43
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Clay-Based Nanocomposite Materials Used in Treatment of Wastewater: Recent Advancements, Cost Investigation and Future Perspectives

, , , , &
Received 06 Jan 2024, Accepted 12 Jun 2024, Published online: 26 Jun 2024

REFERENCES

  • Dalstein, F.; Naqvi, A. 21st Century Water Withdrawal Decoupling: A Pathway to a More Water-Wise World? Water. Resour. Econ. 2022, 38, 100197. DOI: 10.1016/j.wre.2022.100197.
  • Yang, D.; Yang, Y.; Xia, J. Hydrological Cycle and Water Resources in a Changing World: A Review. Geogr. Sustain 2021, 2(2), 115–122. DOI: 10.1016/j.geosus.2021.05.003.
  • Gahlot, R.; Taki, K.; Kumar, M. Efficacy of Nanoclays as the Potential Adsorbent for Dyes and Metal Removal from the Wastewater: A Review. Environ. Nanotechnol. Monit. Manage. 2020, 14, 100339. DOI: 10.1016/j.enmm.2020.100339.
  • Gupta, N.; Prasad, M.; Singhal, N.; Kumar, V. Modeling the Adsorption Kinetics of Divalent Metal Ions Onto Pyrophyllite Using the Integral Method. Ind. Eng. Chem. Res. 2009, 48(4), 2125–2138. DOI: 10.1021/ie800975m.
  • Chen, Z.; Wu, G.; Wu, Y.; Wu, Q.; Shi, Q.; Ngo, H. H.; Vargas Saucedo, O. A.; Hu, H.-Y. Water Eco-Nexus Cycle System (WaterEconet) Is a Key Solution for Water Shortage and Water Environment Problems in Urban Areas. Water. Cycle 2020, 1, 71–77. DOI: 10.1016/j.watcyc.2020.05.004.
  • Zyoud, S. H.; Zyoud, A. H. Water, Sanitation, and Hygiene Global Research: Evolution, Trends, and Knowledge Structure. Environ. Sci. Pollut. Res. 2023, 30(56), 119532–119548. DOI: 10.1007/s11356-023-30813-0.
  • Hasseen El-Bardisy, H. A. Economic Growth, Employment and Decent Work As a Sustainable Development Policy for All. In Egypt’s Strategy to Meet the Sustainable Development Goals and Agenda 2030: Researchers’ Contributions: SDGs Viewed Through the Lens of Egypt’s Strategy and Researchers’ Views; Springer, 2023; pp. 151–164. DOI: 10.1007/978-3-031-10676-7_10.
  • Hnamte, M.; Pulikkal, A. K. Clay-Polymer Nanocomposites for Water and Wastewater Treatment: A Comprehensive Review. Chemosphere. 2022, 307, 135869. DOI: 10.1016/j.chemosphere.2022.135869.
  • Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide‐Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21(7), 1570–1610. DOI: 10.1002/tcr.202000153.
  • Shindy, A. Problems and Solutions in Colors, Dyes and Pigments Chemistry: A Review. Chem. Int. 2017, 3(2), 97–105.
  • De Smet, D.; Goethals, F.; Demedts, B.; Uyttendaele, W.; Vanneste, M. Bio-Based Textile Coatings and Composites. In Biobased Products and Industries; Elsevier, 2020; pp. 357–402. DOI: 10.1016/B978-0-12-818493-6.00010-5.
  • Dave, S.; Das, J.; Varshney, B.; Sharma, V. Dyes and Pigments: Interventions and How Safe and Sustainable Are Colors of Life! Trends and Contemporary Technologies for Photocatalytic Degradation of Dyes; Springer, 2022; pp. 1–20. DOI: 10.1007/978-3-031-08991-6_1.
  • Yildirim, O. A.; Bahadir, M.; Pehlivan, E. Detrimental Effects of Commonly Used Textile Dyes on the Aquatic Environment and Human Health–A Review. Feb-Fresenius Environ. Bull 2022, 9329, 33–41.
  • Bandala, E. R.; Kruger, B. R.; Cesarino, I.; Leao, A. L.; Wijesiri, B.; Goonetilleke, A. Impacts of COVID-19 Pandemic on the Wastewater Pathway into Surface Water: A Review. Sci. Total Environ. 2021, 774, 145586. DOI: 10.1016/j.scitotenv.2021.145586.
  • Asl, S. M. H.; Javadian, H.; Khavarpour, M.; Belviso, C.; Taghavi, M.; Maghsudi, M. Porous Adsorbents Derived from Coal Fly Ash as Cost-Effective and Environmentally-Friendly Sources of Aluminosilicate for Sequestration of Aqueous and Gaseous Pollutants: A Review. J. Clean. Prod. 2019, 208, 1131–1147. DOI: 10.1016/j.jclepro.2018.10.186.
  • Kennedy, K. K.; Maseka, K. J.; Mbulo, M. Selected Adsorbents for Removal of Contaminants from Wastewater: Towards Engineering Clay Minerals. Open J. Appl. Sci. 2018, 8(8), 355–369. DOI: 10.4236/ojapps.2018.88027.
  • Mukhopadhyay, R.; Bhaduri, D.; Sarkar, B.; Rusmin, R.; Hou, D.; Khanam, R.; Sarkar, S.; Biswas, J. K.; Vithanage, M.; Bhatnagar, A., et al. Clay–Polymer Nanocomposites: Progress and Challenges for Use in Sustainable Water Treatment. J. Hazard. Mater. 2020, 383, 121125. DOI: 10.1016/j.jhazmat.2019.121125.
  • Thomé, A.; Reddy, K. R.; Reginatto, C.; Cecchin, I. Review of Nanotechnology for Soil and Groundwater Remediation: Brazilian Perspectives. Water Air Soil Pollut. 2015, 226(4), 1–20. DOI: 10.1007/s11270-014-2243-z.
  • Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-Enabled Water and Wastewater Treatment. NanoImpact. 2016, 3-4, 22–39. DOI: 10.1016/j.impact.2016.09.004.
  • Falinski, M.; Turley, R.; Kidd, J.; Lounsbury, A.; Lanzarini-Lopes, M.; Backhaus, A.; Rudel, H. E.; Lane, M. K. M.; Fausey, C. L.; Barrios, A. C., et al. Doing Nano-Enabled Water Treatment Right: Sustainability Considerations from Design and Research Through Development and Implementation. Environ. Sci. 2020, 7(11), 3255–3278. DOI: 10.1039/D0EN00584C.
  • Mishra, A. K. Application of Nanotechnology in Water Research; Scrivener Publishing LLC: Massachusetts, 2014.
  • Anirudhan, T.; Suchithra, P. S. Adsorption Characteristics of Humic Acid-Immobilized Amine Modified Polyacrylamide/Bentonite Composite for Cationic Dyes in Aqueous Solutions. J. Environ. Sci. 2009, 21(7), 884–891. DOI: 10.1016/S1001-0742(08)62358-X.
  • El Mouzdahir, Y.; Elmchaouri, A.; Mahboub, R.; Gil, A.; Korili, S. Equilibrium Modeling for the Adsorption of Methylene Blue from Aqueous Solutions on Activated Clay Minerals. Desalination 2010, 250(1), 335–328. DOI: 10.1016/j.desal.2009.09.052.
  • Ai, L.; Zhou, Y.; Jiang, J. Removal of Methylene Blue from Aqueous Solution by Montmorillonite/CoFe2o4 Composite with Magnetic Separation Performance. Desalination. 2011, 266(1–3), 72–77. DOI: 10.1016/j.desal.2010.08.004.
  • Sharma, P.; Borah, D. J.; Das, P.; Das, M. R. Cationic and Anionic Dye Removal from Aqueous Solution Using Montmorillonite Clay: Evaluation of Adsorption Parameters and Mechanism. Desalin. Water Treat. 2016, 57(18), 8372–8388. DOI: 10.1080/19443994.2015.1021844.
  • Dotto, G.; Rodrigues, F.; Tanabe, E.; Fröhlich, R.; Bertuol, D.; Martins, T.; Foletto, E. L. Development of Chitosan/Bentonite Hybrid Composite to Remove Hazardous Anionic and Cationic Dyes from Colored Effluents. J. Environ. Chem. Eng. 2016, 4(3), 3230–3239. DOI: 10.1016/j.jece.2016.07.004.
  • Srivastava, V.; Sillanpää, M. Synthesis of Malachite@ Clay Nanocomposite for Rapid Scavenging of Cationic and Anionic Dyes from Synthetic Wastewater. J. Environ. Sci. 2017, 51, 97–110. DOI: 10.1016/j.jes.2016.08.011.
  • Yang, Y.; Yu, W.; He, S.; Yu, S.; Chen, Y.; Lu, L.; Zhu, S.; Cui, S.; Zhang, Y.; Jin, H. Rapid Adsorption of Cationic Dye-Methylene Blue on the Modified Montmorillonite/Graphene Oxide Composites. Appl. Clay Sci. 2019, 168, 304–311. DOI: 10.1016/j.clay.2018.11.013.
  • Azha, S. F.; Shahadat, M.; Ismail, S.; Ali, S. W.; Ahammad, S. Z. Prospect of Clay-Based Flexible Adsorbent Coatings As Cleaner Production Technique in Wastewater Treatment, Challenges, and Issues. J. Taiwan Inst. Chem. Eng. 2021, 120, 178–206. DOI: 10.1016/j.jtice.2021.03.018.
  • Gogoi, J.; Choudhury, A. D.; Chowdhury, D. Graphene Oxide Clay Nanocomposite As an Efficient Photo-Catalyst for Degradation of Cationic Dye. Mater. Chem. Phys. 2019, 232, 438–445. DOI: 10.1016/j.matchemphys.2019.05.010.
  • Anirudhan, T. S.; Ramachandran, M. Adsorptive Removal of Basic Dyes from Aqueous Solutions by Surfactant Modified Bentonite Clay (Organoclay): Kinetic and Competitive Adsorption Isotherm. Process Saf. Environ. Prot. 2015, 95, 215–225. DOI: 10.1016/j.psep.2015.03.003.
  • Da Silva, J. C.; França, D.; Rodrigues, F.; Oliveira, D. M.; Trigueiro, P.; Silva Filho, E. C.; Fonseca, M. What Happens When Chitosan Meets Bentonite Under Microwave-Assisted Conditions? Clay-Based Hybrid Nanocomposites for Dye Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125584. DOI: 10.1016/j.colsurfa.2020.125584.
  • Kausar, A.; Rehman, S. U.; Khalid, F.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Bhatti, H. N.; Ibrahim, S. M.; Iqbal, M. Cellulose, Clay and Sodium Alginate Composites for the Removal of Methylene Blue Dye: Experimental and DFT Studies. Int. J. Biol. Macromol. 2022, 209, 576–585. DOI: 10.1016/j.ijbiomac.2022.04.044.
  • Yanto, D. H. Y.; Chempaka, R. M.; Nurhayat, O. D.; Argo, B. D.; Watanabe, T.; Wibisono, Y.; Hung, Y.-T. Optimization of Dye-Contaminated Wastewater Treatment by Fungal Mycelial-Light Expanded Clay Aggregate Composite. Environ. Res. 2023, 231, 116207. DOI: 10.1016/j.envres.2023.116207.
  • Raza, A.; Rehman, R.; Batool, M.; Jahangir, M. M.; Ghfar, A. A.; Pradhan, S.; Akram, M. Adsorptive Elimination of Rhodamine B Dye by Synthetic Clay-Based Hetero-Metallic Oxide Nanocomposite KAB-Ben for Rapid Wastewater Treatment. Water Air Soil Pollut. 2023, 234(10), 654. DOI: 10.1007/s11270-023-06589-x.
  • Puri, C.; Arora, M.; Rajesh; Sumana, G. Optical Absorption Investigations for Efficient Crystal Violet Dye Removal from Wastewater via Carbon Nanotubes: Montmorillonite‐Based Nanocomposite. Luminescence 2023, 38(7), 1257–1267. DOI: 10.1002/bio.4374.
  • Esvandi, Z.; Foroutan, R.; Peighambardoust, S. J.; Akbari, A.; Ramavandi, B. Uptake of Anionic and Cationic Dyes from Water Using Natural Clay and Clay/Starch/MnFe2O4 Magnetic Nanocomposite. Surf. Interfaces 2020, 21, 100754. DOI: 10.1016/j.surfin.2020.100754.
  • Sethy, S. K.; Kishore, M. V.; Bhagat, C.; Kumar, M. Periodic Monitoring of Nano Clay As the Potential Adsorbent to Remove Metal and Dyes from Wastewater: A Review. Total Environ. Res. Themes 2023, 7, 100067. DOI: 10.1016/j.totert.2023.100067.
  • Abdullah, N. H.; Shameli, K.; Abdullah, E. C.; Abdullah, L. C. Solid Matrices for Fabrication of Magnetic Iron Oxide Nanocomposites: Synthesis, Properties, and Application for the Adsorption of Heavy Metal Ions and Dyes. Compos. Part B Eng. 2019, 162, 538–568. DOI: 10.1016/j.compositesb.2018.12.075.
  • Sarfraz, N.; Ashraf, M.; Ali, S.; Khan, I. Magnetism-Driven Iron Oxide Nanocomposites for Energy and Environmental Solutions: Harnessing Magnetism. Mater. Today Sustain 2023, 24, 100589. DOI: 10.1016/j.mtsust.2023.100589.
  • Fadillah, G.; Yudha, S. P.; Sagadevan, S.; Fatimah, I.; Muraza, O. Magnetic Iron Oxide/Clay Nanocomposites for Adsorption and Catalytic Oxidation in Water Treatment Applications. Open Chem. 2020, 18(1), 1148–1166. DOI: 10.1515/chem-2020-0159.
  • Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.; Akram, M. W.; Udego, I. O.; Li, H.; Niu, X. Surface Modification of Magnetic Iron Oxide Nanoparticles. Nanomaterials 2018, 8(10), 810. DOI: 10.3390/nano8100810.
  • Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Bhatti, H. N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395–407. DOI: 10.1016/j.molliq.2018.02.034.
  • Yuan, G. D.; Theng, B.; Churchman, G.; Gates, W. Clays and Clay Minerals for Pollution Control. Developments in Clay Science. Elsevier 2013, 5, 587–644. DOI: 10.1016/B978-0-08-098259-5.00021-4.
  • Bourlinos, A.; Karakassides, M.; Simopoulos, A.; Petridis, D. Synthesis and Characterization of Magnetically modified Clay Composites. Chem. Mater. 2000, 12(9), 2640–2645. DOI: 10.1021/cm000137o.
  • Tokarčíková, M.; Tokarský, J.; Kutláková, K. M.; Seidlerová, J. Testing the Stability of Magnetic Iron Oxides/Kaolinite Nanocomposite Under Various pH Conditions. J. Solid State Chem. 2017, 253, 329–335. DOI: 10.1016/j.jssc.2017.06.004.
  • Orolínová, Z.; Mockovčiaková, A. Structural Study of Bentonite/Iron Oxide Composites. Mater. Chem. Phys. 2009, 114(2–3), 956–961. DOI: 10.1016/j.matchemphys.2008.11.014.
  • Belachew, N.; Bekele, G. Synergy of Magnetite Intercalated Bentonite for Enhanced Adsorption of Congo Red Dye. Silicon 2020, 12(3), 603–612. DOI: 10.1007/s12633-019-00152-2.
  • Mahdavinia, G. R.; Afzali, A.; Etemadi, H.; Hoseinzadeh, H. Magnetic/pH-Sensitive Nanocomposite Hydrogel Based Carboxymethyl Cellulose–G-polyacrylamide/montmorillonite for Colon Targeted Drug Delivery. Nanomed. Res. J. 2017, 2(2), 111–122. DOI: 10.22034/nmrj.2017.58964.1058.
  • Goncharuk, O.; Samchenko, Y.; Sternik, D.; Kernosenko, L.; Poltorats’ka, T.; Pasmurtseva, N.; Abramov, M.; Pakhlov, E.; Derylo-Marczewska, A. Thermosensitive Hydrogel Nanocomposites with Magnetic Laponite Nanoparticles. Appl. Nanosci. 2020, 10(12), 4559–4569. DOI: 10.1007/s13204-020-01388-w.
  • Tireli, A. A.; Guimarães, I. D. R.; Terra, J. C. D. S.; da Silva, R. R.; Guerreiro, M. C. Fenton-Like Processes and Adsorption Using Iron Oxide-Pillared Clay with Magnetic Properties for Organic Compound Mitigation. Environ. Sci. Pollut. Res. 2015, 22(2), 870–881. DOI: 10.1007/s11356-014-2973-x.
  • Virkutyte, J.; Varma, R. S. Eco-Friendly Magnetic Iron Oxide-Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol. ACS Sustain. Chem. Eng. 2014, 2(7), 1545–1550. DOI: 10.1021/sc5002512.
  • Çiftçi, H.; Ersoy, B.; Evcin, A. Pillared Magnetite/Clay Structures As a Function of Ctab and Teos Concentrations. Emerg. Mater. Res. 2019, 9(1), 24–30. DOI: 10.1680/jemmr.18.00148.
  • Mao, H.; Liu, X.; Yang, J.; Li, B.; Yao, C.; Kong, Y. Synthesis of Magnetic FexOy@ Silica-Pillared Clay (SPC) Composites via a Novel Sol–Gel Route for Controlled Drug Release and Targeting. Mater. Sci. Eng. C. 2014, 40, 102–108. DOI: 10.1016/j.msec.2014.03.040.
  • Wan, D.; Li, W.; Wang, G.; Wei, X. Size-Controllable Synthesis of Fe3O4 Nanoparticles Through Oxidation–Precipitation Method as Heterogeneous Fenton Catalyst. J. Mater. Res. 2016, 31(17), 2608–2616. DOI: 10.1557/jmr.2016.285.
  • Bachir, C.; Lan, Y.; Mereacre, V.; Powell, A. K.; Koch, C. B.; Weidler, P. G. Magnetic Titanium-Pillared Clays (Ti-M-PILC): Magnetic Studies and Mossbauer Spectroscopy. Clays Clay Miner. 2009, 57(4), 433–443. DOI: 10.1346/CCMN.2009.0570404.
  • Ayalew, A. A. A Critical Review on Clay-Based Nanocomposite Particles for Application of Wastewater Treatment. Water Sci. Technol. 2022, 85(10), 3002–3022. DOI: 10.2166/wst.2022.150.
  • Szabó, T.; Bakandritsos, A.; Tzitzios, V.; Papp, S.; Korösi, L.; Galbács, G.; Musabekov, K.; Bolatova, D.; Petridis, D.; Dékány, I. Magnetic Iron Oxide/Clay Composites: Effect of the Layer Silicate Support on the Microstructure and Phase Formation of Magnetic Nanoparticles. Nanotechnology 2007, 18(28), 285602. DOI: 10.1088/0957-4484/18/28/285602.
  • Lasheen, M.; El-Sherif, I. Y.; Sabry, D. Y.; El-Wakeel, S.; El-Shahat, M. Adsorption of Heavy Metals from Aqueous Solution by Magnetite Nanoparticles and Magnetite-Kaolinite Nanocomposite: Equilibrium, Isotherm and Kinetic Study. Desalin. Water. Treat. 2016, 57(37), 17421–17429. DOI: 10.1080/19443994.2015.1085446.
  • Fatimah, I.; Nurkholifah, Y. Y. Physicochemical and Photocatalytic Properties of Fe-Pillared Bentonite at Various Fe Content. Bull. Chem. React. Eng. Catal. 2016, 11(3), 398–405. DOI: 10.9767/bcrec.11.3.456.398-405.
  • Siregar, S. H.; Wijaya, K.; Kunarti, E. S.; Syoufian, A. Synthesis and Characteristics of the Magnetic Properties of Fe3O4-(CTAB-Montmorillonite) Composites, Based on Variation in Fe3+/Fe2+ Concentrations. Orient J. Chem. 2018, 34(2), 716. DOI: 10.13005/ojc/340213.
  • Kamaraj, M.; Srinivasan, N.; Assefa, G.; Adugna, A. T.; Kebede, M. Facile Development of Sunlit ZnO Nanoparticles-Activated Carbon Hybrid from Pernicious Weed as an Operative Nano-Adsorbent for Removal of Methylene Blue and Chromium from Aqueous Solution: Extended Application in Tannery Industrial Wastewater. Environ. Technol. Innovations 2020, 17, 100540. DOI: 10.1016/j.eti.2019.100540.
  • Mustapha, S.; Ndamitso, M. M.; Abdulkareem, A. S.; Tijani, J. O.; Shuaib, D. T.; Ajala, A. O.; Mohammed, A. K. Application of TiO2 and ZnO Nanoparticles Immobilized on Clay in Wastewater Treatment: A Review. Appl. Water. Sci. 2020, 10(1), 49. DOI: 10.1007/s13201-019-1138-y.
  • Raha, S.; Ahmaruzzaman, M. ZnO Nanostructured Materials and Their Potential Applications: Progress, Challenges and Perspectives. Nanoscale Adv. 2022, 4(8), 1868–1925. DOI: 10.1039/D1NA00880C.
  • Wang, H.; Zhou, P.; Wang, J.; Wang, Y.; Wei, J.; Zhan, H.; Guo, R.; Zhang, Y. Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2018, 33(3), 729–735. DOI: 10.1007/s11595-018-1885-x.
  • Shakir, M.; Faraz, M.; Sherwani, M. A.; Al-Resayes, S. I. Photocatalytic Degradation of the Paracetamol Drug Using Lanthanum Doped ZnO Nanoparticles and Their in-Vitro Cytotoxicity Assay. J. Lumin. 2016, 176, 159–167. DOI: 10.1016/j.jlumin.2016.03.027.
  • Mustapha, S.; Tijani, J.; Ndamitso, M.; Abdulkareem, S.; Shuaib, D.; Mohammed, A. K.; Sumaila, A. The Role of Kaolin and Kaolin/ZnO Nanoadsorbents in Adsorption Studies for Tannery Wastewater Treatment. Sci. Rep. 2020, 10(1), 13068. DOI: 10.1038/s41598-020-69808-z.
  • Uddin, M. K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. DOI: 10.1016/j.cej.2016.09.029.
  • Azizi, S.; Mahdavi Shahri, M.; Mohamad, R. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies. Molecules 2017, 22(6), 831. DOI: 10.3390/molecules22060831.
  • Yasin, N. M.; Hisham, S. N. H. B.; Rozulan, N. N. A.; Razali, N. A. Studying the Performance of Diaper Char Produced via Pyrolysis As an Efficient Adsorbent for Lead Removal. Malays. J. Anal. Sci. 2021, 25(1), 81–94.
  • Salehi-Babarsad, F.; Derikvand, E.; Razaz, M.; Yousefi, R.; Shirmardi, A. Heavy Metal Removal by Using ZnO/Organic and ZnO/Inorganic Nanocomposite Heterostructures. Int. J. Environ. Anal. Chem. 2020, 100(6), 702–719. DOI: 10.1080/03067319.2019.1639685.
  • Sani, H. A.; Ahmad, M. B.; Hussein, M. Z.; Ibrahim, N. A.; Musa, A.; Saleh, T. A. Nanocomposite of ZnO with Montmorillonite for Removal of Lead and Copper Ions from Aqueous Solutions. Process Saf. Environ. Prot. 2017, 109, 97–105. DOI: 10.1016/j.psep.2017.03.024.
  • Singh, S.; Barick, K.; Bahadur, D. Fe 3 O 4 Embedded ZnO Nanocomposites for the Removal of Toxic Metal Ions, Organic Dyes and Bacterial Pathogens. J. Mater. Chem. A. 2013, 1(10), 3325–3333. DOI: 10.1039/C2TA01045C.
  • Mustapha, S. Synthesis and Characterisation of TiO2/ZnO Nanocomposites Immobilized on Kaolin for the Treatment of Tannery Wastewater. Doctoral dissertation, University in Minna, Nigeria, 2021.
  • Bagheri, S.; Chekin, F.; Hamid, S. B. A. Gel-Assisted Synthesis of Anatase TiO2 Nanoparticles and Application for Electrochemical Determination of L-Tryptophan. Russ. J. Electrochem. 2014, 50(10), 947–952. DOI: 10.1134/S1023193514100024.
  • Ullattil, S. G.; Periyat, P. Sol-Gel Synthesis of Titanium Dioxide. Sol-Gel Mater. Energy, Environ. Electron. Appl. 2017, 271–283. DOI: 10.1007/978-3-319-50144-4_9.
  • Morales, J.; Maldonado, A.; Olvera, M. D. L. L. Synthesis and Characterization of Nanoestructured TiO2 Anatase-Phase Powders Obtained by the Homogeneous Precipitation Method. Proc 2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, Sept 30–Oct 4, 2013; IEEE, 2013; pp. 391–394.
  • Ajala, M. A.; Abdulkareem, A. S.; Tijani, J. O.; Kovo, A. S. Adsorptive Behaviour of Rutile Phased Titania Nanoparticles Supported on Acid-Modified Kaolinite Clay for the Removal of Selected Heavy Metal Ions from Mining Wastewater. Appl. Water. Sci. 2022, 12(2), 19. DOI: 10.1007/s13201-021-01561-8.
  • Zhang, Y.; Gan, H.; Zhang, G. A Novel Mixed-Phase TiO2/Kaolinite Composites and Their Photocatalytic Activity for Degradation of Organic Contaminants. Chem. Eng. J. 2011, 172(2–3), 936–943. DOI: 10.1016/j.cej.2011.07.005.
  • Hai, Y.; Li, X.; Wu, H.; Zhao, S.; Deligeer, W.; Asuha, S. Modification of Acid-Activated Kaolinite with TiO2 and Its Use for the Removal of Azo Dyes. Appl. Clay Sci. 2015, 114, 558–567. DOI: 10.1016/j.clay.2015.07.010.
  • Kutláková, K. M.; Tokarský, J.; Kovář, P.; Vojtěšková, S.; Kovářová, A.; Smetana, B.; Kukutschová, J.; Čapková, P.; Matějka, V. Preparation and Characterization of Photoactive Composite Kaolinite/TiO2. J. Hazard. Mater. 2011, 188(1–3), 212–220. DOI: 10.1016/j.jhazmat.2011.01.106.
  • Guillaume, P.; Chelaru, A.; Visa, M.; Lassine, O. Titanium Oxide-clay” As Adsorbent and Photocatalysts for Wastewater Treatment. J. Membr. Sci. Tech. 2018, 8(1), 176–186. DOI: 10.4172/2155-9589.1000176.
  • Othman, M. H.; Sulaiman, H.; Bin Wahab, M. S. A Review of Polypropylene Nanoclay Nanocomposites: Preparation, Properties and Applications. Appl. Mech. Mater. 2014, 465-466, 944–948. DOI: 10.4028/www.scientific.net/amm.465-466.944.
  • Amari, A.; Mohammed Alzahrani, F.; Mohammedsaleh Katubi, K.; Salem Alsaiari, N.; Tahoon, M. A.; Ben Rebah, F. Clay-Polymer Nanocomposites: Preparations and Utilization for Pollutants Removal. Materials 2021, 14(6), 1365. DOI: 10.3390/ma14061365.
  • Wang, Z.; Pinnavaia, T. J. Nanolayer Reinforcement of Elastomeric Polyurethane. Chem. Mater. 1998, 10(12), 3769–3771. DOI: 10.1021/cm980448n.
  • Wang, Z.; Pinnavaia, T. J. Hybrid organic−inorganic Nanocomposites: Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer. Chem. Mater. 1998, 10(7), 1820–1826. DOI: 10.1021/cm970784o.
  • Gintert, M. J. A Novel Approach to Obtain High Performance Layered Silicate Thermoset Polyimide Matrix Nanocomposites. Doctoral dissertation, University of Akron, Ohio, United States, 2007.
  • Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis and Properties of Polyimide–Clay Hybrid. J. Polym. Sci. Part A Polym. Chem. 1993, 31(10), 2493–2498. DOI: 10.1002/pola.1993.080311009.
  • Ogata, N.; Jimenez, G.; Kawai, H.; Ogihara, T. Structure and Thermal/Mechanical Properties of Poly (L‐Lactide)‐Clay Blend. J. Polym. Sci. Part B: Polym. Phys. 1997, 35(2), 389–396. DOI: 10.1002/(SICI)1099-0488(19970130)35:2<389:AID-POLB14>3.0.CO;2-E.
  • Burnside, S. D.; Giannelis, E. P. Synthesis and Properties of New Poly (Dimethylsiloxane) Nanocomposites. Chem. Mater. 1995, 7(9), 1597–1600. DOI: 10.1021/cm00057a001.
  • Saurabh, K.; Kanchikeri Math, M.; Datta, S. C.; Thekkumpurath, A. S.; Kumar, R. Nanoclay Polymer Composites Loaded with Urea and Nitrification Inhibitors for Controlling Nitrification in Soil. Arch. Agron. Soil Sci. 2019, 65(4), 478–491. DOI: 10.1080/03650340.2018.1507023.
  • Walton, A.; Blackwell, J. Structural Units of Biopolymers; Biopolymers Academic Press: New York, NY, 1973; Vol. 1, pp. 1–18.
  • Liu, Y.; Takafuji, M.; Ihara, H.; Wakiya, T. Saturation Magnetization of Inorganic/Polymer Nanocomposites Higher Than That of Their Inorganic Magnetic Component. arXiv 2012, 1206–2805. DOI: 10.48550/arXiv.1206.2805.
  • Ahmad, M. B.; Gharayebi, Y.; Salit, M. S.; Hussein, M. Z.; Shameli, K. Comparison of in situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide/Montmorillonite (MMT) Nanocomposites. Int. J. Mol. Sci. 2011, 12(9), 6040–6050. DOI: 10.3390/ijms12096040.
  • Naveen, A. N.; Manoj, N. Rheological and Thermal Analysis of Polystyrene–Kaolin Nanocomposite Prepared by Solution Intercalation Technique. Procedia Technol. 2016, 24, 749–753. DOI: 10.1016/j.protcy.2016.05.071.
  • Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Appl. Sci. 2018, 8(9), 1696. DOI: 10.3390/app8091696.
  • Gürses, A.; Güneş, K. Preparation of Polyethylene Clay Composites via Melt Intercalation Using Hydrophobic and Superhydrophobic Organoclays and Comparison of Their Textural, Mechanical and Thermal Properties. Polymers 2024, 16(2), 272. DOI: 10.3390/polym16020272.
  • Mohanty, S.; Nayak, S. K. Effect of Clay Exfoliation and Organic Modification on Morphological, Dynamic Mechanical, and Thermal Behavior of Melt‐Compounded Polyamide‐6 Nanocomposites. Polym. Compos. 2007, 28(2), 153–162. DOI: 10.1002/pc.20284.
  • Yilmaz, O.; Cheaburu, C.; Durraccio, D.; Gulumser, G.; Vasile, C. Preparation of Stable Acrylate/Montmorillonite Nanocomposite Latex via in situ Batch Emulsion Polymerization: Effect of Clay Types. Appl. Clay Sci. 2010, 49(3), 288–297. DOI: 10.1016/j.clay.2010.06.007.
  • Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J. M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U., et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7(4), 74. DOI: 10.3390/nano7040074.
  • Wołejko, E.; Wydro, U.; Butarewicz, A.; Jabłońska-Trypuć, A. Method Used in situ for Removal of Waterborne Pathogens. Waterborne Pathog. 2020, 321–337. DOI: 10.1016/B978-0-12-818783-8.00016-5.
  • Farré, M. J.; Insa, S.; Lamb, A.; Cojocariu, C.; Gernjak, W. Occurrence of N-Nitrosamines and Their Precursors in Spanish Drinking Water Treatment Plants and Distribution Systems. Environ. Sci. Water Res. Technol. 2020, 6(1), 210–220. DOI: 10.1039/C9EW00912D.
  • Bruna, J.; Peñaloza, A.; Guarda, A.; Rodríguez, F.; Galotto, M. Development of MMT-Cu2+/LDPE Nanocomposites with Antimicrobial Activity for Potential Use in Food Packaging. Appl. Clay Sci. 2012, 58, 79–87. DOI: 10.1016/j.clay.2012.01.016.
  • Belghazdis, M.; Hachem, E.-K. Clay and Clay Minerals: A Detailed Review. Int. J. Recent Technol. Appl. Sci. 2022, 4(2), 54–75. DOI: 10.36079/lamintang.ijortas-0402.367.
  • Azha, S. F.; Shahadat, M.; Ismail, S.; Ali, S. W.; Ahammad, S. Z. Prospect of Clay-Based Flexible Adsorbent Coatings As Cleaner Production Technique in Wastewater Treatment, Challenges, and Issues: A Review. J. Taiwan Inst. Chem. Eng. 2021, 120, 178–206. DOI: 10.1016/j.jtice.2021.03.018.
  • Hofman, A. H.; van Hees, I. A.; Yang, J.; Kamperman, M. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Adv. Mater. 2018, 30(19), 1704640. DOI: 10.1002/adma.201704640.
  • Omer, O. S.; Hussein, M. A.; Hussein, B. H.; Mgaidi, A. Adsorption Thermodynamics of Cationic Dyes (Methylene Blue and Crystal Violet) to a Natural Clay Mineral from Aqueous Solution Between 293.15 and 323.15 K. Arab J. Chem. 2018, 11(5), 615–623. DOI: 10.1016/j.arabjc.2017.10.007.
  • Alorabi, A. Q.; Hassan, M. S.; Alam, M. M.; Zabin, S. A.; Alsenani, N. I.; Baghdadi, N. E. Natural Clay As a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity. Nanomaterials 2021, 11(11), 2789–2792. DOI: 10.3390/nano11112789.
  • Stathi, P.; Litina, K.; Gournis, D.; Giannopoulos, T. S.; Deligiannakis, Y. Physicochemical Study of Novel Organoclays as Heavy Metal Ion Adsorbents for Environmental Remediation. J. Colloid. Interface. Sci. 2007, 316(2), 298–309. DOI: 10.1016/j.jcis.2007.07.078.
  • Jawad, A. H.; Abdulhameed, A. S. Mesoporous Iraqi Red Kaolin Clay as an Efficient Adsorbent for Methylene Blue Dye: Adsorption Kinetic, Isotherm and Mechanism Study. Surf. Interfaces 2020, 18, 100422. DOI: 10.1016/j.surfin.2019.100422.
  • Lagdali, S.; Miyah, Y.; El-Habacha, M.; Mahmoudy, G.; Benjelloun, M.; Iaich, S.; Zerbet, M.; Chiban, M.; Sinan, F. Performance Assessment of a Phengite Clay-Based Flat Membrane for Microfiltration of Real-Wastewater from Clothes Washing: Characterization, Cost Estimation, and Regeneration. Case Stud. Chem. Environ. Eng. 2023, 8, 100388. DOI: 10.1016/j.cscee.2023.100388.
  • Iaich, S.; Miyah, Y.; Elazhar, F.; Lagdali, S.; El-Habacha, M. Low-Cost Ceramic Microfiltration Membranes Made from Moroccan Clay for Domestic Wastewater and Congo Red Dye Treatment. Desalin. Water. Treat. 2021, 235, 251–271. DOI: 10.5004/dwt.2021.27618.
  • Khalilzadeh Shirazi, E.; Metzger, J. W.; Fischer, K.; Hassani, A. H. Design and Cost Analysis of Batch Adsorber Systems for Removal of Dyes from Contaminated Groundwater Using Natural Low-Cost Adsorbents. Int. J. Ind. Chem. 2020, 11(2), 101–110. DOI: 10.1007/s40090-020-00205-1.
  • Keshmiri-Naqab, R.; Taghavijeloudar, M. Could Organoclay Be Used as a Promising Natural Adsorbent for Efficient and Cost-Effective Dye Wastewater Treatment? J. Environ. Manage. 2023, 342, 118322. DOI: 10.1016/j.jenvman.2023.118322.
  • Márquez, C. O.; García, V. J.; Guaypatin, J. R.; Fernández-Martínez, F.; Ríos, A. C. Cationic and Anionic Dye Adsorption on a Natural Clayey Composite. Appl. Sci. 2021, 11(11), 5127. DOI: 10.3390/app11115127.
  • El-Habacha, M.; Dabagh, A.; Lagdali, S.; Miyah, Y.; Mahmoudy, G.; Sinan, F.; Chiban, M.; Iaich, S.; Zerbet, M. An Efficient and Adsorption of Methylene Blue Dye on a Natural Clay Surface: Modeling and Equilibrium Studies. Environ. Sci. Pollut. Res. 2023, 1–15. DOI: 10.1007/s11356-023-27413-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.