Degradation of Phenanthrene in the Presence of Akaganeite Nano-Rods and the Identification of Degradation Products. R.S.C. Adv. 2016, 6(114), 112721. DOI: 10.1039/C6RA24602H.
  • Kaya, E.; Dumanoglu, Y.; Kara, M.; Altiok, H.; Bayram, A.; Elbir, T.; Odabasi, M. Spatial and Temporal Variation and Air–Soil Exchange of Atmospheric PAHs and PCBs in an Industrial Region. Atmos. Poll. Res. 2012, 3(4), 435. DOI: 10.5094/APR.2012.050.
  • Oleszczuk, P.; Baran, S. Leaching of Individual PAHs in Soil Varies with the Amounts of Sewage Sludge Applied and Total Organic Carbon Content. Pol. J. Environ. Stud. 2005, 14(4), 491.
  • Kang, F.; Chen, D.; Gao, Y.; Zhang, Y. Distribution of Polycyclic Aromatic Hydrocarbons in Subcellular Root Tissues of Ryegrass (Lolium Multiflorum Lam.). BMC. Plant Biol. 2010, 10(1), 210. DOI: 10.1186/1471-2229-10-210.
  • Ni, H. G.; Qin, P. H.; Cao, S. P.; Zeng, H. Fate Estimation of Polycyclic Aromatic Hydrocarbons in Soils in a Rapid Urbanization Region, Shenzhen of China. J. Environ. Monit. 2011, 13(2), 313. DOI: 10.1039/C0EM00470G.
  • He, X.; Cai, Y.; Zhang, H.; Liang, C. Photocatalytic Degradation of Organic Pollutants with Ag Decorated Free-Standing TiO2 Nanotube Arrays and Interface Electrochemical Response. J. Mater. Chem. 2011, 21(2), 475. DOI: 10.1039/C0JM02404J.
  • Senff, L.; Tobaldi, D. M.; Lucas, S.; Hotza, D.; Ferreira, V. M.; Labrincha, J. A. Formulation of Mortars with Nano-SiO2 and Nano-TiO2 for Degradation of Pollutants in Buildings. Compos. Part B. 2013, 44(1), 40. DOI: 10.1016/j.compositesb.2012.07.022.
  • Cani, D.; Pescarmona, P. P. Macroscopic TiO2–SiO2 Porous Beads: Efficient Photocatalysts with Enhanced Reusability for the Degradation of Pollutants. J. Catal. 2014, 311, 404. DOI: 10.1016/j.jcat.2013.12.016.
  • Khan, A.; Haque, M. M.; Mir, N. A.; Muneer, M.; Boxall, C. Heterogeneous Photocatalysed Degradation of an Insecticide Derivative Acetamiprid in Aqueous Suspensions of Semiconductor. Desalination. 2010, 261(1–2), 169. DOI: 10.1016/j.desal.2010.05.001.
  • Dar, A. A.; Umar, K.; Mir, N. A.; Haque, M. M.; Muneer, M.; Boxall, C. Photocatalysed Degradation of a Herbicide Derivative, Dinoterb, in Aqueous Suspension. Res. Chem. Intermed. 2011, 37(6), 567. DOI: 10.1007/s11164-011-0299-6.
  • Cheng, P.; Lin, Z.; Zhao, X.; Waigi, M. G.; Vasilyeva, G. K.; Gao, Y. Enhanced Transformation Capability Towards Benzo(a)pyrene by Fe (III)-Modified Manganese Oxides. J. Hazard. Mater. 2022, 431, 128637. DOI: 10.1016/j.jhazmat.2022.128637.
  • Ahmed, T.; Noman, M.; Shahid, M.; Niazi, M. B. K.; Hussain, N.; Li, X.; Wang, B.; Li, B. Green Synthesis of Silver Nanoparticles Transformed Synthetic Textile Dye into Less Toxic Intermediate Molecules Through LC-MS Analysis and Treated the Actual Wastewater. Environ. Res. 2020, 191, 110142. DOI: 10.1016/j.envres.2020.110142.
  • Garcia-Martinez, M. J.; Canoira, L.; Blazquez, G.; Riva, I. D.; Alcantara, R.; Llamas, J. F. Continuous Photodegradation of Naphthalene in Water Catalyzed by TiO2 Supported on Glass Raschig Rings. Chem. Eng. J. 2005, 110(1–3), 123. DOI: 10.1016/j.cej.2005.03.020.
  • Saloot, M. K.; Borghei, S. M.; Seyed, R. H.; Shirazi, M. Photocatalytic Degradation of Anthracene Using Titanium Dioxide-NPs Doped with Iron in the Presence of UV Radiation from the Aqueous Solution: By-Products Determination. Desalin. Water. Treat. 2021, 220, 287. DOI: 10.5004/dwt.2021.26939.
  • Bahruddin, N. N.; Nawi, M. A. Mechanistic of Photocatalytic Decolorization and Mineralization of Methyl Orange Dye by Immobilized TiO2/chitosan-Montmorillonite. J. Water. Process. Eng. 2019, 31, 100843. DOI: 10.1016/j.jwpe.2019.100843.
  • Carlo, M. D.; Marcello, M. D.; Giuliani, M.; Sergi, M.; Pepe, A.; Compagnone, D. Detection of Benzo(a)pyrene Photodegradation Products Using DNA Electrochemical Sensors. Biosens. Bioelectron. 2012, 31(1), 270. DOI: 10.1016/j.bios.2011.10.030.
  • Wang, Y.; Liu, C. S.; Li, F. B.; Liu, C. P.; Liang, J. B. Photodegradation of Polycyclic Aromatic Hydrocarbon Pyrene by Iron Oxide in Solid Phase. J. Hazard. Mater. 2009, 162(2–3), 716. DOI: 10.1016/j.jhazmat.2008.05.086.
  • Dong, D.; Li, P.; Li, X.; Xu, C.; Gong, D.; Zhang, Y.; Zhao, Q.; Li, P. Photocatalytic Degradation of Phenanthrene and Pyrene on Soil Surfaces in the Presence of Nanometer Rutile TiO2 Under UV- Irradiation. Chem. Eng. J. 2010, 158(3), 378. DOI: 10.1016/j.cej.2009.12.046.
  • Dong, D.; Li, P.; Li, X.; Zhao, Q.; Zhang, Y.; Jia, C.; Li, P. Investigation on the Photocatalytic Degradation of Pyrene on Soil Surfaces Using Nanometer Anatase TiO2 Under UV Irradiation. J. Hazard. Mater. 2010, 174(1–3), 859. DOI: 10.1016/j.jhazmat.2009.09.132.
  • Zhang, L.; Li, P.; Gong, Z.; Adeola, A. O. Photochemical Behaviour of Benzo[a]pyrene on Soil Surfaces Under UV Light Irradiation. J Environ. Sci. 2006, 18(6), 1226. DOI: 10.1016/S1001-0742(06)60067-3.
  • Zhang, L.; Jia, N.; Xu, C.; Li, X. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons on Soil Surfaces Using Fe2O3 Under UV Light. Adv. Mater. Res. 2011, 189–193, 420–423. DOI: 10.4028/www.scientific.net/AMR.189-193.420.
  • Dean-Ross, D.; Cerniglia, C. E. Degradation of Pyrene by Mycobacterium Flavescens. Appl. Microbiol. Biotechnol. 1996, 46(3), 307. DOI: 10.1007/s002530050822.
  • Schneider, J.; Grosser, R.; Jayasimhulu, K.; Xue, W.; Warshawsky, D. Degradation of Pyrene, Benz[a]anthracene and Benzo[a]pyrene by Mycobacterium sp. Strain RJGII-135, Isolated from a Former Coal Gasification Site. Appl. Environ. Microbiol. 1996, 62(1), 13. DOI: 10.1128/aem.62.1.13-19.1996.
  • Kazunga, C.; Aitken, M. D. Products from the Incomplete Metabolism of Pyrene by Polycyclic Aromatic Hydrocarbon-Degrading Bacteria. Appl. Environ. Microbiol. 2000, 66(5), 1917. DOI: 10.1128/aem.66.5.1917-1922.2000.
  • Vila, J.; Lopez, Z.; Sabate, J.; Minguillion, C.; Solanas, A. M.; Grifoll, M. Identification of a Novel Metabolite in the Degradation of Pyrene by Mycobacterium sp. Strain AP1: Actions of the Isolate on Two- and Three-Ring Polycyclic Aromatic Hydrocarbons. Appl. Environ. Microbiol. 2001, 67(12), 5497. DOI: 10.1128/AEM.67.12.5497-5505.2001.
  • Wasik, A. K.; Dabrowska, D.; Namiesnik, J. Photodegradation and Biodegradation Study of Benzo(a)pyrene in Different Liquid Media. J. Photochem. Photobiol. 2004, 168(1–2), 109–115. DOI: 10.1016/j.jphotochem.2004.05.023.
  • Yu, S. H.; Ke, L.; Wong, Y. S.; Tam, N. F. Y. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by a Bacterial Consortium Enriched from Mangrove Sediments. Environ. Int. 2005, 31(2), 149. DOI: 10.1016/j.envint.2004.09.008.
  • Liang, Y.; Gardner, D. R.; Miller, C. D.; Chen, D.; Anderson, A. J.; Weimer, B. C.; Sims, R. C. Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium Sp. Strain KMS. Appl. Environ. Microbiol. 2006, 72(12), 7821. DOI: 10.1128/AEM.01274-06.
  • Kim, S. J.; Kweon, O.; Jones, R. C.; Freeman, J. P.; Edmondson, R. D.; Cerniglia, C. E. Complete and Integrated Pyrene Degradation Pathway in Mycobacterium Vanbaalenii PYR-1 Based on Systems Biology. J. Bacteriol. 2007, 189(2), 464. DOI: 10.1128/JB.01310-06.
  • Lhoest, G. J. J. New Metabolites of Benzo[a]pyrene, Jeol Scientific Instruments. Environ. App. http://www.specmetcrime.com/jeol_scientific_instruments.htm.
  • Zeng, J.; Lin, X.; Zhang, J.; Zhu, H.; Chen, H.; Wong, M. H. Successive Transformation of Benzo[a]pyrene by Laccase of Trametes Versicolor and Pyrene-degrading Mycobacterium strains. Appl. Microbiol. Biotechnol. 2013, 97(7), 3183. DOI: 10.1007/s00253-012-4120-2.
  • Rachna, R. M.; Shanker, U.; Shanker, U. Enhanced Photocatalytic Degradation of Chrysene by Fe2O3@ZnHCF Nanocubes. Chem. Eng. J. 2018, 348(15), 754. DOI: 10.1016/j.cej.2018.04.185.
  • Shah, N. S.; Khan, J. A.; Nawaz, S.; Khan, H. M. Role of Aqueous Electron and Hydroxyl Radical in the Removal of Endosulfan from Aqueous Solution Using Gamma Irradiation. J. Hazard. Mater. 2014, 278, 40. DOI: 10.1016/j.jhazmat.2014.05.073.
  • Begum, A.; Gautam, S. K. Endosulfan and lindane degradation using ozonation. Environ. Technol. 2012, 38(8), 943. DOI: 10.1080/09593330.2011.603752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.